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Abstract

Device analysis has traditionally been based on the semiclassical Boltzmann transport
equation. Despute its impressive successes, this approach sutlers from an important
limuation; it cannot descnbe transpon phenomena in which the wave nature of elecirons
piays o crucial role. A vaniety ol such quantum ctfects have been discovered over the
vears, such as tunnelling, resonant tunnelling, weak and strong localisation, and the
quanium Hall ¢fect. Siace 1985, expenments on ultrasmall structures (dimensions
= 10X am) have revealed a number ol new eftects such as the Aharanov-Bohm etfect,
conductance Huctuauons, non-local effects and the quantised resisiance of point con-
tacts., For ultrasmalil structures at low temperature, these phenomena have clearly
shown that electron wransport is influenced by wave interference etfects not unlike
those well known in microwave networks. New device concepts are being proposed
and demonstrated that are based on these wave properties.

In this aricle we review guantum interference etfects that have been observed in
pltrasmall structures, and their implications {or future electronic devices. We also
review the current theoretical understanding of such phenomena and discuss some of
the unresolved questions that have (o be answered in order to develop accurate models
for quantum device simulaton.

This review was received in NMovember 1989.
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Quantum transpori in ultrasmall electronic devices 000

f. [ntroduction

Semiconductor device analvsis has traditionally been based on the drifi-diftusion
cguation:

J=ea(&fIn& + e &)V (.0

Here J is the current density, n is the electron density, & is the ¢lectric field and u
and {2 are the basic transport parameters catled the mobility and the diffusion coefficient
respectvely. For simplicity, we restrict ourselves to one type of carrier, namely
electrons. In deriving equation { 1.1} onc makes two main assumptions:

{i} Electrons are particles with an effective mass that move in an external field
according to Newton's law with occasional scattering by phonons and impurities.

tit} The electric field changes slowly compared with the mean free path so that an
electron is scattered many times before the field changes appreciably.

In manv present-day submicrometre devices, assumption (ii) is violated. An electron
may iransit through the device with few or no collisions in a manner reminiscent of
vacuum tubes. Consequenily, the vefocity distribution of electrons (and hence transport
parameters like u and D) al any point within the device is not determined uniquely
by the local etectric field £ but is dependent on the boundary conditions, as in vacuum
tubes. To uccount for such non-stationary or hot-electron effects as they are often
called, new approaches to device simulation are being developed based on the
Roltzmann equation, which under steady state conditions can be written as

£
vtk)-Vf+eT-V.(f=So,,f (1.2)

where f{r. k) is the semiclassical distribution function that tells us the number of
electrons at r having the wavevector k; o is the velocity of an electron with wavevector
k; 5., is the scattering operator which is usuaily evaluated by applying Fermi’s golden
ruie to the individeal scatterers. In deriving equation (1.2} one needs only the first of
the two assumptions listed after equation (1.1). Consequently, hot-electron effects are
accounted for.

As devices shrink 10 dimensions comparable with the wavelength of electrons, it
is expected that the wave nature of clectrons will play an increasingly imponant role
and even the first assumption will no longer be vaiid. On such small length scales the
semiclassical distribution function is no longer a valid concept, due to the uncertainty
relation between r and k& To analyse and design devices on a sub-100 nm scale it will
be necessary to go beyond the Boltzmann equation (1.2} and develop simulation
techniques based on quantum kinetic equations (figure 1). The development of an
appropriate kinetic equation is an active topic of current theoretical research that has
recently gained impetus from the surge of experimental activity in the area of quantum
transport.

The development of molecular beam epitaxy since the late 1960s has maue it
possible to grow ultrathin (~20 A} layers of diffierent materials with atom cally sharp
interfaces. This has led 10 the development of verrical quantum Jevices where the
current lows perpendicular to the tayers (figure 2). Changes in the marerial composition
gives rise 10 variations in the conduction band edge, which the electrons feel as an
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Figure 1. Hierarchy of transpon theories.
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Figure 2. (a) Venical and (&) lateral quanium devices.

cflective potential. Alternatively, modulations in the doping profile during film growth
can be used to tailor the electrostatic potential through space-charge transfer. Some
of these vertical structures, such as resonant tunneiling devices, have now reached a
high level of maturity and have emerged as potentially useful practical devices. By
contrast lateral quantum devices, with current tlowing paraflel to the layers, are still
in their infancy. In these structures, the potential can be defined through patterned
clectrodes which depicte selected regions. Such structures have only recently been
made possible by the advances ‘in nanolithographic techniques. It will probably be
many years before useful devices based on such effects become practicable. However,
since 1985, there has been a flood of experiments revealing novel quantum ctfects at
low temperatures, causing great excitement among both basic and applied physicists.
On the one hand, such experiments open up ncw ways to study fundamental questions
of physics; for instance, the role of dissipation in microscopic phenomena. On the
other hand, these studies raisc the possibility of radically new ciectronic devices that
operate by controlling the phase of the wavefunction, rather than by controlling the
carrier density, as in present-day devices. The last few years have seen the cergence
of a new research area that has been given a variety of names such as ‘mesoscopic
physics’, ‘nanostructure physics’ and ‘nanoelectronics’.

The outline of this review is as foillows. In section 2, we will discuss the basic
conceptuai framework that one uses to describe electron transpon in ultrasmall devices.
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Quanium transport in ultrasmall efecironic deyices 3

We wall then review vafious quantum effects thut have heen obsood, s sikvina
possible device imphications in section 3. Our current theorencal understanding of
quantum transport phenomena is reviewed in section 4. We conclude in section 5 by
discussing {ulure prospects of quantum devices. The purpose of this article 1s to review
our current understanding of quantum transport in uttrasmall structures. Due 1o the
rapid developments in this area it is inevitable that, despite the authors' best efforts,
some aspects may nol be covered uadequately,

2. Background

All of the phenomena that we will discuss in this article are essentially one-electron
phenomena, although it ts possible that many-body etfects will play a more significant
role in the electronic properties of smail structures, Most of the experimental observa-
uons to date are well explained, at least qualitatively, in terms of the simple one-particle
micture descnibed below. A notable exception is the fractional quantum Hall effect,
which is outside the scope of this review.

2.1. Current-voltage formula

An electromie device is typicaily connected to two contacts across which o voltage is
applied {figure 3a)}. Each of these contacts launches a steady stream of electrons
onta the device, of which a fraction is transmitted to the other comact. At equilibrium
with both contacis having the same ¢lectrochemical potential, the current 1, ., ransmit-
ted from contact | 1o contact 2 is exactly balanced by the current -, transmitted trom
comact 2 to comact 1. An applied voltage shifts the local chemical potential u, in
contact 1 with respect o the local chemical potential i, in contact 2, making /.,
ditferent from L., and causing a net current How through the device. The currents
I_: and £, may be evaluated as follows.
The incident Bux {] from contact 1 is written as

dk, hk,
fT=eTJ.——f(E*e.u|) (2.1}

2o m"

Device

o~

lai

Qefector |=— - Soute

2

~a1 Deteclor
Y

Figure 3. (@) A device with two contacts. 1b) The 1wo contacts in (¢ 3¢t 48 source and
detector with the device as the intervening medium,

Source -
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where f{ E} is the Fermi- Dirac function, m* is the effective mass, 4, is the longtudinai
wavenumber, and # denotes the transverse modes or sub-bands tincluding spin}, all
in lead 1. The energy E is equal to the energy ¢, at the bottom (k, =0} ol sub-band
# plus the longitudinal kinetic energy h k./2m*

E=r,+{h*ki/2m*). 122}

The sub-band energy #, 1s the sum of the potential energy and the transverse kinetic
energy. For a large area contact the aliowed energies ¢, are essentiadly continuous,
while for a small contact they form a discrete set. Using the definition tor the tmal
energy 12.2) we express the incidem flux 77 (2.1) as

+ € -
i =T:E,[ dEf{E —en)). (2.3

A Ja,

Let #37"{ E) be the [raction of clectrons incident with energy £ from sub-band n in
contact | that are transmitted to sub-band m in contact 2. We can wnite

=7 T | dESE —en) s 3(ED

L "
=£fd£f(£—en.)r,,(ew (2.4}
where
T(EY =Y +T(E}OIE -¢,) {2.5)
and 8(E) is the Hcavis-idc step function. Similarly, we can show that
I,-,=fjd£ﬂ£-ep.z)7'.z(£). (2.6)

The net current flowing into the device through contact 1 and out through comact 2
is given by

fi==fi=ha=h
=fJdE[T:-(Elf(E—em)—Tu(E)f(E-f#:}]' o

The approach described above has been widely used in tunneiling problems (Frenkel
1930, Duke 1969, Tsu and Esaki 1973). In these problems, it is usuaily assumed that
there are no phase-breaking processes within the device so that the transmission
coefficients may be obtained from the one-electron Schrodinger equation (this s
discussed further in section 2.3). [ndeed, to the knowledge of the authors, equation
{2.7) has only been applied to such phase-coherent transport problems. In this limit,
it is straightforward to show that equation {2.7) leads to the correct equilibnum
condition; namely, that the current [, is zero with x, = . = u,. This requires that

J dEf(E - epa)( T (E)- T\ 2(EN=10. (2.8)
The superscript ‘0 is added to indicate that the rransmission coefficients are evaluated
at equiiibrnium with a constant electrochemical potential u, everywhere. in the case

of phase-coherent transport, we will later show from the symmetry properties of the
S-matrix that 7.0 EY = T,,( E). Consequently, the validity of equation (2.8) is obvious.

0335702738

1w
[REN ]

18
vy
14N
ek
1~
1A
1an
T
[T
1
(5014
<t
ARIUL
rape
10
(B
[

14020

1M
psns

18

[t

s

1303
FRUEL]
14m12
110N
pe0td

(LR

AT 1Y

19833

Az

141 229 1 4@ 17 Galley S

Quansum transport in ultrasmall electronic devices s

From the ahove derivation of equation (2.7), however, it seems that this ¢quation
could be applicable more generaily, provided one knows how to compute the trans-
mission coetticients in the presence of phase-breaking processes. For example. in the
extreme limit of incoherent transport, one couid compute the transmission coetficients
from a semiclassical Monte Carlo simulation and use them in equation (2.7) to obtain
the /- V characteristics. But in the presence of inelastic scattering, it is difficoit 1o
show that equation (2.7} leads to the correct equilibrium condition (2.8). Inthe presence
of inelastic scattering To(E)# T\o E), as we can see by considering the simple
two-prohe device in figure 4. We have a single inelastic scatterer on the right al a
potential barrier. An electron incident with energy E (rom probe | crosses the barner,
toses energy to the scatterer and exits into probe 2. But an electron incident with
energy E from probe 2 loses energy to the scatterer before crossing the barrier and
cannot cross the barrier into probe t. Clearly T3 (E}> T\,(E} in 1his case, and in
general there is no obvious relationship between T5,(E} and T\;(E). Consequently,
the validity of equation (2.8 is not obvious, and the authors are not aware of a general
prooi. Much more is understood in the fimit of smalll applied biases, which we consider
hetow.

£ e Ty

™~ e e

il S

7% 7

—7
Figure 4. A simple example to show that Tyl E)¥ T EYinhe presence of phasc-breaking
processes.

A

. Linear response

Equration {2.7) is suitable for computing the current flowing through the circuit in
response 10 an applied potential difference gy —p,. If this difference is ‘small’, then
one can simplify equation (2.7) as follows. At equilibrium with =, =m0, I, is
zero, as we just discussed. Now, if we assume that the electrochemical potentials u,
and g deviate only slightly from the equilibrium value uq then we can expand the
Fermi- Dirac functions in equation (2.7) in a Taylor series about euo:

. e
ffE“t’uu._v)“ﬂn(E)"’F(“;"E)(#n—#u.:)- (2.9}
Here /i( £} stands fot /T E — eny). Substituting this expansion {2.9) into the expression

032402480
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for the current {2.7), and using the identity found in equilibrium {2.8), we obtain

J'|=L‘:_!(-'F-:ni-h":i-n#!JI (2.1
where

= afu !

n’zj‘da(—‘i—é) TE). (e

We have assumed that in the limit of linear response the transmission coethctents
T,LE) are weil approximated by the equilibrium values T0,"{ E}. Since the current in
equation {2.10) must be zero with uy=pu,, we have Ty, = T2 this is also proven
from more general considerations, below. Hence, we rewrite our expression for the
current (2.10) as

e .
’1';‘ Ty ~ p2). (2.12)

This is one form of the Landauer formuia, which suggesis that the etfective conductance
connecting two contacts is equal to (& /M T,2. However, it should be noted that this
is not the conductance of the device itsell (see figure 3), since we do not know a priori
what fraction of the applied potential u, — 1, is actually dropped across the device,
and what fraction is absorbed by contact resistanice. The question of how the actual
conductance of the device can be obtained was raised by Landauer (1957) in his
pioneering paper, and has since been addressed by numerous authors ( Bittiker et al
1985, Hu 1987, Erinen and Sinkkonen 1987, Jain and Kivelson 1988}, 1t seemsy that
there is no unique answer to the above question, for it depends on how the potenual
drop across the device is actually measured. This ambiguity has led to ditferent versions
of the Landauer formula (for a review, see Imry 1986a, Landauer 1970, 1987, 1988).

Experimentzal measurements of the conductance are usuaily performed using four-
probe structures, rather than two-probe structures, in order to minimisc the effect of
contacts. The current is fed in through two probes and the voltage is monitored through
a pair of probes in the middle (figure 5). For 2 while it was not clear how this four-probe
conductance could be computed theoretically because of the ambiguity regarding what

1 3
Lo}

Figure 5. (a} A four-probe Hall bndge. (b} Equivalent resistor network in the abisence of
magnenc fiekds. {After Datia 1989a.)
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Quanium transport tn ulirasmall elecirome devices 7

the voliage probes modsure, Bilttikar | iYBaG, 1988a) Tound 4 simBle ailid 2leguRi
solution 1o this problem. He noted that since there is really no yualitauve difference
hetween the current probes and the voltage probes in a Hall bridge. one could treat
all the probes on an ¢qual footing and simpiy extend the wtwo-probe formula (2.10) by
summing over all the probes

¢ - -
L= T AT = T (2.43)

Note that for i = j, the summand is identically zero. We can thus drop the restriction
from the summation and write,

el -
fo= o LT = Toy). : (2.14)
;

We interpret T, as the probability that an electron incident in probe i will be reflected
back into the same probe (usually written as R,,).

If there are no magnetic tields ( B = 0}, it can be shown that f‘;, = 'f,.. The Landauer-
Biittiker formula (2.13) is then precisely what one obtains by applying Kirchhoff's
laws to a network of resistors connecting each contact ¢ and contact j through a
conductance G, given by

e {2.15)

Thus, in the absence ot magnetic fields, one can visualise mesoscopic systems in (erms
of an equivalent resistor network as shown in figure 2.3(b).

In the presence of a magnetic field, the Landauver- Biittiker formula is still valid.
as verified by the derivation of Baranger and Stone {1989¢). 1n general, the coetficients

T, have the following properties:

Tya=Tol-a (2.16)
and
Y1,=YT.=2Mm (217

where M is the number of transverse modes in the contacts, and the factor of 2 accounts
for spins. The property (2.17) ensures that the currents are all zero when the
electrochemical potentials are all equal. These properties are easy lo prove il we
assume phase-coherent transport throughout the device. One can then invoke S-matrix
reciprocity (based on lime reversibility arguments) to write

T (Eip = T E-u. (2.18)
Using the definition of T,{E} (2.5), we obtain
TAE)y = Tu(E)l-s. {2.19)

The desired symmetry propeny (2.16) follows readily by integraung out the energy
dependence (2.11).

The tirst part of the normaiisation propenty (2.17) is trivial—it merely states that
the current entering lead j must be accounted for at all possibic cutputs. Consequently,
if we write T, in the form of a matrix, the columns must sum to 2M (figure 6(a)).
The second part of equation (2.17), however, is rather subtle. It states that the total

0364702776
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Sum gver gll possble rpuks 1M

SRR -

13
ey

R

5 i
|
S T Il
LSum over oll possible wipyts = 2M

ig

\Hurm ot 7

T g i

8-=-3

»

Sum gver ail possible outpurs = IM —r

141
Figure 6. {a} Rows and columns of the matrix 1'-',r must surn 10 1A (h} Reversal ol the
magnetic field mercly transposes the matrix.

current enrering all of the various leads must equal that which finally exits through
lead j; that is, the rows must also sum to 2M. This is because under reversal of magnetic
field, the rows transpose into columns {figure 6(b)}, and the columns sum to 2M as
before, due 1o current conservation. Proof of this property can be shown aigebraically,
as follows. We note that due to current conservation, which holds regardless of the
magnetic field,

T (ENa=Y tEN-a= 1. {2.20}

Using the definition of T,(E) (2.5)
Y TAENa=L T{E).p=2M (2.21)

and the symmetry property shown above, {2.19), we obtain
Y TUEY=E T (E}=1M. (222)

Again, the normalisation property {2.17} foilows readily by integrating out the energy
dependence (2.11). Note that this property has an interesting implication lor two-lead
geometries: T,y = T, regardless of the magnetic field.

These relationships, however, are not as easy to prove if we allow phase-breaking
processes to occur within the device. In fact, when phase-hreaking processes are
included, our intermediate symmetry propenty (2.19) is no longer valid,

TAE ) # T EY_s,
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as discussed at the end of section 2.1. However, Biittiker {1988a) has shown that the
final svmmetry property 12,161},

iri" = fn] iy

is stil! vaiid. even in the presence of phase-breaking processes within the device. This
i5 an imponant point, since phase-coherent transport is a theorist’s idealisation that
ts never realised precisely. The symmetry property {2.16), on the other hand, can be
used to prove general relationships like Onsager reciprocity in mesoscopic systems
(Battiker 1986a).

2.0, Transmussion coefficients

To use any of the current equations ((2.7), (2.12) or {2.13}), we need to know the
transmission coefficients. The problem of current flow is thus reduced to a scatienng
prablem not unlike that encountered in, say, auclear physics. It is as if the two contacts
act as source and detector, with the device as the intervening medium {fgure 3{b});
the problem then is to compute the scattering characteristics of this medium.

The procedure for computing the scattering characteristics is quite straightforward
if we neglect all phase-breaking processes within the device (the precise meaning of
‘phase-breaking’ will be discussed shortly). The transmission of electrons from
the source lo the detector is then described by the one-electron time-independent
Schrédinger equation:

((p —eA)

— +eV)‘F(r]=E‘[»‘(rl. (223
om
Here Af(r) and V(r) are the vector and scalar potentials within the device. The scalar
potential V{r}includes band-bending due to externaily applied fields and space charge
effects, band-edge discontinuitics due to heterojunctions, and microscopic fields due
1o elastic scatterers such as defects or impurities. In the absence of magnetic fields,
the vector potential A may be set equal to zero, so that we can simplify the Schrodinger
equation (2.23) as follows:
2m*

V“F(r)=——h-;"(E— V{rwir). (2.24a}
This equation is very similar to Maxwell’s equation used in integrated optics {assuming
& - V¢ =0 for simplicity),

Vg = ~w ue(r)¥. (2.248)

Here % is the electric field, w is the radian frequency, u is the permeability and ¢ is
the spatially varying dielectric constant. Comparing these two equations (2.24a. b) it
is evident that electron waves moving through a medium with a spatially varying
potential V{r) are analogous to light waves moving through a medium with a varying
dielectric constant (or refractive index). The analogics between these two tvpes of
waves are listed in tabie 1. Most of the phenomena we discuss in section 3 (except
those involving magnetic fields) have familiar optical analogies which we will mention
as we go along.

One question that might bother the reader regarding this analogy is the fact that
electrons are fermions while photons are bosons. This difference is not important, so
long as°we are discussing one-particle phenomena where cvery electron or photon
interferes with isself. The electric field in Maxwell's equations can then be viewed as

0430703236
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Taste I. Analogies between cicctron waves and clectromagnenic waves,

Eleciron waves

Charge densiy
Current density

Energy density
Poyntng veclor

Aad M waves
Wir r)=drie Bt = Elrn=£&ric ™
Energy E ~  Frequency w
Contined chaaneis - Waveguides
Sub-bands ++  Transversc modes
¥ - F
Ty - H

2 im* .
Vw--?(s—vu. - Vifecwiuck

the wavefunction of a single photon, and the analogy with the Schrddinger equation
seems compiete. But if we view the electric hield (as we usually doJ as the macroscopic
fietd due to a coherent state with billions of photons, then there is no anaiogous state
known with normal eiecirons. (However, the superconducting state is anaiogous to
the coherent state of light, and the Josephson efect is 4 well known manifestation of
the macroscopic wavefunction of superconducting electrons; we will not discuss this
further.)

in view of these analogies between electrons and photons, one might wonder why
the Boltzmann picture works at ail. Why aren’t quantum interference etfects more
common? One of the chief reasons is the existence af phase-breaking scautering
processes that destroy interference phenomena. (In fact, a Boitzmann-like transport
equation is also used to describe the radiative transter of photons through stellar
atmospheres.} A phase-breaking scattering process is one in which the scatterer changes
its internal state. As a result, successive clectrons, encountering the scatterer in different
states, suffer different phaseshifts, thus wiping out any slationary interference pattemns.
Another way to view a phase-breaking interaction is as a measurement process. By
monitoring the state of a scalterer, one can gain information regarding the path of the
¢leciron between the source and the detector (Stern 1 af 1989). A well known principle
in quantum interference phenomena is that any process yielding information regarding
which of the various interfering alternatives was actually taken, tends to destroy the
interference. [n generai, however, it may be difficuit to distinguish between the ‘system’
and the ‘environment', and there are subtle unresolved issues in providing a general
definition for what constitures a phase-breaking process (Leggett 1989).

Elastic scatering by the sample boundaries or by defects and impuritics plays an
imporiant roie in determining mobility; bur it is not phase-breaking, since the scatterer
has no internal degree of freedom and remains unatiected by the process. But inelastic
scattering by phonons or by other electrons is phase-breaking. The phase-coherence
time 7, usually increases significantly as we go to lower lemperatures, because electron-
electron scatiering processes are suppressed. Such processes do not contnibute 10 the
mobility, since the momentum of the electronic ensemble is unchanged; any momenium
lost by one electron is picked up by another. Conscquently, the mobility is nearly
constant at temperatures below, say, 10 K—once the phonons are frozen out. But the
phase-breaking time is orders of magnitude larger at 0.1 K than it is at 10 K. Thus,
although high-mobility films are certainly desirable for quantum devices, the mobility
is in general not a reliable indicator of the phase-coherence time.
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A phase.coherence length as long as 1-10 um is not uncommon at a lemperalure
ol 1 K, but it gets significandy shorter at higher temperatures and tor hot electrons.,
Phase-breaking processes are thus inevitably present in most devices at reasonable
temperatures and bias levels, and the ussumption of phase-coherent transport (section
2.3) 15 often Inaccurate.

A more compelling reason to allow for dissipative processes has recently been
explained by Landauer {1989b). Recall that the chemical potentials in the Landauer-
Biwuker tormula (2.13) are measured deep within each contact reservoir, where ciec.
irons have relaxed to local equilibrium. Strictly speaking, the transmission probubilities
7"., siould be computed between these points—between points deep within each
reservatr. The transmussion probabilities, however, are usually computed over a smail
portion of the device where dissipation can be neglected. Thus, the transition regions
connecting the deepest points of the reservoir to the active device area are completely
ignored. Inherently, these regions must coniain dissipation, 0 that elecirons entering
the reservoir will Bnaily relax to local equilibrium.

The question of how phase-breaking processes can be included in the transmission
coeffictents f,, is at the forefront of current research, IF transport is perfectly coherent,
then the transmission coefficients can be computed from elementary quantum
mechanics. At the other extreme, if phase-breaking processes are so (requens that one
can assume totally incoherent transport, then semiclassical Monte Carlo simuiation
can be used to compurte the transmission coetficients; this is equivalent to solving the
Boitzmann equation (1.2). However, in the middle ground where transport is partially
coherent, there are no simpie answers, as yel.

3. Quasatum ¢ffects in electron transport

In this section, we will briely survey various quantum ctfects that have been observed
in semiconductor microstructures. These etfects can broadly be divided into two
categories: those invoiving devices whase transverse dimensions are either much longer
or much shorier than the phase-coherence length. In devices belonging to the first
category, the sub-band cnergies e, are nearly continuous, and one can describe eleciron
transport in terms of plane waves. In those belonging to the second category, it is
more appropriate (0 view transport in terms of discrete waveguide modes. Vertical
devices (figure 2(a)) usvally have cross sectional dimensions on the order of several
micromeitres, so that transport can be described in terms of piane waves; however,
with advances in nanolithography, vertical devices with submicrometre cross sections
are also being investigated (Reed er af 1988). Laterai devices (figure 2(5)) are formed
by lithographically patterning a moduiation-doped heterostructure, where current flow
is confined (o a iwo-dimensional clectron gas (:0eEG). Therefore, one of the transverse
dimensions is always sufficiently smail that only a few modes (commeoniy referred to
as ‘sub-bands’) are involved. We will classify such devices under plane wave transport
if the other transverse dimension is large, and under guided wave transport if it is small.

3.1, Plane wave transport

3.1.1. Single-barrier devices. The classic exampie of 2 quantum device is the tunael
diode, which exhibits negative differential resistance (NDR) due to Zener tunneiling
of electrons through the band gap in a heavily deped p-n junction (Esaki 1958, 1974).

0486703776
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Recently, NDR has also been reporied in single-barner heterostructures vsing material f
systems  HpCdTe-CdTe-HgCdTe (Chow er of 1988) and LnAs-AlGaSh- InAs
(Berestord er af 1989, Soderstrom er af 1989). ~OR arises in these material <svsiems
because within the barrier, the tunnelling electrons have energies closer to the valence
band edge than to the conduction band edge (figure 7). Initially the tunaelling
probability is high due 1o the proximity of the valence band siates. As the bias is
increased, the energy of the tunnclling ciectrons shifts towards the middle of the band
gap where the tunnelling probability 1s lower; the current therefore decreases, NDR
has also been ohserved in GaAs-AlAs-GaAs heterastructures due (o a very different
mechanism (Mendez er af 1987, Landheer e af 1989). AlAs appears as a potentiai
barrier for electrons in the I"-valley in GaAs, but as a potentual well for electrons in
the X.valley in GaAs. ~Nowr arises due to electrons in the three-dimensional contacts
turnnelling inio and out of the quantised two-dimensional encrgy levels in the X-valley
in AlAs. This is similar to the resonant tunnelling effect, which is described in section
3.2
" apphed tos
N
| imiAl
2107
——r——— 1 ML
Figure 7. Close proximity of ¢lectrons to the valence hand states can produce 4 arge 1inm
?;;:a]hilhy of tunnelling which decreases at higher applied hiases. {Alter Soderstom er af 907
0
Most of the effects that we address in this review arise lrom interference phenomena :_w”
due to the wave nature of electrons. A somewhat different type of quantum cffect has o
recently attracted much attention. This effect, known as "Coulomb blockade’, arises :‘m!
from the discrete particutate nature of the electronic charge. The transfer of a single i:::
ciectron through a small tunnel junction drastically reduces the voitage applied to the
junction. As a result, current is inhibited at small biases, since the change induced in ::m
the voltage would be larger than the existing bias (for a review. see Likharev 1988). .:':
2
3.1.2. Double-barrier devices. Next to the tunnel diade, the most well known quantum 02z
device is Lhe resonant tunnelling diode (Esaki and Tsu 1970, Tsu and Esaki 1973, a0
Chang et al 1974, Esaki 1986, Capassc er af 1986). This device consists of two barriers s
in series as shown in figure 3(a). Itis often compared to the Fabry-Perotinterierometer ars
used in optics: the two barriers play the role of partiaily silvered mirrors that form a e
resonant cavity. The iransmission coefficient shows sharp peaks as a function of the 1027
longitudinal kinetic energy, as one would expect for a resonant cavity. The device e
thus acts as an energy filter which anlv allows incident electrons with certain discrete ;m_w
values of the longitudinal kinetic energy 10 go through to the other contact. An applied S

0423703008
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Figure 8. Resonant tunnelling diode: (a) energy band diagram and transmission coctficient
versus energy; (&) band diagram under bias and /- V charactensiics; (¢} expected [-V
for one barner (full curve) and for (wo barmers sn senes (broken curve),

hias lowers the resonant energy relative to the energy of the incident ¢lectrons. When
the resonant ¢nergy falls below the conduction band edge in the emitter, there is a
sharp drop in the current leading to negative differential resistance (NDR) as shown
in figure $(b).

When connected to a resistive load, a resonant tunnelling diode will settle into one
of two stable states found by drawing a load line onto the {-V characteristic in figure
8(h): this extrinsic bistahility is useful for the design of logic circuits based upon
this family of devices. Additionally, there is the phenomenon of intrinsic bistability-
(Zaslavsky er af 1989, Alves et al 1989), which gives rise to a hysteresis in the [-V
charactenstics. This can be understood as follows. When the voltage is swept up, one
approaches the NpR region with a filled weil: the stored charge in the weil tends to
raise the resonant energies with respect to the emitter, 50 that a higher applied bias is
needed to shut off transmission through the lowest tevel. When the voltage is swept
down, however, one approaches the NDR region with an empty well, and the transition
occurs at a lower applied bias. Thus, the /- V characteristic shows a hysteresis around
the ~p& region. This is analogous to the weil known bistability in non-linear optical
Fabry-Perot interferometers, which arises from the build-up of light intensity between
the two murrors. This result has also heen observed in theoreucal simulations that
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solve the Schrodinger equation (2.24a) sell-consistently with the Poisson equation
(Kluksdahl er al 1989, Mains er al 1989).

[t will be noted that the resonant wanelling NDR is 2 quantum effect that cannot
be understood within a semiclassical framework. )t is casy o show thal for a single
tunnel barrier the current increases monotonically with voltage, as shown in figure
B{e). Il we view electrons as particles, we would expect a double barrier to st like
two single barriers in series. We would thus expect the current to be hall that of 4
single barrier tor a given voltage as shown by the broken curve in figure 8{¢}, in sharp
contrast 10 what is actually observed (higure 8(b)). Vermicai structures, where the
potenuial barriers are formed by layers of matenials with different band gaps, have
reached a high level of maturity, reporting peak-to-valley ratios as high as 30:1
(Broekaart er al 1988). By contrasi, lateral structures, with the potential burriers
imposed through a dual gate, have only recently been reported (Chou ef af 1989, Ismaii
1989a). Because the height of the barriers can be controiled simply by changing the
gate voltage, these structures are promising tools for the study of resonant tunneiling
pheaomena.

From an applied point of view, resonant tunnelling devices have generated a great
deal of interest as possible candidates for high-frequency and fast switching applica-
tions. Resonant wnnelling diodes have been used as mixers up 10 1.8 THz and as
oscillators up 10 400 GHz (Soliner er al 1983, 1988). Switching operations with a rise
time as shortas 2 ps have been reported { Whitaker eral 1989). For practical applications
it is often more convenient to have a three-terminal device, and u number of schemes
have been proposed and demonsirated for building transistors based on resonant
tunnelling phenomena, The extra terminal ¢an be used 10 control the resonance
spectrum of the quanwum well. In lateral structures, this is done simply by changtng
the barrier height through the applied gate voitage (Chou er al 1989, Ismail 198%a).
In vertical structures, this has been accomplished through the Stark effect { Bettram er
al 1988) and through direct contact to the quantum weil (Reed er af 1989). Resonant
tunnelling structures have aiso been incorporated into the bases and emisters of bipolar
transistors, where they modify the properties of the conventional device to include
negative transconductance (Capasso 1939a).

Resonant tunneiling as a phenomenon is aiso useful as a probe in studying basic
transport phenomena. For instance, the energy filtering characteristic of double-bamier
structures has been used to do a spectroscopic analysis of transport through the base
of a bipolar transistor {Berthold ef al 1989). Sharp peaks have been observed in the
conductance of narrow metai-oxide-semiconductor field-ctlect transistor ( MOSFET)
channels, as the Fermi level is adjusted through a gate voltage. This structure in the
conductance has been ascribed to resonant transmission through localised levels, and
thus reveals information regarding the energy spectrum of such levels (Azbel 1983,
Fowler et af 1988).

3.1.3. Muitiple-barrier devices. 1t would seem that one could come up with some
interesting structures by considering more than two barriers. However, electron trans-
port in multiple-barrier structures has been investigated far less that in single- or
double-barrier devices. One interesting aspect of such structures is the possibility of
engineening sttongly asymmetric device characteristics. For example, the structure
shown in figure 9(a) has two quantum wells whose resonant energy levels are misaligned
under zero bias. Under forward bias, the levels align (fgure 9(b)), and one would
expect a large transmission through the structure. Under reverse bias, on the other
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Figure 9. () In ¢quilibnium, the resonant levels of two neighbounng quantum wetls are
misahigned. The levels are (5) ahgned and (c) separated as the device s biased with
Jifferent polarmies.

hand, the levels are separated (figure 9(c)), and transmission would be greatly reduced.
Indeed, diode-iike characieristics have been demonstrated using a series of quanium
wells with graded widths (Kirchoeler er al 1985).

3.1.4. Superlattices. In the preceding section, we showed that the irregulanity of a
muitiple-barner structure could pravide a diode-like /- V characteristic. At the other
extreme, we might consider a perfecily regular array of identical wells and barriers,
called a “superiattice’ (Esaki and Tsu 1970). If we consider only three periods of such
a structure, we observe that the peaks in transmission (associated with the resonant
energies of each individual quantum weil} are split {figure 10(a}). For three barriers,
¢ach transmission peak is split into two; for four barriers, each peak is spiit into three,
and so on (Tsu and Esaki 1973). Assurming that the barriers are thin enough so that
electrons can ¢asily tunnel from one well 1o the next, the finely spiit energy levels in
an infinite superlattice broaden to form minibands, as shown in figure 10{#). Note
that it is the periodicity of a superlattice that leads to the formation of minibands and
minigaps—the detailed shape of the potential merely determines the final band struc-
ture. Indeed, by cleverly designing the potential, the characteristics of the band
structure can be modified (Peeters and Vasiiopoulos 1989).

Electrons moving in 2 superlattice miniband are decelerated by the applied field
as they reach the negative mass region at the top of the and: this resuits in Nor. OF
course, clectrons will oniy reach the negative mass region if the scattering time is
moderately long. An interesting phenomenon occurs when the scattering lime is
extremely long: elecirons accelerated to the top of a miniband (k = +/a) wrap around
to the oppasite side (k = —m/a) of the mini-Brillouin zone (figure 10(b)), where their
velocity changes sign: the electrons thus oscillate back and forth in real space. The
concept of a ‘Bloch oscillator is based on the possibility of extracting /RF power from
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Figure 16 {a) Transmission through a three-harrier stucture shows a split peak at the
resonant energies of the individual quantum weils. (hY In i superlattice, the knely spht
transmission peaks broaden 10 form minibands.

these oscillations (Esaki and Tsu 1970). Although this is an intriguing concept, the
effect is difficult to demonstrate, since for reaiistic scattering times the electric field
required is rather Jarge.

The presence of a strong electric field leads to other compiications which can
destroy the effect. For instance, electrons may acquire enough energy fo tunnel into
the next highest miniband, an effect known as Zener wnnelling. More imponantly,
the entire band picture of transport breaks down at sufficientlv strong fields. The
resonant energies of neighbouring quantum wells become misaligned, and clectrons
become localised within the wells. This in itself can lead to NpR, since current must
then be carried by electrons hopping from well to well, a process which has a much
lower mobility than miniband transport {Dohler er al 1975}

Lateral surface superlattice devices have recently been demonstrated, which attempt
to harness the effects described above. Originally proposed by Sakaki er al (1976} and
Bate (1977), these devices consist of a patterned gate which induces the superiattice
potential on the surface of a 2pEG, as shown in figure 11. Current flows between a
source and a drain positioned on either side of the superfattice; thus, the expenmental
geometry is simply a modulation-doped ficld-effect transistor (MODFET) with an unusuval
gate. The ‘washboard transistor’, whose gate is patterned with a 1-D grating, is one
implementation of this (Tsubaki et al 1989). Experiments performed on Si metai-
oxide-semiconductor { Mos) devices {Warren ef al 1985) and GaAs/ AlGaAs MODFET
devices (Ismail et al 1988} have shown a modulation of the transconductance. Stronger
effects, including negative differenuat resistance and negative transconductance, have
been reported for structures having 2-D grids patterned into the gate (Bernstein and
Ferry 1987, Ismail er al 1989). Presumably, this is due 10 the improvement in minigap
widths caused by the additionai degree of confinement.

Novel oscillations in the magnetoresistance. supetimposed on the usual Shubnikov-
de Haas oscillations, were recently reported in a fateral structure with @ one-dimensional
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Figure 11. {4} One-dimensional and (b} two-dimensional laieral surface superlattices,
imposed (hrough a patterned pate electrode.

periodic potential (Gerhardts et al 1989, Winkler et al 1989). Shubnikov-de Haas
osciilations in the magnetoresistance are periodic in 1/ B, having a period proportional
to the carrier density. The novel oscillations recently observed are also periodic in
1/ B; however, the periad is proportional to a/ke, where a i5 the period of the
superlattice potential and ke is the Fermi wavevector.

3.1.5. Weak localisation. An interesting question to ask is whether one can observe
any quantum interference eifects from a random array of ¢lastic scatterers, such as an
ordinary resistor, at low temperatures. The intuitive answer is that due to the random-
ness, any imerference etfect would cancel out on the average. This, hawever, is not
true. (uantum interference leads o cnhanced backscattering, which can be demon-
strated by computing the conductance of an array of scatterers from the Landauer-
Biittiker formula (2.12). This calculation has .bccn performed using two different
madels to obtain the transmission coefficient T,;, to clearly illustrate the effects of
phase coherence {Cahay et al 1988). One is the coherent or the quantum model in
which the amplitude scattering matrices of the individual scatterers are combined,
taking phases into account. The other is the incoherent or the semiclassical modei in
which the probabhility scaltering matrices are combined. taking no account of the phases.

Figure 12 shows the results obtained for both the quantum and the semiclassicai
model as the location of one scatterer in the array (the middle one} is changed. The
semiclassical result is unatfected by this change, but the quantum result shows fuctu-
ations ue 1o the changing interference patterns. These conductance Auctuations have
been observed expesimentally in mesoscopic samples; however, in larger samples such
fiuctuations cannot be observed. This is because a large sample is basically an ensemble
of uncorrelated units each having dimensions of the order of a phase-coherence fength.
When making measurements on large samples, one measures ensembie-averaged quan-
tities due to this self-averaging leature.

But the interesting point to note from figure 12(b} is that the mean {or ensemble-
averaged) value of the quantum conductance is less than the semiclassical conductance.
This shows that interference causes an enhancement in the average backscattering from
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Figure 12. (a} Pan of a random samplc with fixed arrangement of stauc scaierers, {6
Conducuance of the sumple computed as a function of the posHion of the mrddle scanterer,
keeping the rest of 1he acray lixed. {Alter Daua 1989a.)

an array of scatterers—a phenomenon that has been observed with electromagnetic
waves as well. Weak localisation, as this erfect has come to be known, was the subject
of extensive investigation in the ¢arly 1980s {recent review articles include Al'tshuler
and Lee 1988, Bergmann 1984, Lee and Ramakrishnan (985). It can be understood
simply as follows. For each diffusive path that a reflected electron can follow, there
eXists a time-reversed path with an identical amplitude and phase. Time-reversed pairs
of paths interfere constructively to produce the enhanced backscattering. If the time-
reversai symmetry is broken by a magnetic field (tens of gauss is sufficient), the enhanced
backscattering is destroyed. Consequenily, weak localisation is characterised by a
negative magnetoresistance—a magnetic field causes the resistance to decrease from
its quantum (o its semiclassical vaiue, Because the effect depends on phase coherence,
this magnetoresistance measurement is one of the common techniques for measuring
the phase-coherence time.

3.1.6. Spin inierference. The spin of an electron, which is analogous 10 the polarisation
of clectromagnetic waves, usuaily does not play any sigmificant rote in {ransporn
processes; it merely doubles the number of states leading to a multiplicative lactor of
2. However, non-trivial effects can arise in materials with strong spin-orbit coupling.
The phenomenon of weak antilocaiisation is a well known example of such an etfect
(Bergmann 1982). In the presence of spin-orbit coupling, an electron following a
diffusive path will experience some overall rotation of its spin. For strong spin-orbit
coupling, the final orientation ‘of the spin is statistical. Rotations for time-reversed
paths, however, are exactly the opposite of one another, and on the average are
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separated by 2m As o resull, the ume-reversed paths interiere destructively (rotation
by 47 leaves a spnor unchanged), 50 that the conductance 1s enhanced relative (o the
semiclassical vadue, In this case, an applied magnetic lield destroys the enhanced
transmiassion, so that the magnetoresistance is positive. Measurements of this effect
have been used 1o determine the strength of spin-orbit coupling in semiconductors
such as InAs (Yamaguchi 1985},

It is possible that spin phenomena could be harnessed for device applications, In
a manner similar 1o weak aatilocalisanon, for instance, interference between (two paths
with ditferent spin rotations could be used 10 modulate current fow. A single puth
couid also produce current modulation il spins were preferentially injected and
detected. Indeed, a device based upon spin injecuon and detection has recently been
proposed (Daua and Das 1990). Although there is, as yet, very little expenmentai
work in this area and the wdea is purely speculauve, we will explore this concept in
greater detail below to emphasise the relationship between electron spin and light
polansation.

In the electro-opuc light moduiator, input light is polarised at 45° in the v~z plane
{figure 13(a )}, which can be represented as a linear combination of z- and v-polansed

light,
) =)+ () o
1 0 1
144%-pul. | zpud 1w

As this light passes through the electro-optic material, the two normaj modes suffer
ditferent phaseshifts &k, L and k,L, since the eleciro-opuic effect makes the dielectric

[

Electro -optic materiql

77
Polanser
ial Anglyser
£’—.
r'4 X
Scnotthy Ve
gate o
’II‘OH b t,/ A/ / ’d iron 7
contact 10 ALat canfac
InGuAs Moo
{L1]

Figure 1. (a) An electro-optic modulator. (b} Praposed clectron wave analogue of the
eptical device shown in (ab. (Alter Data and Das 1990.)
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constant £, slightly different from ¢,.. This causes the polarisation angle to precess
as a function of distance travelled through the dielectric. Only the component along
the original polarisation is allowed to pass through the analyser at the output, so that
the output power P, is given by

c\l‘l
Py ‘(1 l)(c.‘:,)
Thus, the light output is modulated with a pate voltage that controls the differential
phaseshift 38 = (&, - k,)} L.

The analogous device based on clectron waves is shown in figure 13{h). The
polanser and analyser can be implemented using contacts made of a ferromagnetic
material like iron. At the Fermi level in such materials the density of states for electrons
with one spin greatly exceeds that for the other, 5o that the contact preferentiaily
injects and detects electrons with a particular spin. Spin current polarisation up to
~50% has been experimentally demonstrated using permailay contacts (Johnson and
Silsbee 1985), although further work in this area is needed. A contact magnetised in
the x-direction preferentially launches and detects electrons spin-polarised along
positive x which is represented as a linear combination of positive -polarised and
negative r-polarised electrons,

()
o .

b= ()

i+ v pol.) (+=pold -~ pol ¥

T itk kL
=sin” ——.

(R

Narrow-gap semiconductors like InGaAs provide the analog of an ¢lectro-optic material
which will introduce a differentiai phaseshift between +z.polarised and —:-polarised
electrons. It has been ¢stablished both theoreticaily and experimentally that in 10eGs
in narrow-gap semiconductors there is an energy splitting between up-spin and down-
spin electrons even when there is no magnetic field (Lommer e af 1988, Das ei af
19891, The dominant mechanism for this "zero-field spin-splitting’ is helieved 10 be
the Rashba term in the effective mass Hamiltonian {Bychkov and Rashba 1984),

Hu=nlok, ~ok.) (3.4)

which shouid be adjustabie with a gate voltage through the spin-orbit coefficient n,
though this has not been investigated experimentaily. 1t should be mentioned that
large etfects can only be obtained if the width of the device in the z-direction is smail,
50 that only a few transverse modes are involved, because the phaseshift is different
for different modes. From this point of view, this device concept belongs in the next
section along with other few-moded devices.

3.2. Waveguide transport

If this article had been written before 1985, much of this section would be absent. The
reason is that there were no known techniques for fabricating high-quality electron
waveguides with a few propagating transverse modes or sub-bands. Cansider a two-
dimensional film with an arcal electron density n,. One can estimate the number of
transverse modes M in a channel of width W as follows. The Fermi wavevector ke
1s related Lo the electron density a1, as

ke=(2mn,)"2, (1.5)
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Assuming a rectangular channel, we expect the transverse momentum to be quantised
in muitiples of 7/ W, so that the number of modes below Ky is approximatety
keW
M~—— ! W (3.6}

2

Thus 4 0.5 um wide channel with an electron density of 6.4 10" em™ will have
approximately 40 transverse modes. However, wires less than about 0.5 um in physical
width wsually do not conduct, because the Fermi level is pinned near the exposed
sidewalls, leading to fairly wide depietion layers which constrict the channet { Demet
ef al 1988). it is thus extremely difficult to control the number of modes in a wire
withour making it totally non-conducting.

The deptetion laver width can be reduced by using a shallow etch, whereby the
sidewalls of the moduiation-doped GaAs channel are not exposed: only the top AlGaAs
laver confaining the dopants is partially etched. The shallow mesa also helps reduce
surface etlects from degrading the channel mobility (van Houten et al 1986). This is
the (echnique used by Timp and co-workers in their pioneering work on eiectron
waveguide transport {Timp er ai 1987b). Since then, a vanety of techniques for channel
definition have heen used by other groups, such . - selective ion etch damage (Roukes
et al 1988}, helium ion beam damage (Checks er al 1983), strain-induged confinement
(Kash er al 19%9) and electrostatic confinement with a split gate {Wharam e/ af 1988,
van Wees ef al 1988a). These developments have led to tremendous activity in
semiconductors since 1987, though most of the work on mesoscopic systems originated
in metals (Washburn and Webb 1986, Webb and Washburn 1988},

321 Conductance flucruations. Until the early 19805 it was thought that quantum
eftects could not be observed in samptes with a large number of occupied modes; cach
mode was expected to contribute its own unique bur independent part to the conduct-
ance. so that metals, for instance, were expected to be compietely seif.averaging.
Simple, low-temperature resistance measurements on narmow metal wires, however,
presented quice a different story (Washburn 1988 and references thersin). The conduct-
ance was found to fluctuate in an applied magnetic ficld. and the Auctuations (~e’/h)
were completely reproducible. It is now undersiood (Stone 1985) that in regions smaitler
than a phase-coherence tength the transmission coeficients of the various modes are
indeed correlated within some characteristic energy range. For either high temperatures
or [arge sample sizes, however, the effect is sell-averaging: The overall conductance
represents the independent contributions of small blocks the size of a phase-coherence
length, or of cnergy intervais the size of an energy correlation length. For N such
contributions, the effect will be reduced by vN.

In carlier discussion, we showed that the same conductance fluctuations (~e*/ I
can be obtained by moving a single impurity in an array of scatterers (figure 12},
A similar result has been observed experimentaily in silicon inversion layers. Fluctu.
ations in the conductance were found to switch back and forth between two separate
patierns as a single electron trap changed its occupancy (Skocpol eral 1986). In effect,
the presence or absence of a singie impurity compietely changed the pattern of
fluctuations. 1t is betieved that changing the magnetic field is equivalent to changing
the configuration of impurities (Lee ¢r af 1987). Conductance Ructuations in a magnetic
field have come 10 be known as *magnetofingerprints’ and can, in principie, be used
1o identify mesoscopic samples,

05317'93780
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One of the puzzies in the curiy days of mesoscopic physics was the Tact that the
conduciance fluctuations measured with a four-probe Hall bridge (see ligure 3at)
were nol symmeteic in the magnetic field (Benoit ¢r af 1986}, In a large rectanguiar
Hall baidge, one measures p,, directly, which is symmerric in a magnetic tield (o, (8) =
i L~ 8), Onsager relation). But in a mesoscopic Hall bridge the voltage drop is not
uniform, und one measures some combination of p,, #nd g,,, which is ror symmerric
in B. Thus, one should regard mesoscopic samples as inhomogeneous conductors that
obey the reciprocity relationship

Rmu.kf(ﬂ'= le‘mnl_B) 137

where R, is the resistance obtained by feeding a current between terminals m and
n and measuring a voltage between terminais & and £ Using a well known symmetry
property of the coefficients T,

Tyls = Til-s {3.8)

Biitiker (1986a) has shown that the four-probe resistances obtained from the Landauer-
Biittiker formula (2.13) indeed obey this reciprocity reiationship (3.7).

3.2.2. Quasi-ballistic wires. A study of quasi-ballistic channels—nacrow Hall bridges
having widths shorter than, and iengths much longer than, the elastic scattering
length—has revealed novel features in the magnetoresistance spectra. These features,
sketched in figure 14(a), arise from the influence of a naow confining potential
(defining the "walls’ of the waveguide), and so can be used to experimentally charactenise
the electrical widths of wires. In ail measurements discussed below, we assume a
magnetic field appiied perpendicular to the piane of the 2peG.

At tow fields, a pronounced negative magnetoresistance appears due to the destruc-
tion of weak localisation (van Houten er af 1988, Taylor er af 1988). In quasi-ballistic
channets, this effect persists to much higher fields than it normally would for a wide
Hall bridge. It has been suggested (van Houten er 2! 1988) that this is because of
specular scattering from the walls of the channel. Elecirons in a guasi-ballistic wire
move in a zig-zag fashion, being reflected back and forth by the contining potential,
and travelling up and down the length of the wire. As a result, the time-reversed pairs
of paths, which are central 10 the discussion of weak localisation, are much more
difficult to visualise. These paths, envisioned as irregular loops in an unrestricied
sample, are folded back onto themselves again and again, in order to fit within the
narrow channel (figure 14{b)). Each of these conceptual folds decreases the total flux
enclosed by the paths. Consequently, it requires higher ficlds to achieve an enclosed
flux comparable to that which destroys weak localisation in a wide Hall bridge.

As the magnetic field is increased, the resistance firsc exhibits aperiodic luctuations
identical to those observed in metal wires, as described carlier. At some point,
Shubnikov-de Haas (sdu) oscillalions begin 1o appear. For a wide Hall bridge, sdu
oscillations arise from the motion of Landau levels through the Fermi cnergy. Each
trough in the resistance indicates that an integral number of Landau levels is filled.
if the troughs are numbered and plotted versus 1/ B, the resulting piot is linear, and
the slope of the line can be used to determine the carrier density {(Ando er af 1982).
This is because in a wide Hall bridge, the energies of each level are determined from
the magnetic confinement alone—any influence of the experimental geometry can be
ignored. In a quasi-ballistic channel, however, the influence of the narrow cross section
cannot be ignored. At low fields, ciectrons feel an clectrostatic confinement in addition
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Figure 14. (a) Sketch of the magnetoresistance of a narrow Hall bridge. (5) Specular
scatenng (rom the walls of the channed causes ilux cancellanon (n the lime-reversed puths
which produce weak localisanion. (After van Houten e af 1988.) (c) Shubnikov-de Haas
osailiatiens for a narrow Hall brdge are not periodic in 1/ 8, {Alter Berggren e of 1988.)

to the magnetic confinement, which perurbs the level spacings. As a resuit, a plot of
the level index (trough number) versus |/ B is highly non-linear (figure 14(c)}. Only
at very high fields is the lincar behaviour recovered. Because this measurement is
sensilive 1o the shape of the confining potential, it can be used 1o characterise the
elecrrical width of fabricated channels (Berggren er al 1988).

To this point, we have focused on measuremenis of the longitudinal resistance Puxs
the transverse resistance p,, also shows unexpected behaviour in the presence of a
magnetic fieid. From elementary considerations, this Hall resistance is expecied to
increase linearly with magnetic field: p,, = B/n, ¢. Experiments performed on narrow
Hall bridges have shown, however, that instead of being linear in the magnetic field,
this resistance drops to zero within 4 small range around B =0 {Roukes ¢r af 1987,
Ford ef al 1988). Subscquent theoretical work i Baranger and Stone 19890, Imry 1989,
Kirczenow 1988) has shown that this ‘quenching’ of the Hall resistance is not an
intrinsic property of narrow channels. Rather, it is caused by the inability of the voitage
leads to coupie to the sample.

Three different mechanisms have been identified which contribute to this poor
coupiing. The most important of these (Baranger er al 1990) is ‘forward enhancement’
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or “collimation’. In a gently flared junction, eiectrons tend to remain in the same mode
withoul scatiening, so that as the channel widens, ransverse momentum is gradually
converted into the longitudinal direction. As a resuit, electrons torm a coilimated
heam which simply passes the voltage lead without scattering into wt. Such collimating
behaviour his been demonstrated using both waveguide { Baranger and Stone 14890}
and hilliard ball ( Beenakker and van Houten 1989} models.

Thus, even though the Hall voltage exists, it cannot he measured by the Hared
voltage leads. [f on the other hand. junctions with sharp corners could be fabricated—or
if some other means of measuring the voltage were used—the usual Hall resistance
would be observed. This underscores the impact that device geometry can have in the
mesascopic regime. More than that, it foreshadows a concern which we discuss turther
in section 3.2.5: every bend or kink within a phase-coherence length of the active
device area can profoundly influence what is finally measured.

3.2.3. Bailistic wires. A striking demonstration of mode quantisation in e¢iectron
waveguides was provided in a recent experiment. The conductance of a ballistic
channet or “point contact’. whose width was reduced continuously through a split-gate
structure {figure 15(a)), was secn to decrease by finite steps (Wharam er af 1988, van

. Wees e af 1983a). For a batlistic channel, an inctdent fux in any mode n is completely

transmitted { ™ (E) = ...} so that from the definition of the overall transmuession ¢2.5)
T EY=T(E}=2IM 13.9)

where M is the number of modes and the factor 2 comes from the two spins. For
linear response and low temperatures, the total transmission hetween contacts is that

Il - Jectetion requon
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Figure 18, (@} A split-gate structure is used o consipict the width of un electron waveguide.

Measurements have ziso heen performed for two consirictions (A) in serres and (c) om
parailel.
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evaluated at the Fermi energy (2.11)
I T, =2M. {3100

The conduciance Gy of a ballistic channei is then obtained from the two-prabe
Landauer- Buttiker formuia (2.12), using T, from the estimate {3.10) shown above:

let

Gp=— M. (3
I

This simple estimate has been validated bv more detailed considerations of transmission
between the wide and nacrow regions (Imry 1989, Szafer and Stone 1989). As the
width of the channel is reduced, one expects the conductance to decrease linearly in
large sampiles. But equation {3.11) shows that the conductance is quantised, since M
is an integer. As the channel width is reduced, the sub-bands are cut off one by one
so that the conductance decreases in discrete steps of 2¢°/h. The same behaviour is
observed in the presence of a fixed magnetic field, although fewer sub-bands are
avatlable below the Fermi level. This is because of the additional magnetic confinement,
which increases the separation between sub-band energies. As a resuit, fewer quantised
steps are observed over a comparable range of channel widths (van Wees er al 1988b,
Wharam ef al 1988). ) :

This quantised conductance can also be achieved by raising the potential energy—
rather than reducing the width—over some shor region. The bias applied to a Schottky
gate, for instartce, can be used to shilt the sub-hband energies in the area below the
gate. As each energy crosses the Fermi level, the sub-bands are again cut off one by
one, so that the conductance decreases in discrete steps. Quantisation observed using
this method (Hirayama and Saku 1989) is not as pronounced as that found in peint
contacts, Nevertheless, these experiments confirm the simple interpretation that the
quantisation arises (rom ballistic transport through the available number of transverse
modes.

Series and parailel arrangements of point contacts have aiso been investigated. The
conductance of two peint contacts in senes (figure 15(5)), for instance, is determined
by the conductance of the narrower constriction {Wharam er al 1988b, Timp er af
1989a). As the narrower constriction is widened, the conductance initizlly increases
in quantised steps, and then levels off to the limiting value of the other constriction.
The conductance of two point contacts in parallel (figure 15(c)) is quantised in steps
ol de°/h (Smith er af 1989). At first glance, this appears to be the resuit expected if
the conductances of the two constrictions are simply added. However, small differences
in the fabricated widths of the point contacts should cause the modes in either channel
to be cut off ut slightly different voltages. Instead of changing by steps of 4e°/h, the
conductance shouid change by two closely spaced steps of 2¢*/ h. [n lact, this behaviour
was osserved experimentally when both constrictions neared pinch-off. Clearly, there
must be some mechanism coordinating the behaviour of the two constrictions, causing
both to act in unison away from pinch-off. At this time, however, the nature of this
mechanism is unclear.

When driven to a high bias, point contacts have shown interesting non-linearities
{Kouwenhoven e af 1989}, Preliminary experimental evidence has recently heen
reported (Brown ef al 1989) indicating that such struciures could exhibit negative
differential resistance. whose origin may be understood as follows. At a sufficiently
large bias, the range of energies available for transport saturates to 1 maximum value.
Higher biases can actually reduce the overall transmission by reflection of electron
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waves within the constriction (as proposed by Brown er af (1989)) or by carrier heating
and increased scattening. Any reduction in transmission would lead to negative ditferen-
tial resistance. This effect may find device applications (Kelly et ai 1989).

3.2.4. Aharanov-Bohm effect. An obvious structure for observing quantum aterference
etfects is 4 ring, because it provides 1wo alternative paths Irom the input to the output
tfigure 16). The reiative phase between the two paths can be controlled with a magnene
field perpendicular to the plane of the ring. By changing the interference condition,
the conduciance can be made to oscillate. This is named after Aharanov and Bohm
(1959) who first proposed it as a means of showing the physicai sigaificance ol
potentials. Their intent was to show that effecss of the magnetic field should be observed
even if the field exists only in the centre of the ring, and not in the path of electrons.
Recent solid state demonstrations ot the Aharanov-Bohm (a-g) efect, however, do
not really demonstrate theic surpnsing prediction since the magnelic held in 1hese
experiments is nearly uniform everywhere, Nonetheless, the demonstration of the a-u
etfect in metal rings is a very impornant milestone in the development ol mesoscopic
physics (this work is reviewed in Washburn and Webb (1986)).

o

N ‘_-"r\_\‘—-_f"
===

Figure 16. The Aharanov-Bohm etfect causes the conduciance of a ring siructure o os¢ilace
when relative phase between two paths is changed by cither (9) 4 magneuc tieid or (5}
an eleciric fieid.

It has been shown (Bitiker er af 1985) that if the transmission coefficients for
different modes were totally uncorreiated then the conductance modulation AG/G
due to the a-8 effect would be of order 1/ M, where M is the total number of modes.
(Experimentally, the conductance moduiation turned out 10 be much larger than the
1/ M estimate, indicating that the modes are not totaily uncorrelated, as discussed in
Washbum and Webb (1986).) In metals the observed conductance modulation is
~0.1%. Semiconductor rings are expected (o show much larger interference effects,
since M can be reduced to values iess than 10. Indeed, experiments on semiconductor
nings since 1987 have reveaied conductance modulation by 1-20% (Timp er af 1987a,
Ford et af 1989). To hamess this effect in a three-terminal device, one could use an
clectric current to gencrate the required magnetic field; a device concept using supercon-
ducting clectrodes (o generate the magnetic ficld has been proposed {Yamamoto and
Hohkawa 1988}.
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Semiconductor structures ulso hotd the possibility of an electrostasic version of the
Ao effect. Thas etfect, which uses un elecing tield instead ol a magnetic field, is uciually
much easier o understand, though it 1s much more difficuit to observe. [t is based
upoa the electron waveguide analogue of the Mach-Zender interferometer. This device,
used 45 a modulator in integraled oplics, consists of a single-input waveguide that
splits and subsequently rejoins to form a single-output waveguide. In the optical
interferometer, the phase ditference between the two arms is controilled by changing
the refraciive index of one arm through the ciectro-optic etfect. In view ol the similarity
between Schrédinger’'s (2.24a) and Maxwell's {2.24b) equations, we might expect that
for electron waves, the phase-ditference can be introduced by changing the potential
V ol one arm with respect to the other. Therefore, a gate voitage can be used to controi
the etfect (figure 16(4)), as proposed independently by Fowler (1985) and Dauta er al
(1985, 1986). The applied potential shifts the sub-band energy £, in one arm with
respect 1o that in the other, Since

L]

E=g, +7— (3.12})
2m
we have
ml
skl ={se.l = (313
Hence the phase difference A& is given by
Ae,l kL
|AH|=|Ak|L=g—— (3.14a)
E, 2
=|Ae.n/ k. (3.148)

where E, = h'k’/2m" is the kinetic energy of the electron and 7, = m™L/ hk is the
transit time of the electron across the gate region. We expect the conductance to
change penodically with the gate potential as'A# goes from zero (0 « to 2 and so on.

Because the phaseshift is proportional to the transit time (3.145), the electrostatic
etfect 15 difficuit 10 observe compared with the magnetic effect, where Lthe phaseshift
is nearly unique for thin rings. Recent experiments have shown that a potential applied
to a gate covering one arm of a nng structure can be used to tune the conductance
oscillations in a magnetic ficld (deVegvar er af 1989}, However, no periodic conduct-
ance modulation was observed at a fixed magnetic field as the gate potential was
changed. To obscrve the clectrestatic effect, it seems important to design structures
that m’nimise the spread in transit times. For example, an alternative structure using
film growth rather than lithographic techniques to define the channels has been
proposed (Datta et uf 1986, Datta 1989a). However, this structure has not yet been
labricated.

3.2.5. Non-local effecis. One of the important realisations of mesoscopic physics is
that voltage probes can no longer be treated as non-invasive, classical objects which
simply measure the voitage at a specific location. Recent voltage measurements
illustrate this point (Skocpol er af 1987, Benoit ef al 1987)., Measurements were
performed on Hall bridges with a number of variably spaced voltage probes. The
measured voltage is expected 1o Huctuate with magnetic field due to conductance
fluctuations, as discussed carlier. In a classical measurement, one would eapect the
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voltage fuctuations to disappear as the voltage probes are moved closer together.
Instead. the experiments showed that the size of the Auctuations becomes m;mmnt.
This result has also been verified theoretically ( Biittiker 1987). In effect. the separation
between the voltage probes cannot be reduced below a phase-coherence length, since
an electron in one probe can ‘see’ this lar into another.

A striking demonstration of this non-local behaviour is provided by conduciance
measurementis performed on a metallic Hall bridge with a ring attached vutside the
classical current path (Umbach er al 1987). When embedded within the current path,
such a ring is known 1o produce penodic osciilations in the conductance due to the
-8 etfect {figere 16{a)). In this experiment, however, the mere prescnce of the ring
within a phase-coherence length of the current path (figure 17{a)) was sufficiem to
produce oscillations with precisely the period expected [rom estimates hased upon the
ring dimensions. Although such effects are intriguing in this context, they are the cause
for serious concern when performing measurements in the mesoscopic regime. Because
of the non-local nature of transport. ¢ven a simple bend in the current path is enough
1o attect a measurement. This was recently demonstrated by measurements performed
an a Hall bridge designed so that the path of current could be bent ar some point
cutside the ‘measurement area’ between voltage probes {Timp ef af 1988). The resist-
ance was found 10 increase as the path of current was bent; moreover, the change in
the resistance decayed exponentially as the bend was moved away from the measure-
ment region, indicating that interference effects were responsibie for the anomaly.
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Flgure 7. Geometries used to observe non-iocal eflects: {a) A ring outside of the classical
cutrent path exhibiis the Aharanov-Bohm effect (after Umbach er af 19871 (b) the
conductance of 3 T-structure can be contrelled by a remate gate (after Datta 198%a); ()
an aiternative T-structure has the gate and drain interchanged (after Sols er of 1989); {d)
the electrome logue of the Michel interferometer, using two gates 1o control the
relative phase diflerence between interfening paths.

An implication of non-locality that could be important for device applications is
that it is not necessary (or a gate to be positioned between the source and the drain,
as we are accustomed to expect. [t can be located anywhere within a phase-coherence
length. Consider the three-port network shown in figure 17{b). Ohmic contacts are
made 1o two of the ports while a Schottky gate is used to change the phase of the
reflection coefficient at the third port { Datta 198%a). The transmissivity from the source
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10 the drain is determined primarily by the interference between the two paths shown
in figure 1715, and the rate controls the phase difference between these paths. One
can view this structure oo as an interferometer, with the T-junction acting like a
pattially silvered marror that splits the incoming beam. Conductance oscillations as a
function of the gute poientiul have been experimentatly observed in this structure,
though the underlving mechanisms have not yet been established conclusively (Miller
et al 1989). An alternative structure with the drain and gate interchanged (figure 17(c}}
was proposed independendy (Fowler 1988, Sols er al 1989). Another possibility is a
four-port siructure shaped hike a cross, having two gates: the differential voltage between
these gates could controi the interference in a manner reminiscent of the Michelson
interferameter {hgure 170d)).

[t seems that one can come up with new gquantum device concepis by looking up
a lexthook on microwaves or optics. Unlike optical devices, however, electronic devices
are not easily driven by a ‘monochromatic’ source. At large biases and high tem-
peratures, a range of energies is available for transport. As a result, interference effects
which are sensitive to the wavelength tend to wash out under practical operating
conditions. Another difference is that electrons, unlike photons, obey the exclusion
principle, so that the current carried by a single-moded quantum wire is limited to
S0 nA per meV of bias. To achieve the currents carried by conventional devices, it
seems that gquantum devices must operate cither at high biases or with multiple
transverse modes. The challenge, therefore, is to design “broadband” structures whose
interference patterns survive the effects of energy averaging and mode averaging.

3.2.6. Edge srates. To determine the coefficients f‘., for any arbitrary two-dimensional
device is a difficult numerical task. But in the presence of a strong magnetic fieid.
these coeflicients can be deduced with a high degree of accuracy from a few simpie
arguments. [n a strong magnetic field, current is carried arouad the boundaries of a
device by ‘edge states’, which are understood to arise as follaws {Biittiker 1983b).
Under the inAuence of a magnetic field, electrons collapse inte Landau levels, For
sufficiently strong fields, one can treat the presence of the confining potential, which
defines the boundaries of the device, as a perturbation on the level energy. Within a
cyclotron radius of the potential walls, the Landau levels bend upward (figure 18(a)}.
A given Fermu energy usuaily intersects these states near the edges of the device,
thereby defining the channels for current flow. Edge states on opposite sides of a
device carry oppositely directed currents, !f we assume that these states remain
relatively isolated from one another (an assumption which is largety correct), then it
is 2 simple matter to deduce the transmission coefficients for any arbitrary device.
Current injected into any «dge state is completely transmitted to the next contact along
the path of the edge state. Therefore, the total transmission from one contact to another
is obtained simply by counting the number of edge states which carry current in that
direction.

From a semiclassical viewpoint, it appears that current is being carried by electrons
that bounce along the potential walls in skipping orbits. !ndeed, for weak magnetic
ficlds, skipping orbits have been clearly demonstrated by electron focusing experiments
{Beenakker er @l 1989). For strong magnetic fieids, the existence of edge states has
been shown by a suppression of the a-a eflect in ring gcometries {Timp ef al 1989b).
Recall that the a-n effect arises from an electron interfering with itself as it traverses
two possible paths around a ring. By changing the flux enclosed by the two paths,
ane can change the interferenve condition, and therefore change the conductance of
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Perturbed Londou leveis

-

e et
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Cross sachonct view

Figure 18 (a) Near the boundaries of an electiron waveguwde the Landau levels are bent
upwards, forming "edge states’ where they intersect the Fermu level. {Alter Bittker |988b- }
(b} For high magneuc fields, current is carned around the penmeter of a ring by uppasuely
directed edge states; this causes the Aharanov-Bohm edect to be suppressed (aiter Timp
et ul 1989b),

the ring. At some point, however, the magnetic ficld becomes strong enough that edge
states form, and the path of an eiectron is no longer split. instcad, current is carried
around the boundaries of the device by oppositely directed edge states (figure 18(b)}.
Since an electron can no longer interfere with itseif, the A8 oscillations arc suppressed.

Biittiker (19§8b) has exploited these edge states to provide an clegant descniption

of the integer quantum Hail etfect (Prange and Girvin 1987). Consider the simple
‘cross’ geometry shown in figure 15 a). If we apply the Landaucr-Bittiker formula

. i

o
Na}

Flgure 19. {(a) Simpie crow geometry used 10 explain the integer quantum Hah erecs.
(After Bautiker 1988b.3 (&) Edge states can be forced to bypass 4 iead by consincting the
width of & voitage probe. This leads [0 a suppression of SdH
van Wees ¢f al (1988c).

as shown by
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12.13) 10 cach of the leads, we obtim a matnx equation refating currents and chemical
potentials. [n lead 1, for instance,

I ==:;';“ f-” + f_,, + fu)#l - fl:f"-! - flh““7 f.'*lu"l]‘ (315

Gathering similar results lor leads 3.3 and 4, we abtain,

I f! _f-lz "’f"u “-f.lﬂ M

I, e ~T, T -Tuw -Th .
B (316

I h -T, -Tu To —Te

IR - Tu - TJJ — Iy T4 [

where f”, represents the total transmission out of lead i,
=% 1. (347

i

We will now assume that current is carried by N edge states within the cross, as shown
in figure 19(a@). Thus, the vnly non-zero transmission coefficients are

i—u:fu= f,_.--f',,:N_ (3.18)
This greatly simplifies the matrix equation (3.16}, to the form

i N -N 0 0
L ¢ 0 N -N 0 g

L R 0 0 N -N
1, N 0 08 N

(3.19)

We are interested in computing the Hail resistance Ry ;- To accomplish this, we 2ero
the currents I, and I, in the two voltage leads, and fix the driving currents (o be
f, ==1,= [ Itis easy to sce that a solution of equation (3.19) under these conditions
is g, = sba and py=p,. Thus, the Hali resistance

Ha= hl

(3.20)
is quantised in integer steps, since the number of ¢dge states N is an integer. At cach
Hall plateau, the longitudinal resistance is known to vanish. This can be demonstrated
by computing R.,; from the boundary conditions I,=1,=0 and [, ==1=1L
A solution for the chemical potentials is ju, = j£2 = py, and therefore the longitudinal
resistance R,,,; vanishes.

This vanishing resistance is often recognised as the extreme casc of a sdu oscillation
trough. In a weak magnetic field, the resistance is found to oscillate as cach Landau
level is moved through the Fermi energy. [n particular, the resistance is a minimum
when the Fermi energy is between Landau levels. For strong magnetic fields, this
minimum resistance actuaily goes to zero, as shown above. The interleaving peaks in
the resistance can be understood as follows. Each time a ‘bulk’ Landau level (i.e. that
in the middle of a device) approaches the Fermi energy, the innermost cdge states
become strongly coupled. This is 1o be expected, since these edge states correspond
to the same (perturbed} Landau level. The coupling introduces some small corrections
to the matrix equation (3.19), so that ail of the elements become non-zero. In this
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case, the chemical potenuals u, and u, will differ from p—cach wiil include a <xmall
influence from ., as well. As a resuit. the resistance hecomes non-zero. Once the
bulk Landau level has passed through the Fermi energy, the innermost edege <tates
disappear. and the remaining edee states are again uncoupied. Thus, the resistance
returns to s zero {trough) value.

In all of this discussion, we have assumed a simple geometry having teads of equal
width, so that all leads admitted the same number of edge states. When this assumption
s violated, edge states can be selectively injected or detected. Using a point contact
to constrict a voltage lead, for instance, van Wees el al (1988¢) have shown that certam
sdu oscillations can be suppressed. This can be understood by considenng an
equivalent geometry lor their experiment, presented in tigure 19(h). Note that the
resistance measured in their configuration is R, .., as oppased to R..,, which is
discussed above. As the width of lead 2 is reduced. some of the innermost edge states
are (orced to bypass the lead entirely. For simplicity, we assume that oniy one such
edge state is affected. In this case, the transmission coeffictents f"‘:, Ter. and f., are
modified, so that the matrix equation (3.19} becomes

I N -(N-1) -1 0w

L€ 0 (N-I} —(N-1 0 (321)
IS h 0 0 N -N gy -
s -N 0 0 N

Again, this equation is valid in the absence of strong coupiing between the innermost
edge states. Using lead 2 as a voitage probe ([.=0), the second row ol this matnx
equation requires that g, = iy, 50 that R,y £0€5 10 zero in the trough, as before. As
the bulk Landau level approaches the Fermi energy. the innermost edge states will
again become coupled. This coupling, however, will not affect the transmission
coefficients T, or T3, since the innermost cdge states no longer transmit into lead 2.
As a resuit, the second row of the matrix equation {3.21) will remain as before, although
all other rows will be modified by the coupling. Because the second row requires
402 = iy, the resistance Ry will rtemain zero, even though we would have expected o
peaic. Thus, the normal sdu oscillation is suppressed, simply because the voilage probe
is blind to the relevant physics.

Of course, this simplified picture of transport assumes that electrons remain in a
given edge state without scattering. The results of van Wees ef al (1988¢) provide a
rather remarkable confirmation of this assumption. Electrons in their expenment
traverse a distance on the order of 200 um (the separation between contact 3 and the
constriction) without scattering between edge states! The prospect of having such
long mean free path may spark interest in an entirely new class of devices, based upon
bailistic transport through edge channels. However, the need for a high magnetic field
to create the edge states is a drawback in this regard.

4. Current theoretical status

The last few years have seen an explosive increase in both experimental and theoretical
activities on quantum transport in semiconductor microstructures. This work has led
to an increased emphasis on sample.specific properties, as opposed to the ensemble-

averaged properties that had dominated solid state physics in the past. A fairly good
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qualitative understanding of the linear response has emerged, though a detailed
quanutative wnderstanding is still lacking. Also, much remains to be studied in the
area of large-signal gquantum transport far from equilibrium. In what tollows. we
review the current theoretical understanding of quantum transport. emphasising the
issues which have vet to be resolved.

4.1, Liear response

A celebrated resuit of linear response theory is the so-called fluctuation-dissipation
theorem, which relates the linear response of a system to the correlations of some
equilibrium property (Kubo 1986). An example of this is the Kube formula, which
expresses the conductivity of a sampie in terms of the correlations among its equilibrium
current operators. These correlations are commonly evaluated by diagrammatic tech-
niques (Doniach and Sondheimer 1974).

Much of the current theoretical work on quantum transport is based on the
Landauer- Biittiker formula (2.13) derived in section 2; we rewrite it here for con-
venience:

E: - -
L=—=YV (T~ Tin) (4.1)

h

Starting from a symmetry property of the cocfficients f‘ in a magnetic field
T,(B)=T(-8) (4.2)

Bitttiker ( 1986a} has shown that this formula leads to the reciprocitﬂ' relationship for
an inhomogeneous conductor

R... AI(B)= Ru,mu(‘“ﬂ)— (4.3}

Here, Ru i i5 the resistance measured by feeding current through leads m and » and
measuring the voltage between leads k and { The establishment of this property was
helpful in gaining the widespread acceptance that the Landauer-Biittiker formula (4.1)
has received. This formula has also been connected to linear response theor,. An
initial derivation of the two-probe conductance {Fisher and Lee 1981) was later
generalised to muitiple probes (Stone and Szafer 1988} and shown to be valid even in
the presence of sirong magnetic fields (Baranger and Stone 198%c). It is now believed
that any calculation based on the Landauer-Buttiker formuia (4.1) should yieid the
same result as that obtained from the Kubo formula (Stone and Szafer 1988).
Consequently, the Landauer-Biittiker formula (4.1} is the starting point (or much
of the current theoretical work on mesoscopic structures. {n the absence of dissipation,
the coefficients ]-'., can be computed simply by solving the one-¢lectron Schrédinger
equation (2.23), using ordinary wave mechanics. A popular method for accomplishing
this is the recursive Green function technique (Lee and Fisher 1981), which is based
upon the tight-binding modef. Part of the reason for the method’s popularity is the
ease with which disorder can be introduced-—simply by randomising the energies of
tight-hinding sites. This feature has been useful, for instance, in numerical studies of
conductance fluctuations {Stone t985, Baranger ef al 1988). Also, this method is easily
applied 10 any two-dimensional geometry, and has therefore been used to compute
the conductance of a constriction { Szafer and Stone 1989}, as well as local and non-local
bend resistances (Baranger and Stone 1989a) and the quenching of the Hall eflect
(Baranger and Stone 1989b). Abrupt constrictions or bends can also be handled by
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matching the wavefunction and its derivatives across the junctions (Avishal and Band
19892, b).

A ditferent approach for solving the Schrédinger equunon. which 1s usetul Tor
layered {verticai) geometnies, is the scautering matrix techmgue. [ndividuai layers ol
4 device are characterised by scattering matrices, which are then combined to determine
the overall transmission. An exampie of this is the study of conductance in disordered
resistors (Cahay ef af 1988). Samples were generated by randomly piacing elasuc
scatlerers along the iength of a wire. Statistics gathered from a large number of sampies
demonstrated both weak and strong localisation, and conductance fiuctuations of order
&'/ h. An aliernative to this type of direct numerical simulation of random samples 15
the study of the eigeavalue spectra of random transfer matrices which are refated to
the scattering matrices by u simpie transformation {Imry 1986b, Muttalib es af 19871,
Strong correlations are found in the cigenvalue spectra, giving a mathemaucal perspec-
tive 10 the nature of conductance fluctuations.

Alternatively, some authors have used diagrammatic technigues 1o evaluate (he
conductance. An early derivation of the two-probe Landauer-Biriker farmula 4.1)
gave, a3 an intermediate step, 2 relationship between the conductance and the advanced
and retarded Green functions (Fisher and Lee 1981). This detines a diagrammalic
representation of the conductance, which was later used in swudics of conductance
Auctuations (Lee et al 1987, Serota er af 1987). Other authors (Mackawa et ai 1987,
Kane e af 1987, 1988, Hershficid and Ambegaokar 1988, DiVincenzo and Kune 1988)
have evaluated the non-local conductivity tensor ot r, #) from the Kubo rormutae, and
then related this to the transmission coefficients T, through the Fisher-Lee relation
{Fisher and Lee 1981, Stone and Szafer 1988),

T -I d(S))a j d(8))ao(r, 7). (4.4)

Here, the integrals are performed over the cross sections of leads { and j, and the
vectors S, and §; are normal 10 these surfaces. An advantage of diagrammatic tech-
niques is that the phasc-breaking time 1, can be included in the computauon by
introducing a cut-oft in the diffusion propagator. Morcover, these technigues are
paricularly weil suited to calculations of ensemble-average propertics, since in this
case the diagrams can be summed analytically. Although one is usuaily more interesied
in sample-specific solutions in the mesoscopic regime, this approach has conributed
much to the understanding of disordered matenais—in parucular, to the phencmena
of localisation and conductance fluctuations.

Diagrammatic techniques are not the only means of incorporating phase-breaking
processes. Bauiker (1986b, 1988¢) has shown that phase-coherence can de destroyed
by connecting additional contact reservoirs 1o various points within a device. These
fictitious reservoirs are not driven by external sources, so that the net current in cach
of the connecting probes is zcro: electrons entering a reservoir are compictely absorbed,
and after being thermalised, they are injected back into the device with a random
phase. Thus, although the transport between (wo reservoirs is phase-coherent and
therefore reversible, the overail transpor is irreversible due to the dissipation which
occurs in the reservoirs. Biittiker (1988¢) has used this technique (o simulate the
cross-over from coherent resonant tunnelling to incoheremt tunnelling through two
barmiers.

\f each additional reservoir in Biittiker's model acts as a localised inelasuc scatierer,
it seems that one could simulate distributed inelastic processes with a continuous
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distribution of reservoirs

I(rl:%J‘dr'( For it = e rpie). {4.5)

Caiculations based upon this formula have been used to study the impact of inelastic
scaltering on Ipcalisation (D"Amato and Pastawski 1989, Datta and MclLennan 1989).
Although this simple picture of transport is physically appealing, sceptics would argue
that it is purely phenomenological. However, the rigorous justification for such an
approach has recently been presented (Dasta [989b}. Starting from 4 microscopic
Hamilionian which allows clectrons to interact with a bath of point-size inelastic
scalterers, a transpor equation was derived which reduced to cquation (4.5) in the
limit of linear responsc. As well as putting Biittiker's approach on firm ground, the
derivation aisa provides a means of computing the coefficients T(r, ) in the presence

of dissipation. These coefficients are determined from the retarded Green function
G r)

. oG P

T == e lee (4.6)
where 7,(r) is the phase-breaking scattering time, which is allowed to vary spatially.
We have quoted the zero-iemperature result (transport occurs oniy at the Sermi energy)
for simplicity. Included in the definition of the Green function is an optical potential
ih/27,(r), computed from the electron self-energy. The presence of this imaginary
potential causes |G*(r, r')[’ to decay as a funcuon of distance from the injection point
r. In Biittiker's model, this corresponds to electrons which are gradually leaking out
into the continuous distribution of probes. Thus, interference effects (which arise as
Auctuations in |G®(r, 7)) are gradually damped over a phase-breaking length. More
importanily, this decay reproduces the self-averaging behaviour of large samples: only
points within a phase-breaking length are sirongly connected by the kernei T(r ),
so that any large device can be thought of as a combination of uncorrelated units,
cach the size of a phase-breaking length.

4.2. Harmonic generation

The Landauer-Bittiker formula (4.1) can only predict the linear response of a device.
“This is because the transmission cocflicients T, are computed in equilibrium and remain
fixed, so that current is simply proportionai to the amount of applied bias. Obviously,
the limitations of linear response are defincd by the sensitivity of the transmission
coefficients to an applied bias. An interesting ¢xampie of non-linear behaviour is the
rectifying nature of asymmetric quanium weli diodes, discussed earlier in section J.1.3.
If the resonant energies in two neighbouring wells are slightly different, an applied
bias will tend to align the energies for one poiarity, and separale the energies for the
opposite polarity (see figure 9). This resuits in a diode-like character, which can only
be described by accounting for ihe changes in transmission due to the applicd bias.
Asymmetry has aiso been predicied (Al'tshuler and Khmel'nitskii 1985) and observed
{Webb and Washburn 1988) in the voltage fluctuations of a disordered resistor. in
the mesoscopic regime, ordinary ohmic behaviour is lost since the specific microscopic
configuration of impuritics makes a4 resistor inhomogeneous. Thus, quantum
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mechanical interference effects can cause a prenounced asymmetry in the response ol
voltage 1o current, leading to harmomic generation. Harmonics as high as the tenth
have recently been detected in the response of semiconductor ring structures { deVegvur
et af 1982).

4.3. Large-signal response

To compute the response of a device to a large applied bias, we need to solve the
more general equation (2.7), which is restated here (or convenience,

i =iJ‘dE[Tn(E).ﬂE“3ﬂl)_ T\ E) fUE - eus)) 4.7

One effect of a large applied bias is to broaden the range of energies of electrons
contributing to transport. Bagwell and Orlando (198%9ai have shown that eguation
(4.7} can be represented as a convelution of the transmission coetficients with both a
‘voltage windowing function’ and a temperature broadening function. Of course, the
transmission coefficients themselves also change with bias, so that the applied voltage
does more than simply broaden the energy range. Neglecting ail phase-breaking
processes. the transmission coefficient T,,(E) = T-,( £) can be calculated simply from
the one-clectron Schrédinger equation (2.23). In this manner, equation {4.7) has been
widety used in the study of large-signal phenomena, including tunnelling (see, for
example, Frenkel 1930, Duke 1969, Lenstra and Smokers 1988), resonant tunneiling
(see. for example, Vasseil et af 1983, Jogai and Wang 1985), transport in finite
superlattices (see, for exampie, Tsu and Esaki 1973, Bagwell and Orlando 1989b) and
transport through ballistic constrictions (Kelly er af 1989).

A major concern is how dissipative processes affect the results of these calculations,
As electrons become heated by the appiied bias, cleciron-electron scattering is sig-
nificantly increased. As a result, phase-breaking processes are expected to become
imponant for large signal response. For example, the etfect of dissipation on tunneiling
is a fundamental question that has been addressed by a number of authors (Caideira
and Leggett {983, Bruinsma and Bak 1986, Caroli er af 1972). Another example is the
vailey current of a resonant tunneiling diode, which is believed to arise fargely from
electrons that are inelastically scattered. In the simplest models, ineiastic scattering
homogencousiy broad the resonance, so that the resonance is more difficult to
switch off (Stone and Lee 1985, Biittiker 1988a). In addition, singie-frequency phonons
lead to a replication of the current peak, which appears as a shoulder on the /- V
curve in the vatley current region (Goldman er al 1987, Wingreen er al 1988).

Non-equilibrium Green function techniques provide a powerful approach to
account for dissipative processes in large-signal quantum transport (recent reviews
include Mahan (1987), Jauho (1989), Jauho and Ziep (1989) and Rammer and Smith
(19861). The fundamentai quantity in this formalism is the Green function

G (ry, pai ty, ) mild (rs, L)Cry, 1D {4.8)

which contains information about the spatial and temporal correlations of the electron
fieid. In particuiar, the ciectron density mir; {) is proportional to the diagonal clement
of the Green function, obtained by setting r, = r- and 1, = 1, in equation (4.8). An
alternative form of the Green function G™ (r, &, E, 1) is obtained from G™ (r,, 7. 1,, 14)
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by transtorming to centre-of-mass

r=lr 4 r (=0 +1)
and relatve coordinates, and then Fourier transforming with respect to the relative
coordinate:

rn-r~k fHh—l=E
Quantum kinetic equations which describe the evofution of this non-equilibrium Green
function are usually derived using the formalism developed independently by Kadanoff
and Bavm (1962} and Keldysh {1965); for a review see Langreth (1976).

[nstead of the [ull correlation lunction G (r, k, E, 1} quantum kinetic equations
are olten formulated in terms of the Wigner function f ¥(r, k ). The Wigner function
is obtained by integrating G' (r, k, E, 1) over the energy coordinate, and it is often
preferred because it has many properties similar to the semiclassical distribution
funcuon fir, & 1). Specifically, it can be iniegrated over k to determine the electron
density, and integrated over 7 to determine the current density (Wigner 1932). Kinetic
equations for the Wigner function have also been derived starting from the quantum
Liouville equation (see Kluksdahl er al (1989} and references therein). The Liouville
equation is tormulated in terms of the density matrix, which is related to the Wigner
function by a transformation of vaniables. A number of authors have used the Liouville
equation as a stanting point for quantum kinetic theories (lafrate and Knieger 1989,
Barker 1982 and references therein}. This formaiism has been applied to the simuilation
of resonant tunnelling diodes, using a phenomenological relaxation term to describe
dissipation { Ravaioli ef al 1985, Frensley 1985, 1986, 1987, Kluksdahl er al 1989). The
density matrix can also be computed using the path integral formulation (Feynman
and Vernon 1963, Thornber {978), which s particularly suited to handling strong
clectron-phonon interactions. In this [ormulation, a trace over the phonon states
results in an effective potentiai which depends onlv on electronic coordinates. For
numerical computations, a Monte Carlo sampling of electronic paths has been
developed to compute the effective potential {Mason and Hess 1989},

Apart from accounting for dissipation, the Wigner funrction formalism is also
suitable for time-dependent sofutions. Although early attempts (Ravaioli er al 1985,
Frensley 1985) had difficulty obtaining stable soiutions, the problem was finally resolved
by Frensley (1986, 1987). He noted that the boundary conditions appropriate for an
open system correspond to the properties of a reservoir in the Landauer picture:
reservairs should act like black bodies with respect to electrons. so that electrons
entering the reservoir are completely absorbed, and then injected back into the device
according to the distribution {unction of the reservoir. Afler implementing these
boundary conditions, stable solutions of the transients were obtained for a resonant
tunnelling device.

Recently, a simplified quantum kinetic equation was proposed for the study of
dissipative transpon in steady state (Darta {989b), This equation is formulated in
terms of the electron density per unit energy n{r; E), which is proportional to the
Green function integrated over k and +. The averaging over 1 is made possible by the
restriction to steady state. On the other hand, the averaging over k is made possible
by assuming a special (point-like) form for the inefastic scatterers. The resulting
simplification in the kinetic equation makes it possibie te obtain numerical solutions
for realistic structures that can be compared with experiment. Such comparisons may
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illuminate the reievant physics of dissipative quantum transport, and may help wdenul’y
new phenomena ansing from spatially correlated inelastic scattenng processes.

4.4, Space-charge effects

An important peint that often tends to be overlooked is the role of space-charge etfects
in transpon phenomena (Landauer 1987). Device ¢ngincers are usually quite awure
of the facr that the drift-diffusion equation needs to be solved self-consistemtly with
the Poisson equation. Any transport equation that repiaces the dnifi-diffusion equation
for uitrasmall devices will need 1o be solved likewise.

Equilibrium band-bending can have a major quantitative (if not qualitative!} impact
on transport. Consider, for instance. the simpie tunnel barrier shown in figure 20.
Neglecting any space-charge effects, the conduction band profile is drawn as 2
rectanguiar potential barrier (figure 20(a)}, which merely reflects the presence of a
wide bandgap material. Depending upon the internal doping prolile, the correct
equilibrium potential can have a number of different forms, as 1llustrated in tigures
20(b) and {c). We belabour this point for good reason: cven in this simple example,
the impact of band-bending can be significant in terms of the tunnelling current, which
is éxponentially sensitive 1o the barrier height. In an arbitrary mesoscopic sample, the
complex interplay between interierence effects and the eleciron density and the electros-
tatic potential make it much more difficult to foresee what the effect of band-bending
would be. But clearly such etfects cannot be neglected g priori. A strict acceunt of
the equilibrium band-bending must be 1aken as a first step in the analysis of any device.
[n the limit of linear response, the corrections to this equilibrium potential due 1o the
applied bias can be neglected.

For large-signal response, on the other hand, one needs the correct potentiai
distribution under an applied bias. Self-consistent solutions of the Schrédinger and
Poisson equations applied to resonant tuanciling diodes have shown that the bias is

Net chorge

Figurs 8. Equilibrium band-bending can significantly alter the polential profile of a device,
1 seen for a simple wunneiling barrier (@) negiecting space-charge etfects, (b) with a Lighuly
doped interior and (c) with a heavily doped bamier.
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dropped non-uniformly across the device; much of the bias is absorbed by a depletion
regicn on one side of the device, thereby scaling down the etfective bias across the
double-barrier region (Ohnishi or af 1986, Cahay er af 1987, Brennan 1987). Thus,
higher applied biases are required in a self-consistent analysis (o reach the NiR region.
Another effect ol space charge is to shift the resonant levels in the quantum well.
Depending upon the occupation of these levels, (wo siable solutions of the electrostatic
potential can be found, feading to a hysteresis in the [- V characteristic as the applied
bias is ramped up and down. This hysteresis has been observed both iheoretically
{Kluksdahl ef ai 1989, Mains er al 1989} and experimentaily (Zaslavsky er af 1989,
Alves erf al 1989), as discussed earlier in section 3.1.2. Note that these etiects rely an
changes in the space-charge distribution beyond the equilibrium band-bending dis-
cussed previously.

In a self-consistent solution, the Poisson equation accounts for electron-electron
interactions only in the Harree approximation. It is possible that exchange “and
correlation will also play a significant role in smail structures as they do in aloms and
molecules. For exampie, Bandaca er al (1988) have found a shift in the photoexcitation
wavelengths associated with transitions between quantum well sub-bands. This shift
is well described by including corrections in the sub-band cnergies due 10 exchange
and correlation. On the whole, however, exchange and correlation etfects are largely
unexplored. Coulomb blockade in uitrasmall tunneiling junctions (Likharev 1988} can
possibly be viewed as an exampie of 2 many-body correlation effect. It remains to be
seen whether future experiments will uncover new situations in which these effects
piay a significant role.

5. Concluding remarks

The important realisation that has emerged over the last few years is that electronic
circuits with dimensions less than a phase-breaking length behave much like microwave
or optical networks. Once we accept this basic notion, most of the novel phenomena
recently discovered in mesoscopic structures are easily understood. The lasting value
of these discoveries thus ties in teaching us to look at electronic transpon from a new
viewpoint. This viewpoint naturally raises the possibility of eiectronic analogues of’
microwave and optical devices. Of course, device concepts based on controlling the
phase of the wavefunction can only become practicable when the technology has .
advanced far enough to eliminate random variations in the phase (e.g. conductance
fluctuations). Morcover, the fermionic nature of electrons icads to an important
ditference with light. A single-moded optical fibre can, in principie. carry any amount
of power per unit frequency range. But a single-moded quantum wire can oniy carry
80 nA of current per meV, due to the exciusion principle. The operation of such
quantum devices is usually limited to iow bias voltages and low temperatures, 10 reduce
the energy spread of eiectrons involved in transport. In addition to energy averaging
at large biases, clcctron heating leads to increased electron-¢lectron scattering, thereby
destroying interference etfects.

As the microelectronics industry continues its drive towards smailer device
dimensions, it seems inevitable that quantum interference effects will play a more
significant role in device operation, intentionally or otherwise. It seems likely that
quantum devices that rely on such cifects will find useful niches in a variety of specialised
apptications (Capasso 19892, b). But the question of whether quantum devices will
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ever make it ‘hig” by impacting the integrated circuts industry is a controversial one
that unly the (uture can answer. Leading researchers in this field have provided both
optimistic ( Bate 1988) and pessimistic {Landauer 19892} outlooks.

To date, most quantum device concepts have been based on analogies with linear
aptics. However, a totally differcnt class of gquantum devices could emerge [rom
analogies with non-linear optics. One can view space-charge effects as a large source
of non-finearity inherent in electronic transport, that could be turned to an advantage.
MNon-linear optics, for instance, is based on the dependence of the dielectric constant
on the light intensity, which is a second-order effect. The corresponding phenomenon
for electrons is the dependence of the potential on the electron density which is a
first-order effect. [t may be possibie to design novel switching devices based on an
interplay between quantum cffects and space-charge effects. One example is the
possibility of engineering a space-charge induced transition in a lateral superlattice
(Ferry 1981). Another example is the Coulomb hlockade observed in ultrasmail
tunnelling junctions { Likharev 1988). Such effects are expected to become increasingly
significant as we go to smaller structures.

The role of space charge in electron waveguide transport has so far been neglected.
This may be qualitatively different (rom the role that space charge plavs in large-area
devices where the electrostatic problem in essentiatly one dimensional. By contrast in
waveguides, one has in general a three-dimensionai electrostatic problem, and the
etfect of space charge may depend on the presence or absence of neighbouring ground
planes. Clever design may make it possible to build non-linear electron waveguide
networks with novel switching properties. Clearlv major breakthroughs are needed
before such exotic devices become practicable. But wt is likely that quantum devices
will eventually find uses that cannot currently be foreseen.
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