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CHAPTER 111

Envelope function description of heterostructure electronic states

I. Introduciion.

From Chapter 11 we know which are the eigenstates of bulk 1I1-V compound~ in the
vicinity of the zone centre. In this chapter we shall deal with the determination of the
eigenstates in heterostructures. The emphasis will be placed on a simple description
of these eigenstates. i.e. a description hased on the Kane analysis of the dispersion
relations of the host materials. In this envelope function description |1-5]. our
problem will be to find the boundary conditions which the slowly varving parts of the
heterostructure wavefunctions must fullfil at the hetero-intertaces.

it should be stressed that other approaches to the heterostructure energy levels
have been proposed which are more microscopic in essence than the emvelope
function scheme. In the empirical tight-binding caiculations for instance (se¢ €.g.
|6]). one begins with u series of energies which are characterisuie of the
sp’ bonds linking one atom to its neighbours. The heterostructure wavetunction is
then built atom after atom. In other words a heterostructure is nothing but a bulk
material with a very large unit cell (e.g. the superlattice unit cell in the case of a
periodic stacking of the A and B lavers). 1t was previously thought that the size of the
computer calculations necessary to handle such large cells would become rapidly
prohibitive. restricting the tight-binding analvsis to short period superlattices where
the unit cell is not too large. Chang and Schulmun have however shown how to cure
this drawback [7] and the tight-binding model is nowadays successfully used for
heterostructures of any size. although it may have difficulties in handling self-
consistent calculations which arise when charges are present in the heterostructure.

Another microscopic approach is the pseudo-potential formalism. which 15 very
sucessful in bulk materials. Recently. it has been applied to a variety of heterostruc-
tures by Jaros et al. [8. 9]. Here. the core of the model is to consider. sav. 4 periodic
stacking of GaAs and AlAs slabs as a perturbation over the zero-order situation.
which in this case would be the bulk GaAs. In other words a caiculation is made
analogous to the deep level ones in bulk semiconductors. The advantage of these
microscopic approaches is their capacity to handle any heterostructure energy levels.
ie. those close to or far from the I edge. This occurs because these models
reproduce the whole bulk dispersion relations. The model that we shall develop has
no such generality. Basically. it is restricted to the vicinity of the high-symmetry
points in the host's Brillouin zone (f7 X. L}. We feel however that it is invaluable due
to its simplicity and versatility. 1f often leads to analytical results and lcaves the user
with the feeling that he can trace back. in a retatively transparent way. the physicul
origin of the numerical results. Besides. most of the heterostructures” energy levels
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relevant to actual devices are relatively close to g high symmetry point :n the hosty
Britlouin zone.

We shall first present the assumptions used to derive the envelope function model,
As the reader may have perceived in chapter 11 the adgebra is relatively casy when
the in-plane wavevecior A_ of the carrier is zero. The heterostructure states can then
he classified according 1o my,. the : projection of the total angular momentum
J.and two kinds of energy levels rc\u][ The first kind corresponds to light particle
states which are hybrids of the ') F'land - host states. whereas the second kind
corresponds to the heavy hole ]e\'cls. These k_ = 0 states in quantum wells and
superlattices will be extensively discussed and our considerations witl be illustrated
by specific examples. The third part of this chapter will be devoted 1o discussion of
the n-planc dispersion relations in the heterostructures. This s a topic which n
currently being actively researched. Because of the mixing between the k=0 ligh
and heavy purticle states it has proved. up 1 now. impossible 1o obtain analvtical
sotutions of the k_ s 0 heterostructure problem. Therefore. we shall only present the
assumptions used for the caleulations and some examples of the in-plane dispersion
relations i several heterostructures. Unless otherwise specified. the heterostructures
are ussumed to be under flat band conditions. i.¢. contain no charges. In the presence
of charges. self consistent cadeulations ot eneray levels are required. They are the
subject of chapter 'V,

IL. The envelope function model.

ILT PRELIMINARIES. — Advanced epitaxial techniques. such as molecutar beam
expitaxy or metal-organic chemical vapour deposition. have made it possible to grow
interfaces between two semiconductors which are flat up to one atomic monolaver
(2.83 A in GaAs). which is the ultimate resolution which can be achieved. It is
common 1o represent such an wdeal inferfuce in terms of a continuously varviny
pasition-dependent bund edge (Fig. 1), Basically speaking the sketch shown in figure
I 'means that tor = = 0 the electron experiences a4 one-electron potentiul which is
dentical to that of u perfeet bulk A material. whereas for - < (+it experiences a one-
electron potential which is the same as is found in a perfect bulk B layer. Of course.
this scheme that we shall folow later on is only approximately true. Its accuracy
himited by several fuctors. both fundamental and technological in origin. On the one
hand the sketch shown in figure 1 by-passes uny ambiguity concerning the description
of the electron states which originates from the border atoms. i.e. that hybrid
interface bonds exist which are present in neither the bulk A laver nor in the bulk B
laver. On the other hand. figure 1 tacitlv assumes a perfectly bi-dimensional growth.
i.e. that all over the ureu § the structure grows monolaver after monolaver. This br
dimensional growth is. in practice never completely achieved and for that reason the
interface location along the z axis varies with the in-plane coordinates. In practice.
we feel it is better ta envisage the interface as having a finite thickness to account fu
the effects previously mentioned. Fortunatelv. most of the electronic states which w¢
shall discuss in the rest of the book hardly experience the interfaces. as they hie
small probubility amplitudes of being found in these regions. Thus. in a firy
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Fig. 1. — One-dimensional sketch of a heterojunction formed between two perfectly lattice-
matched A and B semiconductors with chemical formulae CB and AB respectively. Upper
part : representation in terms of a position-dependent conduction band edge. Lower part:
actual bonds. Notice the formation of the hybrid bonds A-B-C at the interface.

approximation and for technologically abrupt interfaces. we shall retain the notion of
mathematically abrupt interfaces. Consequences of the deviations in the actual
interfaces with respect to this idealized model will be examined in chapter IV.

For certain heterostructures. the notion of abrupt interfaces is irrelevant from the
growth point of view due. for example, to an excessive and uncontrolled interdiffu-
sion between the A and B materials. For those heterostructures with severely graded
interfaces. one should resort to modelization of the grading effect. To our
knowledge. little effort has been devoted to this technologically important problem.

Since the notion of interfaces is somewhat fuzzy, the definition of layer thickness is
also rather imprecise. However in the case of periodically arranged heterostructures
(superiattices) the X-ray determination of the superlattice period is precise (see e.g.
[10]). On the other hand. the thickness of an individual layer is rarely known to an
accuracy of more than one atomic monolayer. In-situ measurements such as
Reflection High Energy Electron Diffraction oscillations [11] have proved to be very
valuable in ascertaining the layer thickness. Simpler techniques such as measuring
the growth duration and using calibration obtained on thick (~ 1pm) layers are less
precise for the narrow layers (~ 100 A) which interest us.

The abrupt interface model sketched in figure 1 makes a clear distinction between
barrier-acting (B) and well-acting (A) materials. One may however raise questions
on the significance of barrier and well denominations since we have seen that the
interface notion is not very well defined. The two notions call for different
properties. The interface is ill-defined because it is difficult to know at the atomic
scale what kind of environement an electron sees when it is in the transition region
between the A and B layers. The notion of wells and barriers calls, on the contrary.
for the asymptotic behaviour of the carrier wavefunction occurring far from the
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interface. The exact heterostructure wavefunenon corresponding o+, where
0=+, = V', oscillates deep in the Alaver but is exponentiatly damped in the B layer.
On the other hand if «, = V.. the wavetunction would oscillate in hoth kinds of
luvers.

With respeet to the valence and conduction edges. two possible band edge profiles
exist for an AB heterostructure. In figure 2a B i~ a barrier for Yoth the valence and
conduction electrons (tvpe 1 configuration). Another situation is akso found (type L
atso called staggered configuration) where one material acts as @ well for conduction
electrons but as a barrier tor valence electrons (Fig. 2h). Examples of the type |
configuration are GaAs-GatADAs. Ga, . A, cAsInP. GaSh-AlSb ere... whereas
1nAs-GaSb is an example of a heterostructure which diplavs a tvpe 11 configuration.

[1.27 THE ENVELOPL FUNCTION TRAMEWORK, — In the following we shall assume
that the A and B materials constituting the heterostructures are perfectly iattice-
matched and that they ervstallize with the same cristallographic structure €in most
cases the zine-blende structured. The approximation of perfect lattice matching is
relatively well justified tor GuAs-Gal ADAS and Gay,s-lng ssAs-InP (if the In mole
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Fig. 2. — Conduction and valence band profiles in a type 1 heterostructure (Fig 2a) and I0 ¢

tvpe 11 heterostructusre (Fig. 2b).
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fraction is really 0.33) : the relative lattice mismatch 8a/u = (ay — a4 )/a, between
poth host materials is between 0 and 0.1 %% . For other materials (e.g. GaSb-AlSb)
sufa is too large (= 0.6 %) to be negiected. If the lavers constituting the
heterostructures are thin enough. the lattice mismatch is accomodated by strain and
stress effects in each kind of laver in order to achieve a common in-plane lattice
parameter [12-14]. The envelope function framework can be suitably peneralized to
include the stress effects. We shall not discuss these effects here. as [12-14] can be
referred to for such a generalization.

In the envelope function model the similarity found between the Kane matrix
elements of the various IT11-V or I1-VI compounds is exploited. Two key assumptions
are made :

i) Inside each laver the wavefunction is expanded on the periedic parts of the
Bloch functions of the edges under consideration

Gir = E 2wy on (n

if r corresponds ta an A kiver and.

w(r) = ¥ 70 (2)

if reorresponds to a B laver. In equations (1. 2). k;, is the point in the Brillouin zone
around which the heterostructure states are built. The summation over { runs over as
many edges as are included in the analysis.

ii) The periodic parts of the Bloch functions are assumed to be the same in each
kind of Javer which constitutes the heterostructure :

N = ! on. (3

Thus our heterostructure wavefunction will be written as

w(r) = ¥ fIN e (0 4

and our objective will be to determine f;* #'(r). But let us first examine some of the

implications of assumptions (i) and (ii).

The fact that we have truncated the summation over | to a finite number of band
edges means that we have tacitly assumed that the heterostructure states are built
with the host wavevectors k,, kg which. when measured from k. are smail. More
precisely this means that the ranges 8k, = |ky - k;|. 8ky = |ky — k| which are
required to build @{r) are such that the actual dispersion relations of the hosts are
well described by the approximate «/*(k,}. #/®(ks). The latter result from the
diagonalization of the &k.p bulk Hamiltonians inside the restricted set of edges
retained in equations (1. 2). To discover such a range. one should (in principle)
compare the approximate ¢ *(ky). £{"'(ky) with more exact computations. Such a
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comparison has been made tor the GuAs-AlAs pair in the previous chapter where
the results of the Kane model. designed to be valid in the vicinity of the zone centre,
were compared to a tight binding calculation [ i3] valid over the whole Brillouin zone.
This comparison demonstrates that the conduction band states are fairly well
reproduced by the Kane model in borh GaAs and AlAs materials up to ~ 0.3 eV i
the GuAs conduction band. Valence stites dre reproduced  with comparable
ACCUrACY.

As the summations over 7 in equations (1. 2 are the same for both the A und B
lavers. it is assumed that the heterostructure state s built from k. k, wavevectors
close to the same K, edge in cach laver. To iliustrate this puint we shall suppose that
We want 1o apply the envelope function model to 4 GaAs-AlAs quuantum well grown

along the [001] direction. Let us set A A 00 The moded will give results for the

energy levels refated 1o either the 1 oviremum (he = @) or to the X extremum
D

(k,, = (il_ 0, == ) ) separatelv. The upper ving vadence states will atwavs be [like
@,

and essentially confined in GuaAs. The lowest Iving-conduction states will be [ike it
the GuAs well is wide enough. Some ol the excited conduction states will be Ilike
whereas others will be X-like. If the GaAs well is narrow enough the lowest Iving 1
states will coineide in energy with the fowest hving X state (this is because the X band
has o much heavier muass along the [901! s than the Mmassy, The envelope function
scheme will predict that these two states are degencerute in energy and consequently
will fuil. The degeneracy is actually Tifted und the two levels anticross which Jeads to o
strong mixing between the fireluted und N-relited wavefunctions. More generally.
for heterostructures which are such thin the widels separated extrema of the host
Brillouin zone are involved in the heterostructure wavetunctions. the envelope
tunction model will. in essence. be unable 10 account tor the couplings between the
various valless. To fully deseribe the latters. models involving the entire hosts’
Brillouin zones will be required. c.g. teht-binding |o-7] or pseudo-potential methods
{8-9]. On the other hand. for heterostiuetyse ~ates which ure built from the same
extrema in both types of lavers. the emvelope tunction model should work well. 1t has
been successfully implemented tor the forelated  states of a varietv of -V
heterostructures : GaAs-Gai AN AL, G -Ing s As-InP. GaSh-InAs. . as well as for
the L-related states of PbTe-Ph(Sn)jTe heterostructures (see [16] for more details)
From now on we shall restrict our considerations to the [-related extrema.

The assumption of identical ! /(r). ;) implies that the interband £, mEatrix
element (§|p, [X) is the same in the A and B layers. Let the plane = = 2, be the
interface separating the A and B layers {the growth axis is assumed to be the
z axis). Since the v, , are linearly independent and since ¢ (r) hus 1o be continuous at
I = 7, it results that

L 0

: Ll
£ sy = 6%z (5t
where r_ is a two-dimensional position sector. Since the luttice constants of the host
lavers are assumed 1o be the same (at least in the laver plane in order to include the
strained layer materials in our analysis). the heterostructure becomes translationally
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ipvariant m the faver plune. Thus. the s can be factorized ino .

MM o) = —~—1A ex (h .r )1 x e (o)
s -
N

f_f“'(r‘.:)r—l—_:exp{'ikA.r_}x}"'(:) {(7)
N
or i short:
f;"""”(r_.:)=Lﬁexp(i.k_.rj;(:A Byz) (R}
N
where § is the sample area and k_ = (kA )isa hi-dimensional wavevector which i
the same in the A and B lavers in order to comply with the in-plane translational
it arianee.

Although k_ could theoretically span the whole in-plane section of the hosts’
Brillouin zone. it is in practice seldom farger thun ~ 1 10 of its size.

We shall denote by #i M. ¢! the energies of the 1 hand edge at the zone centre of
the A and B materials respectively. We shall abso assume that forail !
v Y My varies slowly at the scale of the hosts™ unit cell.

Thus. the heterostructure wavefunction dir) is 0 sum of the products of rapidi
varving functions @ the iy ¢'s- which are periodic with the hosts' periodiciey by slowi
varving emvelope funciions the f.'s

To lighten the notations. we write the heterostructure Hamiloman in the torm

P , i ‘ ,
=5 VY, - V) (Y
where Y, (Y }) are step functions w hich are unity if Feorresponds o an A ayer (tod
B laver). We have
Hup(r) = (10" Y - Y Y aeglr) (1m

We now let H act upon @(r). multiply by wi(rexpl-ik .r) vt Py and
integrate over space. Following the sume procedure as 10 Appendix B of chapter i
we find that X}“\'H'(:) must fulfil the set of eigenvalue cquations

Q‘“'(:.Jﬁ%)x;” Fx. {1

In equation (11) x isa .V dimensional column vector und D a N x N matrix. where
N is the number of bands edges which are retained in equations (1. 2). The

D matrix elements Df,' are functions of - and a/8z:

i ko @
D= L} o Y Y ——‘——_] By~
!m( as ) {?(‘_t A L B m, 2’”“ ﬂ:: J iom
fik ih H
- ~
e (Ip_|m) *'EUIP;I”QE (12)

"

o s—
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where

dplomy - l Uiy Priggdr sy
o 12

and £2,, iy the unit cell of the host Livers.
By comparing eqguations (120 [3) with the results obtained in chaptrer 1 we e
that D" is nothing but the & p matny of bulk materls. eacept that

1) A i~ replaced by —i A a:
1) the band edges £, are now position-dependent wid vars ina steplike muanner
Instead of using ! Y. !B we mav denote by V. the aleebraic energy shift of th
! hand edge when going from the A to the B material and dehine the step function
Vo)

Voo = 0 il 2 corresponds o an A lver (14

Voo - N s corresponeds to o B laver Ny

In the case where an external potential ¢ (20 slowty varving at the scale of the hoo
unit cell i superimposed on the heterostructure potential fe.go 4 band bending
potential arising from charges). equation {10 s modified by the adjunction of a wern
) fowhere 1ois the N o« Nadentity matrix, Sinudarb . it the external potential s
slowly varving function of . equation (1U) should be rewritten as

o i ) (1 r
: r.— oglr) | . o
L ( ar - e ! {
where
L ‘ oL . h: n i1 Bt ' ~
D!‘.,.'( r. ; ) DRI N1 -3 ( — - ;(----‘ . ) Pa - S O prmy . -
Lo L B A | - nl. nr
{!

In eyuation (11} the larger N, the more accuraic the results will be {granted the
the underhving assumptions of this equation are well justiticd). In practice. we ~hd
restrict V1o 8, e, we shall study the heterostructure states which are attached to 1.
[,.. 1 -.F_ bands of the host materials, To the extent that the other host's bands o
far from the .. I'-. [, edges, their effect on the related cnvelope functions o
either be neglected or taken inte account only up to the second order
p. In the latter case this amounts to replacing the matrix D" in equation (11) by &
effective [) given by :

a1 a N

w I
R v

dr Af=Pdry

where a. 8 = x. v. - and MeB iy a8 x ¥ mairix whose coetficients express the indire.
... I', couplings vie a single excursion outside the [, P~ 'y muluplet ¢
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Appendix A of the previous chapter):

m,, b i
uﬁu——_z <1'|V(.E"> = (A

M Comy F—oly =V

{Hpglry (19)

tm

where v labels the remote [ edges of the host lavers. whose energies are position-
Jependent in the heterostructure (as expressed by the piecewise constant functions
1" ()} and where Fin an average energy of the I'.. I'-. I'_set in the heterostructure.

To summarize. the x 2) eavelope junctions are the solutions of a ¥ x 8 second
order differential system:

: H— . f‘:"":_ now -‘ . it a
A AL i -y - a A 5. - _l o
- {E_;"") ) RITTIRA T S {Hp:bm) iz
hk ‘: 4 . f: 5 : 1
MR ey LTy [kuj_f_-_',‘,k“l-
i B A YT E Y E
h- 1 I
T~ ’ Ay, ——hkoi v, 2 rxgs | s f = 8. (2
-, A '

W fm

As can be seen from cguation (2 the problem of the heterostructure energs
ievels has been reduced to the solution of it set of second order differential equations
which govern the spatial behaviour of the slowly varving envelope functions. The
microscopic details of the heterostructures. ie. all the parameters which depend on
the rapidly varving phenomena at the scale of the hosts” unit cells. have explicitly
disappeared from the cquations of motion. In equation (20) they only survive
through cffecrive parameten . the interband matrix elements {{ | p{m} . the effective-
mass tensor MF and the band offsets V', Either these purameters arc @ prioyi known
and equation {20} enables the heterostructure energy levels to be determined. or the
band offsets 17, are unknown {as is often the case) and. by comparing the
measurements and the energy level deduced from equation (20). the Vs being
treated as adjustable parameters. these band offsets can be determined. First
principle or semi-empirical calculations of the band offsets are available [see ez 17-
19] and for a given A-B pair the Vs are determined. In particular. the common
anion rule derived by Harrison [17]. states that two semiconductors which have a
common anion (e.g. GaAs. AlAs). the same crystallographic structure and are lattice
matched should nearly have a zero valence band (V) offset. This rule however 1s
accurate only up to several tenths of an eV. as any other first principle determination
of the V,'s. This is insufficient for most practical purposes and one is forced to
consider the Vs as adjustable parameters.

Knowledge of the Vs is of paramount importance in the heterostructures. as the
band offsets decisively influence their energy levels and therefore their electronic
properties {see Fig. 3 for an illustration). One of e first tasks when dealing with a
given heterostructure is 1o design experiments which would enable the V,’s to be
determined. The reader is referred to [20. 21} for a thorough discussion of the GaAs-
AlAs band offsets.
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Fig 3. — llustrauon of the part plaved by difterent apportionments between the valence and
conduction bands of the bandgap energy difterences vy o+ of two semiconducters A and B
on the electronic states of a BAB rectangular quantum well w) electrons are contined 1in the A
kaver, holes in the B laver (hvpe 11 quantum well) @ b1 same as a) exeept that the A laver s oo
longer a barrier tor holes o o) both clectrons and holes are exsentially confined i the A layer
invpe | oguantum well) o dj the A ver s oa barrier tor electrons and a well for holes, The
sructure i~ thus o tvpe [T guantum welloinverted with respect o a). Chut ot these four
sructures only o) will display significant excitonic absorption. photolupinescence and
Cimmalated emission. Structure ¢ s a good candidate for low threshold lusing action.

At the hetero-intertuce - = ;) We »aw that y s continuous. If we now integrate
equation (20) across the interface. we obtain a second set of boundary conditions.
These can be cast in the form:

dw.%ixlﬁ\i(:::“):éllhxilh(:::“) (:H
where 4 is a 8 = 8 matrix whose elements are. at most, of the tirst order in
a ~

g; .

4 - fi: (5 fHy ) d ) 2 <l' Ip |n1> . My i ('\'1)
A = m T Pl : - — K, -
T I |V s e R
where we have made use [22-24] of the property

M5, = M7 8, (23
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I is worth pointing out that A, 15 ot diagonal in (I, m) and. a fortiori. does not
~h ¢ . - " dy .
duce 05— 8y, = Although famibiar. the continuity condition of —di s only
2my, oz z
_iid in very special circumstances. In fact it is the limit of equation (22} in the empty
Ltice approximation. where all the s and s are constant. which leads to
wanishing (M) and (Hp.im). Weshowin Appendix A that equation (22). when
spplied to @ heterostructure whose host lavers are both charactenized by non
Jegenerate parabolic and jsotropic bands but by difterent effective masses (Ben
Dunicl-Duke model [231). is compatible with the conservation of the probability
urrent across the heterostructure and thus with the stationarity of the heterostruc-

wre state. On the other hand. the continuity condition of —dl* is incompatible with

ese conservation laws and should therefore be rejected.

In the following we shail apply the envelope function machinery to various
oxamples. We shall deal cither with single quantum wells or with superlattices. The
iier heterostructures are obtained by infinitels repeating a sequence ot two
sdiacent A and B lavers. The A(B) thickness will be denoted v L (Ly) and the
wperlattice period by o (f - Ly - L) The growth axis will be taken along the
; direction and the first Brillouin zone of the superlattice wall vorrespond to the
wperlattice wavevector ¢ such that

I

i = - % (24

Although equations [5. 210 22] telt us how 1o match x and A x acrosy the
nterfaces. we need to know the asvmptotic behaviour of y at large = to complete the
determination of the cigensolutions. This asvmptotic behaviour depends on the
Reterostructure under consideration. For superlattices. the band edge profite s
neriodic upon & with a perniodiany d. Thus x s u Bloch wuve

2 (2 — ) = expligd) x(2) {23)

For the bound states of u quantum wello <hould tend 1o zero at large
)
lim xi(z)=0. (26)

I = X

We shall first discuss the Ben Daniel-Duke model. then the k_ =0 — quantum
well levels and the superlattice dispersion relations of heterostructures whose host
energy levels are well described by the Kane model. The in-plane dispersion relations
will finally be considered in section III.

13 THE BEN DANIEL-DUKE MODEL. — This model of heterostructure cnergy
levels is the simplest one and works qualitatively for the lowest conduction states of
GaAs-Ga(Al)As heterostructures with GaAs layer thickness larger than ~ 100 A and
for the heavy hole levels ut k= @ in any heterostructure. It amounts to assuming
that the heterostructure envelope function is built from host quantum states which

-1
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betong e a singke parabolic band. For simplicits we shall take an sotrape huond end.
tor definiteness. a conduction band. The effective masses in the A{B) knvers will be
denoted by ey tiny ) Each of the levels is twiee degenerate (Kramers degencruey ).
Equation (20} simplifies considerablv as all the host bands are remete tor the
comnduction edge under constderation. Thus. we can write

[ V) woaoo1ow kD 1 = = .
- I —— | g R ¥ s (27
‘L 2o (o az o 2oy | X !
TS I TR Y S I (28
iy if seorresponds to an A luver
My . ) 12y
i if Zeorresponds to a B Lyver -
Lo - o 11 Zeorresponds o an A laver (30
o Py 1t s eorresponds o a B laver s

and 17 is the atoebraic encergy shift of the $ bund edge when going trom the A 1o i
B mateniai. The boundary conditions at the A-B interfuces are also very simple. The
are such that ;
yio) and —]— ‘il (3
jizy ds

are both continueus, Tt should be noticed that the etfective miss milsmares
contributes to the total confining barrier by o term which is & -dependent and. Ik
Voo exhibis step-like varnations. This extra term v however small 1o mos
instances (e.g. conduction states 1 GaAs-Grap AlLAs. Gay, s-In,cAs-Inb quantur
welis) although it leads to o decreusing effective barrier height with imereasins
koaf mig = iy = (0

It i~ also interesting to notice that the effective muass mismateh leads o .
disconunuiny in the derivarive of the envelope funciion at the interfuces. 1o th
extreme case where pry and iy are of opposite signs. this discontinuity catises o cusp
at the interfaces of the envelope function. The latter situation oceurs in HgTe-CdTs
heterostructures (but only at k= 0) (see section II 3.2}

11.3.0 The Ben Daniel-Duke quanuun wells (mgmy = (). — The & -dependen:

potential energy V (z) - 15 even with respect to the middle of the A lave

2n(2)
Thus. as in chapter 1. one can look for bound states solutions in the following form:
Ly
O e = Acos (ko) ol o= =
L.‘\ L-\ 2t
Xonls) =Bexp[— KH(:—-u—f-):| o=y t-

XL-\crw{ —-) = X.c\m(:)

-11,
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IN‘\KA

Fig. 4. — Dispersion relations versay the teal and imaginarny wivevectors in the A and B
lavers stached 1 form g BAB gquantum wells, The three dashed lines, drawn for three encrgies
in the heterostructures and for k= 0. show which wavevectors in each kind of layers
participate in the heterostructure stute. The upper hie corresponds o a delocalized quantum
well state and the middie line 1o o quantum well bound state. No heterostructure state can be
associated with the lower line as the carrier eftective misses are assumed 1o have the same sign
in this particular Ben Danwel-Duke quantum well

ot
, L,
Xooglsd = Aan (A2 ‘:i < —
| £y I8
x.fls) =B c.\'p‘ . ( -2 ) P (33)
L - B -
X odal — I = = xonbn)
with :
ki ok Wi kS
b b, = g = M I (34

2my o 2my, S 2y 2my

Equations (32-34) hold if x; = 0. i.e. if the heterustructure state is built from the

evanescent states of the B lavers (see Fig. 4).
_ d : L ,
By matching x () and u~ l(:)a’% at the interface = = TA (or equivalently

L .
I=— = }. one obtains the implicit equations whose roots are the bound solutions of

the Ben Daniel-Duke quantum well problem. These are :

my Ky A e
COs ¢ — — —Sitg, =4 for even states (35)
Ty Ky

-13/
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COS @ 4 ~ — — sinw, = U for odd states {3k
L By

A comparison with the resuits obtained in chapter T shows that equations (33-37,
are the sume as those of text book quantum wells except that the wavevector
Ky have heen replaced by ky/myand sy, /my,. This s a direct consequence of th
dx
d-
many of the results obtuined in chapter 1 can be applied to equations (35-37). |»
particular. the number of states bound by the well (ath_ = 0) is equal to

Ty 2m Sy
| S R | ( i A l'\ 1.'\) J 1A
R .

matching conditions of w - {(z) at the interfaces, In all other instances howeve

In fivure S are shown the variations of the confinement energles £ L F

K =0 of a Bern Daniel-Duke quantum - well (L, = 100A. V= 030y

00— — pm e

200 .
£ Vs =03eV |
> m;=007m,
&) o
)
& 100
|
X + ]
107 O (v R 0
Mg /M 4
) .
Fig. 5. — Evolution of the confinement energies E\. E- E.with the mass ratio L !
A

Daniel-Duke quantum well. £ = 100 A V', = 0.3 eV, my o= 007 m,.

..44,
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- . L - .
my = 0.07 m,) with the mass ratio —— . It can be seen that all the E,'s decrease with
N
.y o ‘
increasing — and tend 0 values £, which are such that
iy
k(B Ly=p7 p=001020 (39)

This equation resembles the bound states equation in a quantum well with an
infinite barrier height, It expresses however quite a different physical situation. In a
quantum well with infinite v . the envelope function vanishes at the interface.
Besides. according to equation (38) .1 1 infinite. 11 V', diverges. wy also diverges.
This Jeads either to cos ¢ 4 = ( (Eg. (35N or sin ¢, = 0 (Eq. (30). The ground state
wlution. which s nodeless. fulfils Lk (V= 2 )= 7. the associated envelope
function having a finite slope at = = = i: “On the other hand. when Vs kept fixed
but mry, /00, InCredses infinitv. .1 remains unchanged, Moreover. if the ground
Jates envelope function is to be nodeless. it has to be u cosine in the well. Tt should
harely penetrate the barrier {since & increases ) and. m addinoen, should have a

o -y .
derivative at = = = — whose modulus becomes smaller and smadler to comply with

the continuity of () —di_ at the interface. Thus at infinite 21,/my Tatio the only

possible wave function is constantn the well and zero in the barrier. so that both the
envelope function and ts derivative are aiso cero in the barrier. The only
cos{k 7 ) function which is constant corresponds to k= Uand thusto £ = (... This
is why when my/nr, diverges and Vs dixed the even states of the well tulfi!
“dn ¢ 4 = 0 (and notcos ¢ 4 = 0). e, admit £, = 0 as an aceeptable solution.

Symmetrically. the odd states fulfil cos ¢ = 0 and finallv the series of levels
(Eq. (39)) is recovered. The ground state envelope tunction of o quantum weli with
cither infinite V7. or finite V', but infinite »ry is shownn figure 60 order o depict the
differences between the two physical situations.

When the effective masses /my and i1y, are not widely difterent. as for instance in
GuAs-Gal AlJAs heterostructures. the in-plane dispersions of the subbands attached
to the k_ = & bound states of a quantum welt ure nearly parabolic in k-

f!:)'\':
E, (h )=, ~E0) 5= (30)

m,

The in-plane mass 1, should. in principle. be obtained by numerically solving
equations (32-37). However when k15 small enough. an approximate scheme can be
designed in the following way. The term #°k" /2u(2) in equation (27) is formally
rewritten :

kT ke Wk i 'l

(+1)

=

2piz) Sm, o Lu(:)_ruj

.-15 -
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A

VLX,(2)

/ +05 \

05 0 205
/L

Figo oo Ground state emvelope functions for a quantum well with infinite V' (dashed linet o
e

B ooguantum well with tate Vb intinite = (sofid hne),
tH .

and the sceond term on the right-hand side of equution (411 15 considered as
perturbation to #, where

L I N e e el - . (4.

whose ergenstates are in the form given by equanon (303, The first order corrections
to these vigenstates are given by

SR . t . .
AL, - —= [V - Pl - -——Puaky — 4%
’ - Loy 7y nyog
wiery
PUE =2, a0 LB (441

i~ the integrated probability of finding the clectron in the barriers while in the
£, stute. The first order energy shift will vamsh it

L ! > I 3 ) (4%
W:——[If!,,(E,,)IﬂVTI,‘(f.,,). 4

n,ony n,

e~
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Equation (45) defines the in-plane effective mass of the n'" subband in the vicinity
of k= 0. It may be remarked that if iy, > . as is the case in GaAs-Ga(AlAs or
Gay, ;-Ing 2 As-1nP. this in-plane mass m1, will increase with increasing subband index
.

Using the approximately parabolic in-plane dispersion laws {equation (4h) it 1s
very easy to calculate the density of states p{#) associated with the bound states
E,. Proceeding exactly as in chapter 1 we obtain :

ple) = Z pale) i 46u)
m, | )
ple) = o Yie — L) (46h)
oo

where Yrus is the step function. We recover the familiar stairease density of states,
The propertics of o Ben Daniel-Duke quantum weli are summarnized in figure 7.

AL Ea
)
| 4
i |- t2
1 _//\ <] E,—
Vbl \//-
,/\\_ 3
' Ey 0-
L1 » Ve
L o L z 0 ple)
2 2
Fig. 7. — A recollection of the main properties of the quantum wedl bound states. solutions of

4 Ben Daniel-Duke Hamiltonian, From left to night @ conduction band cdge protile. energs
fevels £, and E. and their associated envelope functions o in-plane dispersion relations of the
£, and £, subbands . energy dependence of the heterostructure density of states p ().

11.3.2 Interface states of Ben Daniel-Duke quanium wells (miymy, <0k = 0) —
The case m my < 0 is practically realized in HgTe-CdTe heterostructures [26] (see
Fig. 8). CdTe is a conventional open gap semiconductor whose ievel ordering is the
same as is found in GaAs. HgTe is a symmetry-induced zero gap semiconductor. The
I, band. which is a conduction band in most [1I-V and II-V] semiconductors. is
light hole band in HgTe. The I', edge lies ~ 0.3 eV below the I', edges. As the
I', light band and I, band are nearly mirror-like. the I, light band is a conduction
band in HgTe. degenerate at the zone centre with the I' beavy hele band {inversion
asymmetry splitting having been neglected).

Ignoring the absence of centro-symmetry of the zinc-blende lattice. we shall sec in
section (11.4) that the light particle and heavy hole states decouple at k_ = 9. We can

-11,,
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NG AL
HgTe CdTe

Fig. 8 — Bany structures of bulk HgTe tlett panei) and CdTe (right panely 1n the vicinin o
the 1™ poing Ischemutics

thus treat the problem of the light particle states assoctated with g I edge as if we
were considering single band. The interesting feature of the HgTe-CdTe
heterostructure js that the light particle changes the sign of its effective mass across
the interfaces. being electron-like in the HgTe laver and light hole-like in the CdTe
layers. To be specific. let us consider a CdTe-HgTe-CdTe double heterostructure.

According to [27] the bottom of the HgTe I, conduction band lies at an energy A~
40 meV above the top of the CdTe I, valence band. Thus. bound states of the
heterostructure oniy exist if 5 = _ 1 (the Chergy zero being taken at the
I'; edge in HeTe) If - 1< r 0. the states are evanescent in both kinds of layers
while if £ = (), the CaITier wavevector js real (tmaginarv) in the HgTe (CdTe) lavers.
Clearlyv. bound states of positive energies will exist (an infinite number in the one-
band description of each host laver). Proceeding as in section 3.1 their energies will
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tulfit
g | Ks .
COS & 4 + Zsing, =0 for even states (47}
Ny Kp
My Kg . .
CON & 4 — Csing, =Y for odd states {4%)
|| A
1
HCA';;RA La {449}
2, N
Ky = Ky = | ,”\ (e = 1) (50)
[
f_" i '_'4"—]'—_—_—-_"'2—"4-_"'7_——
CdTe - HgTe - CdTe
20
— 10 _
-
L5
1=
oo
S0
-20 o [ S W
0 100 20C 30 400
o
L (A)
Fig. . — Evolution of 1the ground and first excited bound states (labelied 1 and 2 respectively

versits the HeTe siab thickness m i CdTe-HeTe-CdTe double heterustruciure.

The bound state wavefunctions are All characterized by cusps at the intertuces due
to the change in the carrier effective mass at the hetero-interfaces. This sign ren ersal
also implies that equation (48) can be fulfilled at # = 0 for a certain L, while
equation (47) can not. This means that at least one state (even in o) should lie below

the bottom of the HeTe conduction band edge. This state is an interface level. built

from evanescent states in each of the host lavers. whose wavefunction peaks at the
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interfiuce, More preciselv we cen wite

o c
1tz SACos (k) [ =5 L (31
: L,y ! .
Y (2 HL‘\Pi_—K[_I(: ;.’,\) Ty (52
2 i 2
y (O Z) v Uo) (R3]
_ 2 Py i
with ; A e N B K — {1 (54)
AV -
. _ o ody | .
By matching y«ztand o 10 e at 2o Lo owe tind that ¢ should be the roor
Jd- 2
of the imphot equation
I [ Ky -
tanh ( AN et 20 (53
- i Ry

It overy easy o cheek that cquation (33) alwavs admits one ~olution
Ey tand onlv one) which extrapoelutes 1o Vwhen L, — 00 A secend stare ma
actually exist o the energy segment |- 4 0] if the HeTe laver s thick ¢nough. Iy
corresponds 1o an odd emelope tunction .

‘ ! <
y62) S AsIh (k0 : e N {500
. f | : | .
Vil Bespi o w0 s00) R AN (37
L - J -
R ) (i
The Eocnergy is the soluton of the implicit equation :
| M Ry i
cotunh ( TN AN ) e £
- .'N“‘ Koy
which admits o solution 1t
!
2o L
Ly ] (6013

Again. the solution of equation (39} 11 it exists, is unigque. When £ hecomes ven
large the energies £, and £- converge to the value :
E, = - -—-——‘ (ol
' Ly

I

which is the energyv position of the interface state in a single HgTe-CdTe
heterojunction [28. 29| Clearlv. at large L, {le x Lo 1) the two stales
E, and £. are very well approximated by the symmetric and antisymmeti

L . i . .
combinations of the swo interfuce states centred at = - L, respectively. The

—Zof



nehaviour of £, and E; versus L
Jiscussion. In figure 10 we show

Hg, -
the E, state. Although the existence of the interface state relies only on the relative

position of the I
their behaviour at k_+# 0

Hetorosirucnire efectronic stales X3
» is presented in figure 9 1o illustrate the previous
the calculated x.(z) envelope functions in

,Cd, Te-HgTe-Hg,; _ Cd, Te quantum wells 10 illustrate the interface nature of

edges of HgTe and CdTe. their actual energy position. as well as
(where they sirongly couple to the heavy hole states).

remains a subject of active research.

o .
o 0 L

Hg, ,Cdy Te Hg Te Hy.,Cd; Te
Fig. 10, — Dimensionless envelope functions of the ground states in He, o Cd Te-HeTe-
Hg, Cd,Te double heterostructures {x = 1 and & = 11.“71 for twa differens HgTe slab

thicknesses. s

1.4 QUANTUM WELLS AND SUPERLATTICES WITH HOSTS WHICH DISPLAY KANE-
LIKE BANDS. — This situation is found in most of the 11-V and 11-V1 heterostrue-
wres, e.g. GaAs-Ga(ADAS. Ga,-Ing s As-InP. HgTe-CdTe. Gay Iy As-Al
In, -As etc... At k= 0 the 8 x & differential system defined in equation (20 is
b!olch:k-diagonal if the i, basis diagonalizes both the total angular momenium

- 2l
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J and its © projection /..
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where V(o) and V(o) are ‘the step tunctions which describe the algebraic shifts of
the Iy and I'- edges when going from the A to the B materials and :

p_t o= AT bl
o <5|p}l|A> o <S|p_|!}> p (5[,{’_,[) (6ta)

In equation (64) we have included the free electron term in the definition of F.
LETHD A

B

Fm i SSInY e ) - (6:46)
—2 KA O p XD S 2N pi ey e P AT

Y= — ry - -1 (6dc)
dm, = F— - Voo
— <kl K [ X - ‘X )1!1‘ (v 2y ’\':}

Lol IR Crlp ) - (NI (e s
= P

The explicit = dependences of £. v o y- (vie the V(7)) functions) has led us 1o use
combinations like p. Fp.. po vy poopo v- pon equation (64) 10 ensure the hermiticity
o Do

[ty important to notice that the [. 5 .=

3

> lines are uncoupled to the others in

[ R LI

egquation (64). The associated envelope funcuons correspond to the heavy hole states
which cun therefore be treated separately from the other hight particie states. The
latter are hybrids of £ " light and - host states which are admixed by the non-
parabolicity of the host materials and the Vo). Vo (2). V() functions (see
Appendix B of the previous chapter). Notwe however that the decoupling between
heavy holes and hight particles is only approximate as. even at K = 0. the effect of
the non centro-symmetry of the host zine blende lattices in equation (64) has been
negiected. This effect is usually very small (smaller in 1T1-V than 1o H-VI compounds)
and may eventually be treated in perturbation {(see Appendix B). Its main effect is 1o
prevent any crossing between light and heavy particle states. The latter would oceur.
tor instance. in a guantum well when the confinement energy of 4 heavy hole state
HH, equals that of a light hole state LH, for certain thicknesses of the well-acting
material. Notwe thut the luck of centro-symmetry appears automatically in tight-
ninding calculations [6] where the difference between the anion and the cation in the
nost’s unit cell is naturally taken into account.

Across o A-B interfuce. the boundary conditions are such that x . (x ) and
3o x_ (A x . )are continuous where A equals 4 and

Frﬁ.‘i 0 0 0
d
) 0 =y -2y 0 ;
A (:_‘_) - a (63)
~ az 5 a4 03 a
0 0 (v, +-73):(T_ S
= d a
” U :\2')’:';: —Y]F
L (L - d

where we have made use of the y . continuity to simplifv A .

—13’
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As expected. A0 only involves smadf termes. which urise cither from the tree
efectron contribution or from the K. p interavtuen between {7, -0 1 and the remote
edges. This nteraction s very important for heavy hole states since the heavy hole
bands would be dispersionless 1 the hosts it this interaction was neglected. On the
other hand. tor light particle states, the £Loy 0y parameters contribute very little o
the host effectve mass. Their presence ablows o much better fit of these effective
muitsses than was obiained by retaining only o ~imgle parameter (P). In fuct. we have
to account for tour band edge effective masses. With P20 F, v, and v we obtain four
adjustable parameters. which is the requited number.

The reasons why we wish to discard the remaote bund parameters for tight particle
states are twotold. Firstlv, without Fooy, and v o the differential system tor the three

. . . . . Lo .
light particle components of ¥ _ hecomes of the first order in — and therefore casier
az

1o handle. 1o the extent that all the results can be obtamed i closed forms. Secondly,
by retaining £. oy, and y.. we tace o difticulny termed by White and Sham | 1] the
“wing bands”. which are extensively discussed by Schuurman and tHooft [3]

Let us trv to pinpoint the origins of this ditticultsy by osing w simplified model  we
shall neglect the - band. i.e. we shall assume that the spin-orbit energy s very large
compared with the light hole confinement cnergy, In each tvpe of laver. the
heterostructuie states of o given crergy ¢ are hnesr combinations of bulk solution..,
These  solutons  are either  propagating (A Apreall  or cvanescent
(A, real. A imaginary +oin the A and or B lavers. Thus o order to know ouw
heterostructure states. we simply have to cateulate the A, Ay corresponding to the
energy o« Therefore to culeulate Ay for example. we have 1o find the roots ol

Det [ (po ik L] o

In our three band (170, o ) modell cquation (663 tactorzes mnto

[ hhs AT Fhoks Bk o]
L ) | (r- . \, ) (; - [ - :'}~] : *-.‘l I’)’Aa: i
v 2. S 3 !
(b4

The first rout is obvious and describes the heavy hole branch. At the memen
however. it is of no concern to us. The two ather &3 roots. which are atways real
describe the dispersions of either the coupled (17, ~ ') bands or the wing band (sec
Fig. 11). The former. which has a clear phyvsical significance s i) small compared with
the size of the A Brillouin zone along the z axis and i1) almost insensitive to and
change in the small parameters Fand ¥, - 2vy- A, isreatforboth » < — # and ¢ =1
and imaginary for — ¢, = ¢ =0 the propupating light hole state ( ey

. Y .
becomes evanescent as ¢ enters ntoe the bandgap (— N - T) an

.
. . . Y .
progressively trunsforms into an evanescent [ electron ( = == ) . ending ur

as a propagating electron state (+ = (). The other k3 root is uaphysical as i) it has ¢

—‘a#r
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P 11— Dispersion selations of ihe Iight parhiches states veni the real and imaginur
wnovectors of a bulk material treated in the Kane model with the remote hand etfects
rvinded up 1o the second order in Al - oo Fooosy -2y - bom o 0067 Nouge
‘se different scales for the upper and lower horizontad asis of the feft panci.

sery large magnitude. eventually larger than the A Brillouin zone size along the
2 axis and i) is unstable with respect to any change in the small parameters F.
v~ 2y-. This unphysical solution is u remnent of the remote band and should in fact
correspond to their dispersions if they were correctly described (by using a basis
much larger than I, and I°,). Clearly. there is no hope of describing the remote
pands dispersion relations in the vicinity of I, and .. i.e. far from their own edges.
" g quadratic law. The wing bund seen in figure 11 is just the mathematical
transeription of this gross physical inaccuracy. Note however that. in principle. the
wing bunds are harmless when they correspond to evanescent states which decav very
rapidiy in space (a few Angstroms) on cach side of the interfaces. This huppens when
Fly, - 2v.. ) = 0. They prove troublesome however in the numerical computations.
Therefore as the introduction of higher bands adds little physical intormation to the
1. . bands {except of course for the heavy hole band) and produces artefuct>
like the wing bands. we feel thatitis reasonable o get rid of them wherever possible.
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IR SIMPLIFD 1 CALCULATIONS OF SUPERLATTICY AND QUANIUN WHLE STATES
(h = 0) — ALk_=0.setting /.y ¥ equal to zero and discarding the heavy hole
line. we obtain a 3 % 3 first order differential system which can be transtormed into &
sealar. non-linear in +. seeond order difterential equation. The latter is obtuined by
eliminating ys and y- to the benefit of y, in cquation (64) (and similarly 0 the
0 matrix). Proceeding as in Appendix B of the presious chapter. we readily
obtain :

hl ] 1

- §

P-

| : : Ppo- V), x(o) = eyl
'L""‘A"pl:) ?‘“"A\'—\-\*ks‘—_}_}[‘ !\‘ R

16N}

together with o similar expression for y.(z). The boundary canditons  that
y . ulfils at the A-B interfaces are such thut

pooody
yoorand — - are hoth continuous (64
‘ sl b ds
where :
i et N | 1 .
—_— : : - ! (Th
Ml Z) 3 N L R PO A

whe. 7)) is nothig other than the energv-dependent ettective mies W hich appears 12
the Kane three-band madel when the dispersion relations in cach kind of Layer ar
written in the implictt form

hoAs
S wn the A hiver
RYTENIE : -
- (i
ok
Voo o——— m the B laver
AYTRREN ’

the energy being set at the [, edge of the A matenial.

We are now in position to caleulate the dispersion relations ot an A-B superlattice
Let us consider a superlattice umit cell {thicknessd = L, - Ly} contdining the
interfaces. At each intertace we apply the continuity condions given by equatior
(69). In addition. the bund edges Vi(-h Vo{o) Vs and the cffective mass are
periodic functions of = with periodicity . Thus x 67} mav be written as a Blor
wave !

x iz - d)y = expligd) x (7) et
with
-z = = z (-
d d

-6 -
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Inside the A and B layers x, is a linear combination of incoming and outcoming
plune waves
Xl(:}:aexp(:‘kAz)+Bexp(4r'k,\:); ze A
(74)
x{2) = y exp(ikgz) + 8 exp(—ikgz): zeB

Four linear equations are obtained {(two boundary conditions per interface) for
jour unknowns (a. B. y. 8). These equations can be satisfied only if the determinant
of the associated matrix vanishes. which in turn leads to the superlattice dispersion
relations.

cos (gd) = cos (ks Ly 1005 (ky L) — 5 (€ l ) sin (K La)sin (k Ly)

£
(75)
KA #n(“‘)
ith &= 76
wi N (76)
WA 24,0
F(;+r,\)(!—rFAA—J_\}:ﬁ'k:\P'(F+FA+ 3 ) n
C s 24
(r'Al'\)(r—V\——.‘“)(e‘fV‘.+l»‘“-.k..\ﬂ):fi'kﬁp'(t'—vs+FB+——3—~)
(78)

Compared with the results obtained in chapter l. we see that the same kind of
superlattice dispersion relations are obtained in idealized situations (a single band. a
single effective mass ete...) and in the envelope function description of semiconductor
superlattices. This is. after all. not very surprising. All our efforts have been put into
neglecting the atomic-like details specific to solids. Some of the important features
associated with them have. however. survived :

i) the wavevectors ky and Ay in equations (75-78) are related to the energy via
expressions which are more complicated than those found in vacuum. This accounts
for the multiband nature of solids.

ii) £is no longer given by k4 /kg but should be corrected by the effective mass ratio
fy/ it s to account for the effective mass mismatch at the interface.

1.6 MISCELLANEOUS LIMITING CASES.

11.6.1 Evanescent propagation in one kind of layer. Quanium well bound states. —
Suppose that V', >4, V, <0 V; <0 as found in type I heterostructures. Thus for
energies ¢ such that U=¢= V,.V,—ra=es -4 OF that V- €54~
3, = r= — £, — A, the wavevector kg is imaginary. The corresponding superlattice
states are derived from the isolated quantum well levels which, due to the non-zero
tunnel coupling across the B layer, have hybridized to form superlattice bands. To

obtain their dispersion relations we set ky = i k5 in equations (75. 76). The quantity £
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changes into - i€ and the superlattice dispersion relations becomes :

cos (gd) = cos (Al leosh tkglpy) - (E - l ) sin (A Lyysinh tnylo (79

3

1a]—

Morever. if the barrier thickness Ly becomes infinitely thick. supprossing the
tunnel coupling between the wells. the isolated quantum well bound states
recovered

cos (hyLy) ~l (E - L ) sin (AL ) -0 (N1
2. £

Vo). Valzy with respect to the centre of the A laver, Howe dososwe casiiy tind tha
equation {80} factorizes into twao cguations  corresponding o cven amd ode
xS respectively o

In equation (81 we have not made use ot the parity  properts of Vs

cos ( l;/\_\f_,\) -~ ENn ( LA\[,\) i}
C(\h(-};k\L\)AL\m(ll\\[_\)--.ll N

¢

It should he noted that these eguations are the same as those ubtained m the v
of the Ben Danicl-Duke guantum well equations (350 36). exeept that the muasse
Wy 1y which enter into equations (8. sy are energy-dependent. Thies. ti
quantum well states in host displaying Kane-like bands admit the Ben Duniel-Duie
solutions as a limiting ¢use.

11.6.2 Tight-binding expansion of the superfatice sies. — Let us denote the i
hand side of equation (79) by 7{¢ ). It the barners are thick. £y wiil display furse
variations and the bund widths. which are the energy segments where [ fied) -
will be narrow. If L, is infinite we know that the superlattive states reduce o the
bound states «,, of the isolated wells. Thus. in the limit of the thick barricrs we i
expand f(+) in the vicinity of one of these bound states ¢, in order o obtain
superlattice band which originates from the hybridized e s We find than cquatie”
(79) simplifies into .

£o= w8y - 2 Cos igd)y - (NI

(¢)) ‘

with : 5, = -ff—{— jgif_ll_ (83
1) Co )

[

These are results which are analogous to a tight-binding formulation v
superiattice state. In fact, the shitt and transfer integrals s, and 1, can be analyticall)
obtained in terms of isolated well wavefunctions only. With a tight-binding expansics
in mind. let us write the superlattice state as .

] i : : .
xi(2) = ———— Z X, J,(:—nd)exp(r gnd) . N o7 =

VAN -1 T
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where x,{(z—nd) is the j'" bound state wavefunction of the well centred at nd. By
inserting equation (84) into equation (68). we obtain, after some manipulations,

d"l«LA N
s;=-2V, 1‘ xi (z)dz (8%)
vd-3ls
S
b=V |7 X x e - d)dz (86)
ozl

In equations (85. 86) only nearest neighbour interactions have been retained and
the non-parabolicity effects have been taken into account only in the evaluation of
¢~ Equations (85. 86) hold for I',-related superlattice states. For light hole states
similar expression could be derived with x, replaced by xs; and V, by
V,. The orders of magnitude of s, and r; are :

si=—V, Py (s)expl-2 kL)l —exp(— 2 xyla)] (87)
K
l’-z(— v, P, (F;)eXp(* Kylp) ——= %
ki + Kk

wale)) HalF
x {l L (- 1}’{1 - A(5) } exp (- KBLA]] (88}

1 y.B(Ff-] Mp F;‘)
where j = 1. 2... ¢ x is the magnitude of the imaginary wavevector in the barrier for

the " bound state of the isolated well and P(¢,) is the integrated probability of
finding the electron in the barrier while in this j" bound state.

Although approximate. equations (87, 88) are helpful for anticipating the trend in
superlattice bandwidths and shift integrals with varying barrier or well thicknesses.
We notice that s, decays more rapidly with Ly than ¢;. In addition 1, increases in
magnitude when ¢, increases. 1.€. when the well thickness is decreased for a given jor
when dealing with quantum well excited states for a given L .. Both of these increases
are due to decreasing x, and increasing P,. More importantly, we see that
7; and thus the /™ bandwidth decrease exponentially with increasing Ly, the decay
being controlled by xg. i.e. it is faster when V. L, are larger. To a very good
accuracy, one may write for the ground superlattice bandwidth AE,

AE; = V qexp(~ xglp) (89)
" Some numerical examples will be given below (section 11.7)
11.6.3 Propagating states in both kinds of layers. — We have seen that the
superlattice states corresponding to the imaginary wavevectors in one kind of layer
can be analyzed in terms of hybridized bound levels of isolated wells. It could be

asked if a similar link can be established between the superlattice states which
ptopagate in both kinds of layers (i.e. ka.ky real, which means #=V,,

..zq,
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gy = Voo rm—ry -3, -V, in type | heterostructures) and certain con-
tinuum states of isolated wells. We recall that the continuum of a single quantum wel;
is not structureless {see chapter I). On the contrary, virtual bound states take place in
the continuum when

kyLy=pw: p=12.. {9t

The virtual bound states are the continuation of the true quantum well bound
states when their confinement energies exceed the barrier height. Both true and
virtual bound states are matched at the onset of the continuum : it can immediate
be checked that equation (90). with &, given by equation (77) in terms of the
energies corresponding to the onset of a continuum (ie. ¢ =V, ¢ =~ o =V
£ =— ¢~ A, +V;)is indeed a solution of the quantum well bound state cquation
(at the onset of the continuum «k, — 0 and ¢ diverges in Eq. (80)).

By examining equation (75) we notice that the energy of a virtual bound level of an
isolated well always corresponds to an allowed superiattice state with ¢ equal 10

LH 3T
== |k -+ ! ) {91
q ( B L.\ + LH L}\ + LB :

To some extent therefore. the superlattice states which propagate in each kind of
layer can be viewed as the hybridization of the virtual bound levels of the isolated
wells.

11.6.4 Heavy hole superlarice stares. — 1f we were to use our simplified Kane mode!,
the heavy hole superlattice states would be dispersionless and only the enerpies
— £4, — #a + V, would be allowed. However since the heavy holes decouple from
the light particles states, we can re-introduce the coupling between I',, and the
remote bands to correctly describe the heavy hole curvature. The problem becomes
identical to a Ben Daniel-Duke one because the heavy hole envelope functions are
the eigenfunctions of :

- fa P Wﬂ: + Vp(«?}] xifz) = £xi(z) {92)

Volz +d) =V (2) {(93)

o i B} .

where : — = yM 2y = y(® 24! (94)
My MB

We can proceed along the same lines as before to calculate x.{z). Writing
xi(z) as the sum of the incoming and outgoing plane waves in each kind of layer, we
obtain the heavy hole superlattice states in the same form as equation (75). except
that :

ky MY

= —— {95)
M o

£
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for heavy holes. In equation {95). there is

ML
10 ky e SRS v, (96)

In the energy segment — ¢, + V, <& < — £,, 0N€ of the wavevectors (Eq (96))
becomes imaginary (say kg). In this case equation (75) should be replaced by
equation (79). kg by i k5 and £by — £. Qualitatively therefore both light particle and
heavy hole superlattice states are quite similar. Quantitatively. however, the heavy
hole superlattice bands are much narrower than the light particle ones due to the
larger heavy hole mass. For numerical examples. see section (11.7).

1.7 SPECIFIC EXAMPLES. — To substantiate the previous considerations figures (12-
20) present the calculated energy levels o several quantum wells and superlatttices.
Quanium wells
The dominant effect in quantum well energy levels is the finiteness of the barrier
height. This is illustrated in figures (12-15} in the case of GuAs-Ga(AlVAs where we
have plotted :

i) the dependence of the confinement encrgies E,. LH,. HH, of the ground bound
states upon the barrier height V' und iV, for electron. light and heavy holes

X X
0 01 02 03 04 0 01 02 03 0.4
100 i I I ‘ 200 T T |
———LH i
" I~ Gals-Ga{Al)As
— " A2
;u // ‘ -E — -
153 // l 6 ‘ 300
5 A ?
; 50| ,,/ 3?*‘ . S 00—
Lt / &
| ; S
S | /e 5+
i1/ - 0
i g0k | = | ]
Y S 150 A
150
0 0 ! !
0 100 200 0 100 200 300
IVp | (meV) Vg (meV)

Fig. 12. — Evolution of the ground states for electron (E, ). heavy hole (#/H )} and light hole
(LH ) versus the barrier heights V, and |V,imn GaAs-Ga(Al)As quantum wells. Three well
thicknesses have been considered L = 3(h A. 80 A and 150 A respectively.
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respectively. i.e. upon the Al mole fraction x. for three GaAs slab thicknesses : L =
30 A. 80 A and 150 A respectively. The calculations have been performed using a
o0 ¢ — 40 % split between the conduction and valence bands of the bandgap energy
difference AE, hetween Ga; (AL As and GaAs. Taking

.AE_C(.\') = 1247 xy meV (97)

we are left with
Vix) = 7482y meV (9%)
Vo(x) =~ 4088 y meV (49)

Figure 12 shows that the asyvmptotic vatues of £ LH,. HH,. which correspond to
a perfect confinement (i.e. kL = m. where kg is the ApPropriate wWavevector imn
GuAs). are barely obtained. apart from heavy hoeles in thick (L = 100 A) wells. On

#owe

. — HH, (dashed linc!
ML

and of the integrated probability P, of finding the hole in the harriers (solid line) are plott

yersus the hole barrier height (- V,) for a quantum well thickness L 1o A

M, =04 m,.

Fig. 13. — The natural jogarithms of the enetgy difference A =

- 32



Hetorostructure electronic states 95

she one hand, it should be noticed that a better justification can be obtained for the
.me approximation (i.e. perfect confinement) in the case of the wavefunction. This
» illustrated in figure 13 for heavy holes and can be analytically traced back. The
convergence of E,(HHy, LH,) towards #im2/2m L, where m is the effective mass
ppropriate for the electrons {light hole, heavy hole). is slow since it is proportional
w VIV, 12y, On the other hand. the spatial confinement of the carrier in the
well is completed more rapidiy : the integrated 1Probability of finding the particle
outside the well drops 1o zero like Vo EUI(U/Pl“‘:).

ii) the energy level diagrams versus the GaAs slab thickness L for an Al mole
traction of 0.3 (Figs. 14, 15). The solid lines represent the true quantum well bound
Jates whereas the dashed lines represent the locii of the virtual bound states {or
\ransmission resonances) which fulfil

kale ) L =pm: p=1.2... (10M

300r 1 T T

ELECTRON ENERGY (meV)

L
50 100 150

L (&)
Fig. 14. -— Energy level diagram for electrons in GaAs-Ga,-Al, :As guantum wells versus the

GaAs slab thickness. The solid lines correspond to bound states and the dashed lines to virtual
bound states, V, = 224.5 meV.
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Fig. 15, — Energy level diagram for heavy holes in Ga, -Al, -As quantum wells versus the
GuAs slab thickness. The solid lines correspond to bound states and the dashed lines 1o virtual
bound states. |V, | = 149.6 meV. M o™ = 038 m,. MY 2 045w,

for energies exceeding the top of the confining barrier. In equation (100)
k., denotes the carrier wavevector inside the well. It is related to ¢, either b
cquation (77) (light particle) or by equation {90) (heavy hole). It should be pointed
out that semiconductor quantum weils always admit one bound state. as the grouad
states E\(HH,, LH ) only reach the top of their respective barriers at [. = (.

The band non-parabolicity, which only affects the light particle states, plays a
relatively minor part in GaAs-Ga(Al)As quantum wells. This is due to the large
(GaAs bandgap. Basically speaking, band non-parabolicity amounts to replacing the
GaAx band edge mass by an energy-dependent mass whose relative increment is
equal to the ratio between the kinetic energy and the bandgap. As the confinement
energy varies roughly in the same way as the inverse of the carrier effective mass, one
expects a non-parabolicity-induced correction of the order of the confinement energs
{calculated with the band edge mass} divided by the GaAs bandgap. This qualitative
prediction is more or less supported by the calculations.

Obviously. the smaller the well-acting material bandgaps. the larger the non-
parabolicity effects. Again. qualitativelv. the non-parabolicity effects scale the same
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wayv as ¢~ because the band edge mass itself is proportional 1o £4. Therefore, the
son-parabolicity is more important in the evaluation of the electron confinement
energies of Gaguring o As-InP or GaSb-AlSb quantum wells than in GaAs-Ga(AlAs
anes. Also it is more important for excited levels than for the ground states.

superlattices

The superlattice states corresponding to evanescent propagation in one kind of layer
present few surprises (Figs. 16-18). One notices that the isolated quantum well levels
nroaden to form the superlattice bands. Their widths increase i) when the well-acting
laver narrows at a fixed barrier thickness, i) when at fixed L. Ly one looks at the
hands originating from the excited levels of the isolated quantum wells. and iii)
when. at fixed L,. the barrier thickness decreases.

As anticipated in our tight-binding description of the superiattice states. the
£. bandwidth decays exponentially with the barrier thickness (Fig. 19). Furthermore.
i is clear from figures 16 and 18 that the superlattice bandwidth decreuses with the
ncreasing carrier effective mass. 10 the point where the heavy hole bandwidths are
Jimost negligible for L, = 100 A.

The pattern of the superlattice bands which originate from the propagating states
in both kinds of layers is perhaps more intricate. This is particularly clear for the

.f_
Vi ---
200“»_.

_—
z
o !
E i
>—

(&)

s s

¥ 100
Ll

Gals -Ga(ADAs
X=03
LA = LB
0 ! | !
0 100 200
Q
d (A)
Fig. 16. — Superiattice band structure for electrons in GaAs-Ga, -Al, 1As superlattices versus

period 4. Equal layer thicknesses are assumed in the calculations. The allowed energy states
4re hatched.
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Fig. 17. — Evolution of the superlattice bund structure for electrons in GaAs-Ga, -Al, As

superlattices when the Ga,-Al, As laver thickness L, is increased and the GaAs layer
thickness £, i~ kept fixed. The allowed energy states are hatched.

heavy hole bands (Fig. 18) where a fairly complex band pattern above the barrier
height constrasts with the simple features found below [V, In particular, the bands
HH. and Hi cross at one point. as do HH, and HH, etc... Itis possible to check that
these degencracy points take place when both kL, and kpLy are integer multiples
of 7. For these particular energies and thicknesses there is a Fabry-Pérot effect for
the hole waves in both kinds of layers. It can be inferred from this particular exampie
that the supcrlattice states which correspond to the propagating states in both kinds
of layers should strongly depend upon the barrier thickness Ly, while those
originating trom the hybridization of quantum well bound states arc less dependent
upon this quantity.

The InAs-GaSb superlattices are the extreme case of type II heterostructures [30].
The latter are characterized by the fact that ¥, and V , have the same sign, so that one
kind of layer attracts electrons whereas the other kind is a potential well for the
holes. In inAs-GaSb the top of the GaSb valence band is located in energy above the
bottom of the InAs conduction band. When the superlattice period increases, as
L4 is equal to Ly. the E, band moves towards the InAs conduction band edge while
HH, approaches the top of the GaSb valence band. There should thus exist a critical
period d. beyond which HH, is located at a higher energy than E, (Fig. 20). This
situation is. to our knowledge. unique in semiconductor superlattices. For
d zd. onc should expect some kind of a semiconductor — semimetal transition
whereby electrons flow from the GaSb to the InAs layers leaving holes behind them.
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Fig. 18. — Superlattice band structure for heavy holes in GaAs-Ga, -Al,;As superlattices

versus period d. Equal layer thicknesses are assumed in the calculations. The allowed energy
~tates are hatched.

(meV)

bandwidth

iGaAs -Gal(Al)As
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Fig. 19, — The E, bandwidth is plotted versus the Ga,-Al,:As layer thickness L in GaAs-
Gay-Al, ,As superlattices with three different GaAs laver thicknesses (30 A, 50 A_ 100 A),
Notice the logarithmic scale for the £, bandwidth.
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ENERGY (eV)

Fig. 20 — Evolution of the InAs-GaSh superiattice band structure with increasing pertod
thoy o Lyr The allowed energy levels are hatched hight particles) or hlach theass holes). The
cnergh sero s taken ot the botom of the bulk InAs conduction band.

Actuatly. the situgtion i~ more complicuted sinee the band crossings which take place
at k= 0 are replaced by anticrossings if the in plane wavevector s non zero 2. 32
Thi leads to the tormation of small gaps between £, and HH,. Our present
knowledge of this fascinating svstem s still incomplere as the combination ot
technological problems (residual impurities in InAs and GaSb lavers) and theoretical
complexity  (non-neghwble stress effects due to the imperfect lattice matching.
charge redistribution between InAs and GaSh layers. many-body effects 7) conspire
to elude clear cut answers.

IL.8. LABELLING AND COUNTING SUPERLATTICE STATES. — A superlattice state i
labelled by two wavevectors : gz and k_ (which express the delocalized nature of the
wavetunctions along and perpendicular to the growth axis), and by a subband index #
(n = 1,20 Alabel L. /1H LH... iy also affixed to a superiattice state to indicare
from which host band the superfattice state is principaliy derived. Notice that this
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lbel has little physical meaning if significant band mixing occurs 1 the host faver,
This happens at k_= 0 if the host bandgaps are Very RArrow or in the
" bands at k_ # 0 (see below), In addition. there is a “spin” quantum number which
| . .
can take two vatues (suy 3 ) and which reduces to the = component of the spin

GUANEUTD number . if there are no spin-orbit effects. Due to the finite spin-orbit
wplitting. @ is no longer a good quantum number. However. each state of the
Hamiltonian (Eq. ¢16)) remains twice degenerate at K = 0 (since the inversian
asvmmetry  terms have been omitted). This Kramers degeneracy is a direct
consequence of the invariance of D" = ¢(r) ] undera time-reversal operation [23}.
We shall see in section T that this twofold degeneracy is Jifted in heterostructures
which lack imersion syvmmetry. This happens for instance when ¢izb# ¢ (=)
Gsvmmetric band bending) or V) # V- S} oete... tasymmetricadly designed
heterostrugtures).

We have seen that the superlattice states are Bloch waves {Eq. (72)). Assumung
that the superlattice iy made of an infinite sequence of blocks containing N
wperlattice periods where Vs very large. we mad appiv the Born-von Kurman
houndary conditions, Le. we require the superlattice wavelunction 1o be the same at
poth ends of a given block:

vz - Nd) =y A1) (101
o gNd = 2mp poat 12N {102

Thus. there are N independent ¢ valuos. .o, as many ¢ values as superlattice unit
cells in a block. These g values are equidistant and separated from each other by

N
-

E Anv summations of the torm T oalyg) will be converted Into an integration
{ ° et

v

Y oalg) — 3 g ) dg (103)
i

ey
The upper und lower lmits of the integral can be any number provided they ditter
N —
by T e, the size of the superlattice Brilloumn zone along the growth axis. Often
i
the segment { '—i E ] is chosen to emphasize the parity property
{ 2

el = Fl — (” (104)
fulfilled by any superlattice band.

Ill. In-plane dispersions in semiconductor heterostructures.

When the in-plane wavevector k_is not equal to zero. the heavy hole and light
particie states become coupled. This is simply the consequence of the degenerate
nuture of the 10 hosts” band edges. which originates from the £ symmetry of the
orbital parts of the band edge Bloch functions. In fact. even the simplest (e
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isotropic} quadratic Hamiltonian for 17, bunds ina bulk material is not a scalar. which
is the case for I', bands (S symmetry). As shown by Lutuinger {22} the isotropic
I'. Hamiltonian should be written :

# = ak - BLKD" (105

-
D

"

where J i1s the total angular momentum (J = ) From equation (105) it can be

seen that, if the J quantization axis is given (say the z axis}. the decoupling between

the m; = = = and my = + = states is only possible if k7 J# 2 while. if kis arbitran

[RS J R

=
the eigenstates of equation (105) are no longer eigenfunctions of J_. However. it s
always possible to rotate the reference frame in a bulk material in such a way that the
new direction = along which J will be quantized coincides with k. thus obtaining the
simultaneous diagonalizations of J_ and # .

In heterostructures the potential term V-1 1. which should be added to the righ
hand side of equation (103). gives rise 10 anisotropy. The interface planes have the
simple expressions = = constant and the wa ciunctions are separable in = and {x. )
If we quantize J along the growth axis. which is what we did in section I, the

j—

and m; = == states become decoupled if k7J. e if k=01

n, = =*x -
I 3

3
k0 light particle and heavy hole states will hybridize. However, contrary to the
bulk case. J can no longer be rotated to linc up along k. thereby recovering a simple
situation. This is because k is no longer a goud quantum number due to the potential
term V(z) . If we attempt to rotate the (avz) frame to obtain a (XYZ){rame where /
and J; are parallel to k4 (the cartier wavevector in the A material}. it will not lead
the lining up between J and ky (the carrier wavevector in the B material). The
decoupling wilf thus never be complete. The best one can do is 10 choose
J quantization axis which renders the valence Hamiltonian less complicated. Te
quantize J along the growth axis seems the most natural choice. However. if band
warping is neglected. significant simplifications are obtained by quantizing J in
direction perpendicular to the growth axis i2]. Obviously. if we add the I, band
warping (i.e. the non-sphericity) to equation (105) and include the I, edge inthe
analysis (to account for non-parabolicity) the complexity is increased. making i
impossible 1o obtain analytical results. To our knowledge. the only circumsiance
where analytical resutts for which I', or 17, in-plane dispersions have been obtained
are : .

i) I'y eigenstates of a quadratic Hamiltonian (like Eq. (105)) and infinite barr
heights [31].
ii) I', in-plane dispersions for a Ben Daniel-Duke problem (see section 11.3).

iii) in-plane dispersions of the light particle states of a Kane Hamiltonian with the
remote band effects neglected [4] but otherwise V.V, steps of arbitrary height

The numerical solutions of the 6 x 6 heterostructure Hamiltonian (i.e. including
I, and I'y bands and the remote bund treated up to the second order I
k) have been extensively discussed by Altarelli er al. [2. 33. 34]. Under fiat band
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.onditions an exact solution 10 the problem can be found [32] along the lines
previously discussed. One simply expresses the fact that, in each kind of layer, the
neterostructure state is a linear combination of propagating (or evanescent) bulk
Jates. The energy ¢ and the in-plane wavevector k; having been given,
4.V and k'® can then be univoquely determined, together with the envelope function
y which is a 6x1 column vector. The unknown coefficients cf the linear
combination are then obtained by writing the continuity of x and Ax (Eq. (21)}
wross the A-B interfaces. In figures 91 and 22 we show the results of such
cilculations performed for a 70 A .70 A and a 100 A - 100 A InAs-GaSb superlatttice
132]. The first superlattice has simpler in-plane dispersions : there is no overlap

200
E, InAs -GaSh
70A-70A
150 —
== \
[ |
£
100 — alu
>
(4}
x
>
d HHE
S0
LH,
m
0 ﬁ\

0 1 2
k) (m/d)

Fig. 21. — In-plane dispersion relations for a 70 A-70 A InAs-GaSb superlattice obtained in
the 6 band model. g = 0. £, = 0.42eV ;mid = 0.023m, ; eg = 0.81eV; yiM = yP= 37,
YA y® o 4% yP= 0.6. The energy zero has been taken at the bottom of the bulk
InAs conduction band. Courtesy of J.M. Berroir [32].
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|
InAs ~GaSb |
100 & -100 A

200}

HH,

y 2

o

Fig. 22. — In-ptane dispersion relations for a 100 A-100-A InAs-GaSb superlattice obtained in

the 6 band model. Flat band conditions have been assumed. The band parameters used 1a the
calculations are the same as in figure 21, ¢ = 0. Courtesy of .M. Berroir [32].

between E, and HH, for any ¢ or any k, . The 100 A - 100 A superlattice is such that
at g =0, k, =0, E, < HH;, HH,. However, as soon as k, # 0 a strong mixing
occurs between E; and the heavy hole states. As a result, E, and HH,, HH, anti-
cross thus preventing the formation of a true semi-metallic phase. Notice that the
calculations are not self-comsistent in the 100 A - 100 A case as the charge
redistributions in a superlattice unit cell and their associated band bendings were not

taken into account.

The in-plane dispersions of I'y subbands in GaAs-Ga(Al)As heterostructures are
the subject of active research (5. 32. 37). In these materials the coupling with the
I', bands is relatively weak and a parabolic description of the host bands is
reasonable. Neglecting once more the inversion-asymmetry splitting, the valence
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hand Humiltonjan takes the form

33| F
<; 3 -Xm, ¢ h U
3
<;.—% (1* ﬂ”, Y] -'b
Hp= " - (106)
3
<%.% b* “ X”, ¢
3 3
<~5v; 0 - hb* ¢* X
where :
¥ | N , ke
Aoy = m[’_—(?l 2y )p. -} ;.(-') - Ton, (y, ~ 7:) (107)
1 : Wk
Ko = — 5= pAyy v 2y p 2 V) = 5 (v, - 72) (108)
=it =ik
# o\ 3 L
ck_) = ’_ll,,— [y (k= k) = 2ivikk] (109)
. \_-_5' fr ! .,
btk .p.) = 3= — (k= th M yap. + 7. v3) (119

2

in equations (107, 110) the ¥'s are the Luttinger parameters which describe the
coupling between Iy and all the hosts' edges. including I, These parameters are. in
principle. position-dependent (since they are different in the A and B layers).
Consequently the terms of the form yp. have been symmetrized.

We notice that. as expected. the b and ¢ terms vanish if k_ # €. If they were alwayvs
negligible the Iy Hamiltonian would split 1nto two independent Ben Daniel-Duke

. . . 3 .
Hamiltoniuns ; one for the heavy holes (m, == ) and one for the light hoies

| . . . .
(m, ==z ) This zero'" order approximation. hereafter termed the diagonal

approximation, 18 characterized by a mass reversal effect. i.e. the heavy hole
effective mass is heavy along Z but light in the layer plane whereas the light hole
effective mass is light along z but heavy in the layer plane. This means that in the
diagonal approximation the subbands HH, and LH, should cross. Such crossings are
suppressed by the non-vanishing b and ¢ terms and replaced by anti-crossings. In the
following we shall keep the notations LH,. HH, to label the valence subbands,
although it should be kept in mind that they retain little physical significance if
k #0, The b and ¢ terms very effectively mix the k # 0 solutions.

The cigenstates of equation (106) are twice degenerate if V (2} (and —eg(z)if
there i a band bending) and the y's are even functions of z. This can be explicitly

shown at small k_ by eliminating the = 3 components of the eigenstates of equation
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{106) 10 the benefit of the = = ones and by writing the eftective 2 » 2 Hamiltonian
which acts on the = % cOmponents as :
# '1’}: f_ W l,[l_*,: ] i_ d’}j _i (11
A d]__..{_: - W _‘#'7 ll’_}: = ¢ "Lw ?_‘J ( il)
where :
H e Hpro— e p (112)
T o =Koy g = H )
|
R = T e+ T ——— 3
H ”hh ¢ s'f.)i‘m( n *-—%;,‘;b (113}
. 1 j
W=~ - b (114)

or more explicitly

.3 . { ] . _
W= <k, —ik,) }'(7:]7:+;’?: T P N N S e i R N

dm; v K

vkl - KD = ik k] — (vpmpoyo (1S)
YT, ‘

s

At k, =0 the spectrum of # 15 twice degenerate. The cigenstates of
equation (111Y are :

1 N
W' = [:n(:)J Do = [5('1 (t16)
where the x,s are the k. = 0 -heavy hole eigenfunctions. If k_ is smali. the
k -dependent contributions to # _ and ¥ _ and the W term will also be small as
they involve at least second and third powers of k. &, respectively. We can therefore
attempt a diagonalization of the k -dependent contributions within the 2x2
subspace, spanned by the degenerate Ur'™,» and ¢, eigenstates. and neglect all the

admixtures with the other ¥, &' states. We readily obtain :
e=r,x [ {xa|Wlxa) | {117)

where ¢, is the mean values of # _ or # _ over x, Eqguation (117) is in faci an
implicit equation for ¢, inasmuch as ¢, and W are energy dependent and involve an
infinite number of terms which describe the indirect coupling between &% and
W', via all excursions to the ¥, eigenstates.

The twofold degeneracy between ¥{¥ and ¢!"}, will be lifted uniess the matrix
element {x,!W|x,) vanishes, which is exactly what happens when the heterostruc-
ture is symmetric with respect to the plane z = 0. In fact, under these circumstances
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e ys YV alZh - oeelD) L and o, are even in - while Wois an odd tunction
of 2. As x,(7) may be chosen with a definite panty. it follows that (x,W|x,)
watishes. Thus. at this Jower order of perturbation. the wofold degeneracy is not
ited 1f the heterostructure is svmmetrically designed, 1t is possible to check that this
mofold degeneracy 1s preserved at higher orders of perturbation.

On the other hand. if the heterostructure luchs inversion symmetry (for examples
of such heterostructures see Fig, 23). the twofold degeneracy at & = 0 between
gV and W s already lifted at the fowest order (see equation (117} und
consequently ut any order in the coupling between the unperturbed '™ doublet and
the other '™ doublets.

To summunize. the lifting of the twofold (Kramers) degeneracy requires that

1k # 0.
b Vst and or - ee (21 v (2) lack of inversion symimetry.

iii) the spin-orbit coupling is non vanishing,

The lutter conditon ix only implicit in our caleulations as the I spin-orbit encrgics
A,. Ay do not appear explicithy in equations (111-115). This i~ because they are

E.(2) Eclz)

// Ev(z)

|
N
"

EV(Z} /

al c)
w -
l i Ec(Z)
i T
Py b
El2)
b) d)
Fig. 23, — Band cdges profiles of four different heterostructures lacking INVersion-symmetry.

4) asymmetric rectangular quantum weil ¢ b) pseudo-sawtooth quantum well : ¢} rectangular
quantum well tilted by an external electric field © d) modulation-doped p-tvpe heterojunction.
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assumed to be very large compared to the £oenergies. On ihe other hand ot botr
34y, vanish. the twofold degeneracy at hnite k_ woimmiediath recovered. I then

coincides with the spin degenerac ( oL o= ) which obviously cun not he bifted b

scalar potentiats like V,2) and - ey (12)

Let us finaliv remark that even if the heterostructure i svmmetricaliy doessgned,
litting of the Kramers degeneracy should still tahe place due 1o the tack of mversien-
svmmetry of the host unit cells. This etfect (hacar A terms in ) s howeser sl
(and has been neglected in the previous analysis) compared with the liftng ot the
Kramers degeneracy obtained by asvmmetrically designing the heterostructure,
Notice abo that asvmmetrical situations should experimentaliy be the e rather
than the exception since growth processes often fead to some asymmetin hetween the
o GaAs-Gat AN A intettaces.

Urless & s very smadls the effects ot the boand ¢ ¥ cunnot be treated in
second order perturbation but require numerical disgonalization. Aguin il oNy
solution [32] s possible if flat band conditions preval. Cher treatments {50 33
which are approximate. are capable of hundling band hending etiects. A vartalion!

t
37
wcheme has been proposed by Altarelin {22 33] which ahoe incorperates the ditterences
hetween the v parameters in the A and B lavers. B these parameters arv dssamed 1
he the sume in both kimds of Tasers another computationat scheme hecones pos-le
This approximation ix reasonably jusnfied in GaAs-Ga AL As heterostructures
Let us denote by & (zh o (o) the cigentunctions of ¥, and ¥ ., at kD
respectively. The crgenstites of - at tinile A . can then be expanded [50350 537
the following munnel

PY 0, &40
N C D)
o ! AR
R
e |

‘,— e, £,000)

- -

If the summations in equation {(118) run over all the k= 0-heavy and fight hole
states. ¥ 15 an exact solution of the problem. In practice. M heavy hole states and V
light hole states are retained and ¥ is diagonalized inside this 2(M - A
dimensional subspace.

To iltustrate the salient features of {7, n-plane dispersions. we have presented in
tigures 24 to 26 the results of caleulations using equation (118} as the eigentunction A
finite & in GaAs-Ga, -AlAs single quantum wells. The expansions over mand #

have been restricted 1o the bound heavy and Light states of the quantum welis, The

following parameters were used @ V= = 015V oy = USS Ly = 21y = 2

4t -
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In addition. the caleulations were pertormed under the axial approximation [33. 34|
which amounts to replacing ¥+ and v+ in equation (109) by their arithmetic average.
This renders the in-plane dispersions isotropic. while retaining the correct confine-
ment energies at k_ = 0 [34].

Figure 24 displays the cateulated valence subbands of two quantum wells (L =
A and L = 150 A respectively) under flat band condifions, As the beterostruc-
wre displays centro-symmetry with respect to the middle of the well each of the
levels are twice degenerate. The dashed lines are the results obtained in the diagonal
approximation (b = ¢ = (hin J# ;). The mass reversal effect causes A, 1o cross
[.H,. The off-diagonal terms in A replace this crossing by an anticrossing which is
more pronounced at L = 150 A than at L = 100 A. This is because the
& = O-levels are closerin the former situation than in the latter. The mixing between
the k= O-levels is very strong. resufting in highly non-parabolic subband disper-
Jons. In particular. one notices that the LH, subband displays an electron-like
curvature in the vicimty of k= 0 |33]. This is due to the prevalent coupling between
LEL and HH . (and other states of dower energies) over the repulsive coupling
netween HE. and LIf which pushes LH, towards fower energies, The clectron-like
mass of L, is lighter in the 1500 A than in the T00A thick quantum well. a feature
which again origmates from the decreasing energy separations between the
k= 0-states at larger 1.

It is very difficult to predict general trends for the in-plane dispersion of 4 given
heterostructure, The onlhv modelindependent conclusion i the increass in the

05

kp{me10%em™) ky (Mx108em’ ")
Fig. 24, — In-plane dispersion relations of the valence subbands of GaAs-Ga, -Al:As

quantum wells (L = 100 Aand L = 1500 A respectivelv). The dashed lines are the subbund
dispersions obtaned in the diagonal approximation.
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HEf, in-plane mass over the value given by the digonal approximution @ ..

HH. is the ground hole state the only result of off-diagonal pertubations is 10 low o
: £ A £ p

its (holed enerav. thereby increasing s in-plane mass.

In figure 25 we have presented the L-dependence of the in-plane effective miss..
of the four Jowest hving hole subbands twhen existing) in GuAs-Ga -Al
quantum wells in the vicnity of k_ = 0. These masses were obtamed by fitting 1o
caleulated in-plane dispersion to the guadratic functions of k= Notice that e,
vabidity of such a gquadratic expansion narrows when Lonereises.

To illustrate the lifting of the Kramers degeneracy in asymmetrnic heterostructuse
ficure 26 shows the in-plune subbands of a GuaAs-Ga, -AlL A quantum well (7,
100 Ay tilted by an electric ficld Fapphed parallet to 2 (F = 107V em b Such fi
configurations and strengths wre obtained. for instunce. by inserting te quantus
well into the intrinsic part of a reserse-biased p-i-njuntion [38]0 The centres o
gravity of the two components of the various Kramer doublets foilow trends wi,
are similar to the ones already analvsed in rectangulur quantum wells, o
anticrossing hetween HE und LI clectron-like hehaviour of LA near k- 0
Fhe splitting due to the externaily controlled inversion-asymmetry is signiticant -

meV for HH{, and LA, This o0 tact comparable in magnitude 1o what wae

cateutated tor modulation-doped p-1vpe GaAs-Gat AN AN heterojunctions [33-37] 4

the Jatter heterostructures. the imversion-usymmetry splitting is clearly evidenced =

----- HH-
! HH- !
. R i
”’-’ Ve HH}
[=] ’ft ]
=3 - ; —I
> ! : i
E / . I
/ i ‘
. i |
o : GaAs-Ga(Al)As -
'I X=03
-
e d - . B T O
0 >0 00, 130 200
L {(A)

Fig 23, - The in-piane hole effective masses nuear k - 0 of the four lowest Ivny
guantum wells are plotted verswes the GuAs slab thwknes

subbunds of GuAs-Ga,, Al A

-4% 7
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>
[-T]
E
>
[da]
[2 4
wl
=
= 2
F =10°V/em HH,
X=03
-50 L \ o
0 05 1
ky (Tx 106 em™')
Fig. 26. w_ln-plannc dispersions of the valence subbands of o GaAs-Ga, -AlL As quantum wll
L= 100 Ay subjected to an external clecttic nield FroF - o vemy The mwolold

Kramers degeneracy prevailing at A = 0 3 lfted at b # 0

beating effects in the Shunikov-de Haas oscillations as well as by the existence of w0
hole effective masses pertaining to the /{7, doublet.

The study of the in-plane dispersion relations in heterostructures is presently being
very actively pursued both experimentaily and theoretically, We wish 1o point out
that. apart from the numerical difficultics linked to the complicated nature of the
valence Hamiltonian. the lack of knowledge of bulk valence parameters often makes
it difficult to obtain precise resufts. Even in the most studied GuAs-Ga(AllAs
system. the y parameters of the Ga(AlAs allovs have not. to our knowledge. been
measured accurately. A jordori. in Los studied systems like Ga, -In,aAs-InP.
GaSb-AlISh. Ga, .- In o As-Al L In A HeTe-CdTe. the knowledge of these
parameters is even more questionable. This casts doubts on the quantitative
reliability of valence subband calculations. although qualitatively the gross features
are relativelv well understood.

49~
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Appendix A.

Boundary conditions and stationary states.

Let us consider o Ben Daniel-Duke Hamiltonian tor clectrons

v | . ke
y = = 1. ro- o) e ——— Al
Z'I'fn(:J[‘ {2 2miz) (A
where
I o= . 0 -
mizy = ) Viy - oo T . PAL
gy, 2 <0 ', =0

We odre interested in checking the validinn ot the two boundary conditions to

i
[l
i 1 A

Y . U . )
—— continuots or - CONtNUOLS (AS
z mizy o

siven that the envelope function ¢ () is continuous everywhere.
Let us consider the time dernative ot the probabilits ampiitude

] A
o r:— [ (2.0 iz 1)) (A
i !

By using the Schrodinger equation

ih ‘li'% = Hutz. ) (A%
"
we casily find that
ip oo, | dy i | o™ !
—_ = T — sy =zt — — (1) { Af)
A 2 a- {u’: miz) oz ( ) -l )m(:) a: ( )|

In a stationary state (2. 1} factorizes into

il .
Wiz 1) = LU(.']L?KP(* ; ) (A

. . Yo . .
where ¢, is the eigenenergy. Consequently »(%— vanishes. which leads to:

oy K
L (2) — (D) ——l—ﬂ(:) = constant (AN

Y — ol
Glz) = (')m(:) az m(z) az

_S'D/
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Let us applhy the conservation of G(z) on each side of the A-B interfuce.

W obtain

gt (0 L AP T Rt AL AP
My 0 my, 4o
: .
Al 3“1—-2{(2—-“')--!11{“' l'l—fi:i (- - u {AY)
[2EEN (L0 LL2N (s

It can be seen that the boundary conditions

. .
Gl )= g L-‘fi (2= )= i S s 0 (Al
Py A LEEEN A
wre compatible with CAY). while
o a1
TR S L TR R CR (AT

do not ensure hat (AY) b fuitilied.

Consequently the “traditional” boundary condinons (AL e o by discarded tor
Ben Daniel-Duke problems sinee they do not ensure the corsetation of Giz) and
cltimately the stationary natare of the elgenstates

In the case of a muitiband Kane Hamiltonian with remote band clicets included up
o the second order in A (kg (200, the ~ame hind ol reasoning vai be made. The

onlv ditference i that pfis should be written

VI N U A A I PR A1)

where ¢ labels the band cdges which are included in the analssis and y dz00) the
" component of the column vectonem elope function xiz. r Procecding as in {A6-

A9} we find that the boundars conditions

a ‘ . .
xto) . A_x— continuous it the intertaces tAlD
Jdz

are incompatible with the sationary nature ot the states and thus should be
discarded. whereas the conditions x(z) . Ax where 4 has been defined in equations

(21. 22) are compatible with the stationary requirement.

Appendix B.

Coupling between light and heavy particle states due to inversion asymmetry splitting
in bulk materials, Qualitative aspecis.

The hosts unit celis of actual heterostructures Lack imy ersion-symmetry since the two
atom basis of the Bravais luttice underlyving the sine-hiende structure consists of two
different elements te.g. Ga and Asn the cuse of bulk GaAsd

-3 -
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The effects associated with the inversion-asymmetry of the zinc-blende lattice have
been thoroughly analysed in bulk materials (see e.g. {23. 39]). When combined with
non zero spin-orbit coupling and the wavevector k, they produce terms in the
dispersion of I'y bands which are linear in k. When k is parallel to [111] these terms
displace the maximum of the valence band from the zone centre to [k, kg, k] and
raise the valence band maximum by an energy &. In addition. with the exception of
the [00F] direction. the inversion asymmetry splitting removes the Kramers
degeneracy of the I'y-related levels. The strength of the inversion-asymmetry effects
is very small, more so in II1-V than in II-V] compounds. to the point where a
considerable scatter in the published values of & and &, exists in all the IIT-V
materials. A value of 8 = | meV seems to be an upper bound.

Our purpose in this Appendix is to discuss some of the effects of the host inversion
asymmetry on the I'-related heterostructures states. A more complete analysis has
already been given by Bychkov and Rashba [40] using the envelope function
framework and by Schulman and Chang [6] using the tight-binding approach. For the
sake of simplicity let us assume that parabolic I', bands exist in the hosts, that the
growth direction is {001] and that k, = (k.. k,) = 0. We shall also negiect the
eventual differences in the inversion-asymmetry constants of the different kinds of
lavers. Under these assumptions the Hamiltonian for I'y-related levels becomes

Py, 2yap s Vo) ap i 1

i
np R 2yap - V) " "

i M _I_,n_(yI S lyip sV nop

3
=y, i

1 t
[T 0 atp s Py Iy e 1',(:1i
Im, !

(BI}

In (B1) the energy zero has been taken at the I’y point in the A material.
v, and - are Luttinger parameters which eventually take different values in A and B
layers, and the terms in ap_ are the inversion-asymmetry contributions to the
I"; Hamiltonian [23, 39}.

Despite our k, = 0 assumption, the heterostructure eigenstates are no longer
eigenstates of J, if a, i.e. the inversion-asymmetry, is nonvanishing. (B1) shows that

the my = = 5 components are in fact admixed with the m; = = 3 components. The

form of the coupling term ap, also indicates that the inversion-asymmetry
contributions will admix light and heavy particle states, which at & = 0 are of
opposite parities. For instance, in the case of a single rectanguiar quantum well, the
HH, state will be coupled to the LH, state.

Finally, we notice in (Bl) that the eigenstates will remain twice degenerat¢
(Kramers degeneracy) as the 4 x 4 Hamiltonian has been split into two ide ttical and
uncoupled blocks. This decoupling is no longer valid if k, # 0 and/or if the growth
occurs in a symmetry direction lower than [001].
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Exact solutions of (B1) exist if Vp(z) is piecewise constant. The eigenstates of (B1)
can be written as linear combinations of bulk solutions in the A and B lavers. The
matching conditions at the hetero-interfaces with a # 0 are the same as those
obtained with a = 0 since. by integrating (B1) across an interface. the a-dependent
contributions amount to re-writing the continuity of the envelope functions. By using
the appropriate boundary conditions at large tz] (Bloch theorem in the case of
superlattices, exponential decay in the case of quantum wells). one ends up with a
transcendental equation jinking the energy ¢ 10 the corresponding wavevectors
k,. kg in each kind of layer.

Bearing in mind a qualititative estimate of the inversion-asymmetry effects. let us
consider a single GaAs-Ga(Al)As rectangular quantum well, At a =0. the
eigenstates of H r_are either the heavy hole states HH . each twice degenerate. o1
the light hole states LH,. which are also each twice degenerate. Owing 10 the mass

vi—27:

Y+ 27>
may be degenerate if @ = 0: namely HH-~ and LH, Infact. HH. < [.H, in thick
quanturmn wells whereas in narrow wells (L — () HH . fades away in the valence
continuum while LH, remains bound in the well. Thus. for certain critical thickness
L. HH, and LH, are degenerate at the zero™ order in o

To qualitatively analyse the a-induced coupling at L = L. we diagonalize the
Inversion asymmetry contribution between HH: and [H,. while neglecting all the
other a-induced couplings between these two states and LH,. HH,. We obtain
hifting of the degeneracy at [ = L_which is given by

Ae =2 l(HH;lap_.[LHl)[ (B2)

fatio - 4 in GaAs it is easy to work out that at least two decoupled states

For an order of magnitude estimate we use

—

(z|HH:) = \/%sin (2= (B3)

1J

I

(zILH)) = \ECO& (%:— ) (B4

and obtain : Ar = g o lﬁ (B5)

The order of magnitude of a is now related to the guantity 8. which is the shift of
the top of the valence band in bulk GaAs by

(B6)

which gives AF ~ 16 \ 8HH: {B7)
m

i.e. Ar ~ few meV's,
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Conclusions qualitatively stmilar toe those obained in this analvsis were reached
schulmuan and Chang [6] by means of empirical tight binding calculations. In such o
model. the inversion-assmmetry splitting is automatically taken into account due to

the

ditterence my the atomic winefunctions of the amons and cations {from which the

heterostructure states are buili
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