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Abstract

Several different approaches to electron transport theory in
semiconductor microstructures are discussed. The main emphasis in on the
behaviour of a 2D electron gas in zero magnetic field at Tiguid helium
temperatures. Boltzmann transport theory is developed for this system and
applied to the calculation of low-field transport coefficients in the absence
of inelastic scattering. A 2D electron gas coupled to a 3D phonon gas is also
treated from the point of view of Boltzmann transport theory so as to
evaluate the large phonon drag contribution to the thermopower. Kubo
formulae are introduced and used to discuss Onsager symmetry, weak
localisation corrections to the transport coefficients and universal
fluctuations of conductivity and thermopower. The scattering matrix
formalism for a semiconductor microstruciure is developed. It is used to
obtain relationships between fluxes of charge and heat in the terminals and
changes of chemical potentials and temperatures in the resevoirs feeding
them. Applications are made to mesoscopic and ballistic systems and to the

integer quantum Hal} effect.

1. Introduction

Lew-diMphaional semicenductor strucwres have inferesting transport
properties . Several methods have been developed for investigating them
from a theoretical point of view. Here we discuss Boltzmann transport
theorg(l) which is physically transparent, Kubo formulae(2) which are more
general but less easy to evaluate and the Laudauer-Buttiker formalism which
is paticularly useful in mesoscopic and ballistic sgstems.(:"- M 70 keep the
mathematical cemplications to a minimum we concentrate on the behaviour
of a 2D electron gas (2DEG) in zero applied magnetic field. Apart from afew
introductory remarks we leave magneto-transport to other lecturers who
will treat it in the rich detail which it deserves. Similarly we aveid the
complications which arise in low-dimensional hole gasses because of the
degenerate valence band structure. Finally, we generally only quote results
for a 1D electron gas (1DEG) because the detailed analysis is similar to that
for a 2DEG. These omissions allow us to develop the aspects of transport
theory that we have chosen to emphasise in enough detail to be useful.

In Section 2 we introduce a simple description of the energy band
structure of 2DEGS and 1DEGS. This is used in Section 3 to develop Boltzmann
transport theory for a 2DEG. The relaxation time approximation is employed
to obtain the standard formulae for the transport coefficients when the
elecirons are scattered etastically by static defects and phonons are ignored.
In Section 4 the formulae are used to discuss the quantum size effects which
arise at liquid helium temperatures when the Ferrmi level moves through one
of the discrete energy levels associated with the confining potential. in
Section 4.1 we discuss the sharp discontinuities of the electrical conductivity
which are predicted for a 2DEG by Boltzmann transport theory. In Section 4.2
we introduce enerqgy level broadening which s ignored in Boltzmann's
equation. It has a strong smoothing effect on the discontinuities in the

conductivity. However, we show in Section 4.3 that the quantum size effects
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predicted for the thermopower of a 2DEG are much more striking and are also
much more resistant to the effects of level broadening. Similar, but stronger
effects are predicted for 1DEGS in Section 4.4.

Phonons are neglected throughout Sections 3 and 4. Consequently, the
thermopower calculated is what is usually referred to as "electron diffusion’
thermopower.(l) Experiment shows that this is proportional to the absolute
temperature T and it is dominant when T< O-SK. In the temperature range
1-10K, however, experiment also shows that "phonon drag” thermopower(i)
ina 2DEG is proportional to T3 and greatly exceeds the electron diffusion
contribution. To see how this comes about and to investigate the phonen drag
effect in detail we consider coupled 3D phonon and 2DEG Bolizmann equations
in Section 5.

In Section 6 we give an elementary derivation of the Kubo-Greenwood
formula for the electrical conductivity of a system of independent etectrons.
It is used to derive corresponding formulae for the other transport
coefficients when the magnetic induction field B = 0. Kubo formulae for
electrical conductivity and the thermal and thermoelectric transport
coefficients are also given there when B # 0. The formulae are used to
discuss Onsager symmetry and to introduce weak localisation corrections to
the transport coefficients and universal fluctuations in mesoscopic systems.

Section 7 is devoted 1o the Landauer-Buttiker formalism. We extend
Buttiker's treatment of the conductance matrix of a many-terminal
microstructure(?) to obtain corresponding formulae for the thermal and
thermoelectric matrices. The formulae are used to discuss Onsager
symmetry and reciprocity for electrical, thermal and thermoetectric
configurations. They are also used in Section B to discuss the

Aharonov-Bohm effect, quantum point contacts and the integer quantum Hall

effect.

Thia is a convenient place to survey, very briefly, the semiconductor
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microstructures which are the principal concern of the Spring College. The
subject began with the study of 2DEGS in n-channel 51 MOSFETS. The work
done prior to 1985 is summarised in the seminal review by Ando, Fowler and

stern.(3} In this system, which is illustrated in Figure 1, 5115 sepa rated

from a metal gate by an insulating layer of 510,. Biasing the gate positive
drives holes away from the 5i/510; interface. Biasing beyond a threshold

voltage produces a narrow, degenerate "inversion layer” of electrons at the
interface which conducts electricity between a source electrode and 3 drain
electrode in the 5i. The width of the inversion layer is in the order of

3-10nm. The electrons are confined on one side by the steep potential

barrier presented by the insulating 5i05. On the other side they are confined

by the linear potential barrier arising from the ionised acceptors in the
depletion layer as shown in Figure 2. Electrons may onty move freely

parallel to the 5i/Si0; interface. Their charge distribution in the inversion

layer may be calculated by solving the Schrodinger equation in the triangular
potential well self—consislentlg.(s) This is our first example of the "quantum
wells” which are ubiquitous in low-dimensional sarmcenductor physics.

At liquid helium temperatures the electron mobility in an n-channel

MOSFET is determined by scattering from Coulomb centres in the 5105 and
imperfections in the nominally planar Si/Si0, interface. Values in the order

of 15,000 em? v-1 51 are obtained at 15K in recently fabricated
structures. (8 Much higher mobilities can be achieved in the 2DEG3 which can
be created at GaAs/AlGaAs heterojunctions. Values in excess of

100 cm2 y-1 5‘1 are commonplace and the World record at the time of
wriling appears to be 12 x 106 cmZV'ls‘l.O) In th1s system the GaAs is
pure and the AlGaAs 1s an atloy containing typically 30% Al and 70% Ga.

There is a 250 meV potential barrier between the GaAs and the alley. With
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p-type doping in the GaAs and n-lype doping in the AlGaAs, a triangular
polential well appears in the GaAs which confines the 2DEG to the
neighbourhood of the interface as shown in Figure 3. The very high mobility
1s due to two factors. firstly, the high degree of perfection of the
GaAs/AlGaAs interface which is usually grown by molecular beam epuaxg.(s)
Secondly, the dramatic reduction of scattering by the ionised donors in the
AlGaAs which is achieved by separating them from the interface with a
spacer layer as shown in Figure 3. This system, which was pioneered by
Stormer et al.(g) has been used in many of the developments of
low-dimensional semiconductor physics in recent years.

Using molecular beam epitaxy, it is also possible to confine a 2DEG in a
square quantum well consisting of several atomic planes of GaAs sandwiched
between thick layers of AlGaAs (see Figure 4). Multiple quantum well
structures (i.e. superlattices) may also be fabricated by laying down
successive layers of GaAs and AlGaAs. Finally, while GaAs and AlGaAs are
the favourite pair of materials, there are many other combinations. The
ability te fabricate many different layered semiconductor structures with
essentially atomic precision is the driving force behind modern research on
low-dimensional semiconductors. Some of these structures have already
been discussed by Bastard(19) ang Foxon.(8) Subsequently lecturers will
return to them again and again.

A further reduction of dimensionality, from 2 to 1, may be achieved by
laterally confining @ 2DEG. There are many ways of doing this. Probably the
most successful for heterojunctions is the split gate techmque pioneered by
Pepper et al{11) The electrons in the 206 are driven away by a negative
bias on an overlayed metal gate except in the vicinity of a narrow split in the
gate. The electrons under the split constitute a 1D system with a lateral
width which is controlled by the gate voitage. This technique may be extended

to produce 2DEGS with an unlimited variety of shapes by appropriately
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patterning the gate. The mulli-terminal microstructures which we discuss 1n
Sections 7 and 8 may be fabricated in this way. They may involve quantum
point contacts if constrictions are introduced in which the 2DEG moves
balhsticallg.(lz) A striped gate yields a laterally confined superlattice in
the Z2DEG. A gate containing holes can yield quantum dots in which the
electrons are confined in all three directions. Stern will treat guantum

wires and dots in detail.(13)



2. erquy B clyre ciron Gases

2.1 Two Dimensional Electron Gas
The variation of the conduction band edge with distance (z) in the

direction of confinment is the potential energy V(z) for an electron in the
conduction band. In the effective mass approximation the one-electron

Hamiltonian is

H=p2/2m* + V(2) (2.1)
where p = -ith¥ and a constant isotropic effective mass m® has been assurmed
for simplicity. To determine the eigenfunctions of H we consider a
macroscopic square of side L in the xy-plane and apply periodic boundary

conditions in the x and y directions. Since H is independent of x and y the

eigenfunctions take the form

Yol 2) =L ekl (2) (2.2)
wherer = (xy) and k = (k,, kg) with both k,  and kg equal to integer multiples
of Zn/L. By substituting equation (2.2) in the eigenvalue equation for H we
find that the eigenvalue associated with Yok 15

ok = €oc t He k2/2m' (2.3)

where €,and ¢,,(2) are determined by the 1D Schrodinger equation

17 d244,(2)/d2°2m" + V(2D (2) = €0 (2) (2.4)

22,2
and k< =k, “ + kg .
We see that the subscript o in equation (2.2) 1s a quantum number

labelling the solutions of equation (2.4). We set o = 0,1,2, ... inthe discrete

spectrum of equation (2.4) where o = 0 is the ground state. When V(z) = 0 we
have, by inspection, ¢°((z) = L“Uzexp(ikzz) withk; = o2/L if we impose
periodic boundary conditions over a distance L in the z direction. When

Lo, k,, kg and k,, all become quasi-continuous and equation (2.3) gives the
familiar 3D form hz(kx2 + k,f + kzz)/Zm' for the energy. In the cases of
interest to us ¥(2) has the form of a potential well and the low values of €

are discrete. Then, if we use equation (2.3) to plot enerqy against k, we

obtain a distinct parabola for each o« with a minimum at €. Werefer to this
plot and the associated eigenfunctions as subband o the value of €. depend on
V(2). For a simple square well of width w having infinite side walls b (2)

and €, have the familiar forms
$od2) = (27w)V/ 2 sin[(o + 1yz/w) ' (25a)
€ = h2(ox + 1)Zm2/2m* w? (255b)

where 2 is measured from one side of the well. Formulae appropriate to a
triangular well are given in reference S in which self-consistent
caiculations are also discussed.

The density of states per unit area in sub-bang o is readily evaluated in
the manner familiar from 3D calculations for free electrons, Introducing a

factor 2 for spin it is
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N (€) = 2.(1/2m)% 211 Kk OK/de (€ - €o) = Nogp B(E - €¢,) (2.6a)
where
Negp = M*/ThH? (2.60)

is the density of states when € > €, and 8 denotes the umt step function. The

subscript ssb in equation (2.6) is an abbreviation for “single subband” The

density of states for all the subbands is

N(€) = Nggp D O(€ - €4,) - @7
[+

We see that N(e) has the form of the staircase sketched in Figure S(a). 1t
increased by N, whenever a subband minimum is crossed. The quantum

size effects exhibited by a 20EG are due to the subband structure and reflect
the discontinuities in N(¢).

2.2 One-Dimensional Electron Gas
A ZDEG may be converted to a 1DEG by introducing a potential well U(y) in
the y direction. Then the electrons are only free to move in the x-direction.

Hence equation (2.2) becomes
Yok(x4.2) = L"1/2 gikx $o(u.2) (2.8)

where ¢a(g,z) is determined by the 2D Schrodinger equation

-h2(82/8y? + 82/82%J0,(y,2)/2m" + [(Y) + V(D) (U.2) = €obo(4.2):

{29)
and equation (2.3} remains formally the same but k is now the wave number in
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the x direction. We may still speak of subbands and the eigenvalue £, 10

equation (2.9) 15 the rmmimum energy n subband o, The most important
result of reducing the dimensionality from 2 to 1 1s that the calculation of the

density of states per unit length in subband & now takes the form

Ny (€) = 2(1721) 20k/de B(e - €4) = (Nggp/m) 1/ Ble - €5)71/2 (2.10)

where N 15 3gain given by equation {2.5b). In 1D there 15 a square root

singularity at the subband minimum. The density of stales N(e) for all the
subbands 1s obtained by summing equation (2.10) over all o as shown 1n
Figure S5(b). The quantum size effects exhibited by 1DEGS reflect the
discontinuous nature of this function. They are expected to be sharper than
they are for 2DEG because the discontinuities are much more severe for a
1DEG.

The additional confining potential U(y) may be created in various ways.
The most obvious, and technically the most difficult,is to etch away the
materiat in the 2DEG structure so as to reduce the width in the y direction to
afew nanometres.(14) 1t is also possible to introduce additional electrodes
on either side of the 2DEG and squeeze it in electrostaticallg.(ls' 16)
Another option is the split gate technmgue described in the Introduction (11
All these procedures yield a potential well in the yz-plane which is more

complicated than the simple additive form U(y) + V(2) which we have assumed
here and the catculation of €, and ¢,,(y,2) is a difficult problem.(13) Evenin
the elementary case in which the 2D potential well is 2ero inside and infinite
outside the rectangle D<z<a and O>y>b it is best to abandon the integer
notation for successive subbands and write instead o = (m,n) where m and n

are positive ntegers. Then ¢y (y,2) and €, ; have the familiar forms
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Prnly:2) = 2(ab)~1/ 2sin(mnzla)sm(nm_.Vb) (2.11a)
€mn = Bm?/aZ « nZ/62n2/2m* (2.11b)

3. Boltzmann Transport Theory

3.1 The Transport Coefficient

We confine our attention to a 2DEG. The modifications of the formalism
required to treat a 1DEG are easily made. For simplicity we suppose that the
Fermi level (chemical potential) is uniform and that the 2DEG is subjected to a
weak electric field £ and a weak temperature gradient 2T in the xy- plane.
We are concerned with the response which the 2DEG produces in the form of
electric and heat current densities per unit length which are denoted by J and
Qrespectively. These quantities are obtained by integrating the 3D electric
and heat current densities across the 2DEG in the z (conf inment) direction.
They are linearly related to £ and 2T by the macroscopic transport equations

J=0E+L QT (3.1a)

Q=ME+N¥VT (3.1b)
We consider 2DEGS which are isotropic in the xy-plane so that the transport
coefficients d1 M and N are all scalars,

Equatiens (3.1) are the theoretician's standard form for the macroscopic
transport equations  Experimentalists usually rewrite them as

E=pJ+SVQT (3.2a)

Q-mJ-xuT (3.2b)
where p = 0'1, S= —0“1L, m=Moandk =MoL - N are respectively the
resistivity, thermopower, Peltier coefficient and thermal conductivity.

These are the quantities which are directly measured in electron transport
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experiments.
3.2 Boltzmann's Equation in the Quantum Limit

It is convenient to begin with the case in which only the ground subband
with o = 0 is occupied by electrons (i.e. the "quantum limit"). The
medifications of the formalism neccessary when several subbands are
occupied are easy to make.

We are concerned with average effects produced by many electrons. It is
therefore convenient to introduce a distribution function f(k,r.t) which is
proportional to the density of electrons in (k,r)-space. The proportionality
constant is fixed so that f{k,r,t) is equal to the probability that an electron
will occupy a state with wave vector k and a given spin orientation in the
neighbourhood of the point r at time 1. Then, for a 2DEG, the density of
electrons in ((k,r}-space is (2ﬂ2)'1f(t_m). It follows that n, (the areal

density of electrons), ) and § are given by

n=(ndyl|rak (3.3a)
J=-e(2n?) 1 [ ¢ vl ck (3.3b)
Q=@ [ 1yl [egy - &1 0k (3.3¢)

Here: e is the Fermi level, g = €4 + H2k?2/2m* is the energy in the ground

subband and (k) = hk/m® is the associated group velocity.

To determine f(k,r 1) we use Boltzmann's equalion.“-z-”) The equation
expresses the conservation of electrons as they follow semiclassical
trajectories in (k,r)-space. Its derivation follows the same lines as those

used for a 3D sgstem(”) and the result is

BI/Bt + w91 - e/hE. ¥, f = (B1/31), (3.4)

where (8f/3t),. is thc rate of change of f due to collisions, ¥ = (3/8x, 8/8y),
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¥y = (3/0k,, 3/8k,) and k 1s left understood.

3.3 The relaxaton Time Angatz in the Quantum Limit
we consider only static situations for which 8f /8t » O and replace f by

its thermal equitibrium value f (€, ) in the other two terms on the left-hand

side of equation (3.4). The terms which are neglected in this approximation

are second order inE and ¥T. The form of f (€, ) is given by the
ol€ok/ 159 y

Fermi-Dirac function

foleo) = (expllegy - €p)/kgT) + 17? (35)
we introduce the relaxation time ansatz by writing

(B1/Bt), = -(f - 1)/ TlEgy) (36)

on the right hand-side of equation (3.4). Then the calculation of f is trivial.
when the resull is substituted into equation (3.3) we Tind that n is not
effected by E and ¥ T whtle J and § are given by (3.3) with

6= -[l,7(€) o(€) de (3.72)
L=-(eT) L ft," ole) (e - ) de (3.7b)
M=-TL (3.7¢)
N= 2Ty 11,7 ole) (e - €)? oe (3.74)

where [ (€) is the enerqy-derivative of the Fermi-Dirac function and

a(e) = ny(e)e? T(e)/m* (3.8)
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In equation (3.8) n(e) = ko(e)zz'n 1s the areal electron densily when all the
states inside a circle of radius ko(e) = fi” 1[Zm'(t:— eo)]UZ are full.
when T » 0, f,”(€) + -8(€ - €¢) and equation (3.7a) gives 0 = o(€g). Hence

a(e) may be interpreted as the conductivity when T + O with the Ferrm level at
€. A low temperature formula for S = - L/a is obtained by expending o(€)

about €¢ in equation (3.7b). Up to terms linear in Titis

S « -(m€ kyT/3e) o (ep)/0(op). (3.93)
A similar calculation of x yields the Wiedemann-Franz law

K = Lyo(ep)T (3.9b)

wherelL, = 1/3(11kB/e)2 is the Lorentz number. Finally we note that o{e) may

be written in the alternative form

a(€) = 2N gD (€) (3.10)
where Nggy, 15 the density of states in subband 0 and

D(e) = 1/2[k (€)/m*1° (e} (3.11)

is the diffusion constant at T =0 whan the Fermi lavel is at €. Equation (3.10)
is one form of the Einstein relation for a degenerate electron gas.(_”)
The only unknown in equations (3.7) to (3.11) is the relaxation time. For

alastic scattering which is even in the scatlering angle we may derive an
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explicit formula for T(e) by substituting f in terms of T(e) into equation (3.6)

with (81/81), replaced by the standard Boltzmann colliston integral:{17)

(31/8t), = (L/2m)2 ok’ [T (1 - NP(K, K -F(1 - FIP(l, K)) (312)

where f = f(k), f' = f(k) and P(K', k) is the transition rate from k' to k. Then,

in the linear regime we find that
1/t(€g)) = (L72m)72 [Pk, K1 - cos0) dk’ (3.13)

where 0 is the scattering angle between &’ and k.

3.4 Boltzmann Transport Theory for more than One Subband

The analysis of Sections 3.2 and 3.3 may be generalised easily to the
case when more than one subband is occupied. We introduce a distribution

function fo((}g, r, 1) for ecth subband and sum over subbands in calculating n, J

and Q from the generalisation of equation (3.3). Boltzmann's equation (3.4)

remains formally the same apart from the addition of a subscript o to f. Of

course, (9f a/at)c is more complicated in the multi-subband case. To use the

relaxation time ansatz (3.6}, however, we have only to add a supscript o o

both f and T and replace €ok by €k Then the calculation of the transport

coefficients leads to equation (3.7) in which o(e} 15 replaced by

a(e) = ¥ nyle) e T, (e}/m® (3.14)
o

with this understanding, the low temperature approximations to 0, S and k are

still given by o(ep) and equation (3.9).
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Equations (3.13} generalises to a set of equations for the relaxation

limes of the subbands which are occupied at energy € when 7 = 0. With

Pk = [2m* (€ - ee()]l/2 we have

T HE) = (L72m7Y [ oK Pl B1 - cosd kg Tp(e)/ky Tol€)  (3.15)
B

where P(ok, BK) is the transition rate from Vo t0 ws’s'for the elastic

scattering process considered. For simplicity in what follows we confine
our attention te a randemly distributed array of &-function scalterers. In
that case the system averaged transition rate is independent of the
orientation of k and k'. Hence the contribution to the integral in equation

(3.15) from the term invelving cos8 vanishes and 'ca(e) reduces to the

lifetime of a state with energy € in subband o

4. Quantum Size Effects in the Transport Coefficients
41 The Bolizm r i ion to the Eleclric

Conductivity of a ZDEG

We saw in Section 3 that the Boltzmann approximation to the electrical
conductivity of a 2DEG at OK is given by equation (3.14) with € = e. Thus we

have

0 = Ynglep)e? T lep)/m* (41)
o4

Moreover, we see from equation (2.6) that the density of states in subband o

is Nssbe(e - €y} Hence
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Ny (€F) = Neen(€p - €4) B (€ - €4) (4.2)
Finally, we see from the remarks at the end of Section 3 that a reasonable

ansatz for "o((EF) is the lifeline of a state at the Fermi level in subband or.

This is proportional to the inverse of the density of final states available at

energy € which increases by Ny.p, whenever €p crosses a subband minimum.

Consequently o takes the form shown in Figure 6. The Wiedemann-Franz

relation (3,9a) implies that k will behave similarly.
Discontinuities in o(eg) of this type are an inevitable consequence of

Boitzmann transport theory for any elastic scattering mechanism. They arise
because the theory takes no account of the effect of the scattering on the
electronic states and enerqgy levels. We show in Section 4.2 that when this is
allowed for, even in the crudest approximation, the discontinuities are
rounded of f and will be difficult to see unless the electron mean free path is

very large in comparison to the Fermi wavelength.

4.2 The effect of level broadening on the electrical conductivity
of a ZDEG
The analysis given in Sections 2 and 3 assumes that the energy levels are
sharp. In fact they are broadened by the scattering potential. The primary
effect of level broadening is to round off the “staircase’ structure in the
density of states which is shown inFigure 5.
To take this effect into account in an approximate way we use the generat

Born approximation.(ls) The density of states is written in the form

N(€) = (2/AT1)3 3 Im Gpp (&) (43)
ok

where Gomﬂg) is the (ok, ok)th matrix element of the Green's operator in the
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unperturbed energy representation and A = Le. we may write

G0 = [€ - €010 + 1 Tt (4.4)
where
T o€ = h/2T4(€) (4.5)

with T, (€) denoting the lifetime of a state with energy € in subband «. (For
the &-function scattering potential which we consider below there is no
distinction between T, (€) in equations (4.5) and (4.1). It is for this reason

that we use the same notation for both quantities.)
When equation (4.4) is sustituted into equation (4.3) we may evaluate the

sum over k by taking the limit A + « for which

A ; 2 an)y [ (48)
The intergral over the 2D k space is readily evaluated to yield

N(E) " ZNSSD [11/2 + tan-l{ (E - ea)/r“u(e) } ] /ﬂ (47)
o

We see by nspection of equation (4.7) that, when Fyoxt€) 2 O, the
contribution to N(€) from subband o reduces to O when € < €4 (so that the

inverse tangent - - 11/2) and reduces 10 Nggp, when € > €, {so that the

inverse tangent - + T1/2). Thus we regain the staircase density of states
function discussed in Section 2 in the absence of scattering. To go beyond

this it is necessary to make a self -consistent calculation of I‘au(e). This is
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easy to do in only one case. We suppose that the scattering potential is a

superposition of randomly located 3D 6-functions with strength U ie.

Uglt, 2= U B (x-x)8(y-u)d(z-2) (4.8)
i

Then we may use equation (4.5} and Fermi Golden Rule transitions rates to

write down an expression for I (€} involving transitions to each subband

with a strength preportional to the contribution of that subband to the total

density of states. A self-consistent equation for T (€] is oblained when the

latter is given by equation (4.7) with a factor 2 removed because the

scattering polential does not ftip spins. Thus we obtain(18)

Food® = g 3 Mo Nogp 172 ¢ tan™ (€ - € )/T oM /1 (49)
B

where n, 1s the ZD density of scatterers and

Mog” = UZ[a2P(2,)06,2(206%(2;) (4.10)

is the mean square matrix element associated with an individual scatterer
located at (xl-, T Zi)- In equation (4.10) P(zl-) denotes the probability density

for 2,

Equation (4.9) has been solved numerically after using subband
wavefunctions (2.5a) to evaluate Maﬂz.(w) Thus the electrons are confined
to a channel of width w. To be definite we take P(zl-) tobe w1 inthe channel

and 0 outside it. (In writing equations (4.9) and (4.10) the probability
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distribution of r, has been assumed 10 be uniform over A)

The above calculation of the effect of level broadening on the density of

states may be used to develop a heuristic formula for o(ep) in the presence of

level broadening. To do so we start from the equation (4.1) and rewrite it in

the suggestive form

oler) = €2 3 Nygp 0 (€5 - €0) D (Ef) (4.11)
o

where, as we indicated in equation (3.11),
D€ = (€ - €o) Tox (€F)/m® (412)

has an immediate interpretation as the electron diffusivity in subband c. The
coefficient of Dy () in (4.11) is the zeroth order approximation to the

density of states in subband o To improve the formula we simply replace
this by the better approximation derived by inspection of equation (4.7). Thus

we have

olep) = €2 T Negp[T17/2 + tan™ L{ep - €)/T o€ )} DolEp)/T (4.13)
o

There is a problem with equation (4.13). Equation (4.12) implies thal

Do (€F) is negative when €p < €, Hence subbands with Fermi energles in this
range make a negative contribution te o(eg). This result is physically wrong.

To put it right requires a full diagrammatic calculation of O(EF)A“B) We do

not give the details here because the final result turns out e be a very simple
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modification of equation (4.13). It 1s only necessary to add e/t to the

contribution to o(€g) from each subband. Thus we obtain the final result in

the general Born approximation:

©2/mmS (172 + tan"L{(er - €)/ T olepIN(EF - €/ Tax(€p)} +1)
o

(4.14)

where I, (€¢) is to be determined by solving equation (4.9).

The final results of the calculation are shown in Figure 7. For each

curve we start with the Fermi level in the lowest subband so that the system
is strictly 2D. The number labelling the curves is the value of kil in that
case (ie. (kFl)zn) where 1 is the mean free path and kg is the radius of the
Fermi circle. Each curve is generated by increasing kg with kgl held fixed.
we see that strong fine structure remains when (kp)pp ~ 11 but it has
almost disappeared when (kFl)ZD ~ 2. The latter value is close to that

appropriate to the original experiments of Sernelius et al (19) wno did not

see any quantum size effects.

4.3 Quantum Size Effect in the Thermopower of 3 20EG

In Section 3 we saw that Boltzmann transport theory predicts that the
ther mopower S = -L/0 where S and o are given in terms of o(€) by equation
(3.7). At low temperatures we obtain equation (3.9a) provided that a(€)

varies slowly on the scale of kgT near the Fermi level. A naive application of

this equation using o(e) as given in Figure 6 produces a negative contribution

to 5 ( proportional to T) as € moves Detween subband mimma and a pesitive,
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8-function-like, contribution to S (with a strength in the order of kgT)
whenever € crosses a subband minimum. Of course, in the latler case, the

assumption that o(€) varies slowly on the scale of kgT is no longer valid and

a more careful evaluation of the integrals in equation (3.7) 1s necessary.
when this 15 carried out(20) we find that S is the sum of a negative
contribution which is proportional to T and behaves in the way shown in

Figure 8 when €p moves through a subband minimum and a positive

contribution behaving in the way shown in Figure 9, This s a thermally
broadened version of the 5-function peak found in the elementary discussion.

It has a width ~kgT at temperature T. Since the strength (i.e.the area under
the curve) is in the order of kgT its height remains constant (~2kg In2/e) as
T+ 0. Consequently S must change signas T » 0 when ¢¢ lies in the

neighbourhood of a subband minimum.

In Section 6 we develop exact formulae for the transport coefficients of
a non-interacting etectron gas. It is shown there that equations (3.7) have
general validity outside the Boltzmann transport regime when o(€) is
correctly identified. Consequently, we may calculate the effect of level
broadening on the thermopower by substituting the o(e) for this case which
has already been evaluated in Section 42(21) Numerical evaluation of the
integrals yields the results presented in Figures 10-12 in which the subband

minima are assumed to lie at 0,S, 10 and 15 meV. In Figure 10, which is

drawn for T = 1K, the for the (full curve) case (kgL)op = S0 represents the

Boltzmann transport limit, It shows the very large ef fect of the positive
quasi-5-function peaks in the neighbourhood of the subband minima. We see

from the dashed curve ((kpf)op = 6) that peaks remain at this scattering level

but the sign changes are eliminated except near the second subband minimum.
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figure 11 shows plots of S against T for (kgL)zp = 6 when €f is near the
second subband minimum at SmeV. We Tind the normal metallic behaviour

predicled by equation (3.93) when €r is well away from SmeV, and also when

1 1s just above SmeV. The sign change which is expected from Figure 10

when T - 0 appears for T ~1.2K when € = 48 meV. InFigure 12 we plot S
against e for T = 1K and 6K for (kp)op = 2 which is a strong scattering

case. The details are washed out but significant structure is still presem.
Quantum size effecls in the thérmopower have recently been observed in
GaAs/AlGaAs heterojunctions at temperatures in the order of 300mK by Ruf et

al{22) we show some of their data in Figure 13 in the form of a plot of -5/T

against €p. The electron density is increased by means of the persistent

photoconductivity effect. The arrow on the horizontal axis indicates the
expected location of the first excited subband minimum. The minimum in the
curve which preceeds it indicates a positive value of S at T = 320 mK and 300

mX in accordance with the theoretical predictions.

1.4 Quantum Size Effect in a 1DEG

The analysis which we have given for a 2DEG retains much the same
character for 1DEG. Both systems have subband structures and therefore both
exhibit quantum size effects. In the Boltzmann transport theory of Section 3
all the equations are valid with minor changes to take account of the reduced
dimensionality. Thus all the vectors in equation (3.1) and (3.2) point along
the wire and J and Q refer to the total electric and heat currents in that
direction. Everywhere k and k' are replaced by k and k' and in equation (3.3)
the factor (2112)‘1 becomes 1. In equations (3.8) and (3.14)

N(€) = 2k (€)/T and in equations (3.12), (3.13) and (3.15) L4/4n2 becomes

L/2m where L is the length of the quantum wire. The central equations (3.7)
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to (3.11), together with (3.14) have exactly the same form in 1D.
Kearney and Butcher have catculated 0 and S for a 1DEG using Boltzmann
transport theorg_(23) The full force of the square root singularities in the

density of states (see equation (2.10)) are felt in this case. The relaxation
time for each subband vanishes at the subband mimmum and so does oler).

This sharp structure is rapidly removed by thermal broadening above liquid
helwm temperalures. The effects of level broadening are more
interesting.(24) The analysis may again be carried out within the framework
of the general Born approximation which we discuss in detail for a 2D system
in Section 4.2. 1t is easily adapted to the 1D case. We present only some of

the results obtained by numerical solution of the self-consistent equations

for the damping parameters I (€} In Figures 14 to 17.

4.5 Discussion

The theoretical situation regarding quantum size effects is clear. They
are an inevitable consequence of Boltzmann transport theory and are fairly
robust when level broadening is taken into account. We have discussed o and
5 in detail. The behaviour of k will be similar to that of 0. The experimenta)
situation at the time of writing is much less clear. Quantum siza effects of
the type predicted for ¢ have naver been observed. In the case of 5 the
predicted behaviour has been seen in only one 2066.22) There have been no
quantum size effect measurements at all for 1DEGS and none involving k in
ZDEGS. - The experimental study of quantum size effects in low-dimensional

semiconductor structures is ripe for further development.
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5. Phonon Drag Therscpower of a 208G

9.k. Introduction

The treatment of electron transport theory given in Section 4
makes no mention of phonons or electron-phonon interactions. This is
often a good starting point for T < 1K but as T increases above 1K
phonons and electron-phonon interactions become increasingly
important. We concentrate here on the thermopower of a 2DEG in the
temperature range 1 to 0K which has been the subject of several
recent experimental and theoretical jnvestigations, The thermopower
is abserved to be one or two orders of magnitude larger than predicted
by the formulae in Section 4. The reason is that these formulae give
only the "electron diffusion” contribution which takes no account of
the effect of a temperature gzadient on the phonon distribution. What
is observed is dominated by the "phonon drag”® contribution which is
due to the momentum imparted to the electrons by the perturbed

phonons .

5.2. An Elesentary Treatmsent of Phonon Drag Thersopower

The phonon drag contribution to the thermopower is dencted by
8g. There are several simple ways of deriving approximate formulae
for Sg which Arelappropriate in various limits. They have been
reviewed recently by Smith and Butcherlzs’. Here we concentrate on
the case in which the electron statistics are degenerate. We are
concerned with a 2DEG but it is useful to begin by considering a 1D
electron gas coupled to 1D acoustic phonons in a system with volume .

For simplicity we give all the phonons a common sound velocity vg and
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write NQ fa¢ the phenon distribution function (i:e: the numbel Wf
phonona with wave vector Q). The following formulae for the phonon
system are well knoun‘l'zs).

The phonon heat flux and momentum density are given by

£
-
u

a7 § fuggvs(9/0) (5.1}
Q

and

n

b § hgng (5.2)
Q

respectively. Moteover, by writing wg = Qvg in equation (5.1} we see

that

Py = Qp/vs' (5.3}

The phonon specific heat is given by

=qt A

cp = @71 ] (ang/am) hug (5.4
Q

and the thermal conductivity of the phonons is

2
Kp = Cpvs tp/J (5.9)
In equation (5.5) Tp is the momentum relaxation time of the phonons.

We may conveniently write Tp‘l in the form

1l e Tpp ¢ rp,'l [5.6)
where Tpp arises from phonon-phonon and phonon-boundary intecractions
while Tpe is due to phonon-electron interactions.

With these preliminaries a simple formula for Sg may easily be
derived. Suppose that a temperature gradient gi is applied. Then Qp

= -kp VT and, from equation {5.3),

Bp = - (Kp/vs' VT . (5.7
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The rate at which Py is annihilated is Pp/Tp and the rate at which
this annihilated phonon momentum appears in the electron system is
(Ep/Tp)(Ip/Tpe). Hence the steady state balance equation for the 3D

electron momentum density Pg is

0 = APe/dt = -enE + Pp/Tpe (5.8)
When equation (5.8) is solved for the emf E = Sg VI with Py and

“p given by equations (5.7) and (5.5) respectively we find that

8g = —@ Cp/3ne (5.9)
where

o = Tp/Tpe (5.10)
is the fraction of the phonon momentum annihilated each second which
appears in the electron system.

Equation (5.9) is the standard approximate formula for 3D
metalsfl)., The modifications which are necessary when we consider a
2DEG are easy to ldentify. We remack, first of all, that the
interfaces which lead to :ﬁa confinement OF the electron gas seldom
have much effect on the acoustic phonons which retain their 31D
character, Thus, the system which interest us is a 2DEG confined to a
narrow chaanel which is coupled to 3D phonons in a phonon bath with a
macroscopic extent L, in-the z direction (i.e. the direction of
confinement), To formulate the steady state balance equation for the
2D electron momentum density we have only to average equaticon (5.8)
across the phonon bath in the z direction. Then the 3D electron
density is replaced by n/L; where n now denotes the 2D electron

density. The same change is necessary in eguation {5.8) which becomes

Sg = - aLsz/Jne (95.11})
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where the 2D interpretation of n is left understood.
Equation (5.9) tells us a great deal abcut the behaviour of Sg
for a 2DEG. Since the electron-phonon interaction is confined to a
narraw channel we ignore tpe‘l in equation (5.6). Hence, Q in
equation (5.10) becomes Tpp/Tpe- In the temperature range 1-10K Tpp
is determined by boundary scattering. Thus, apart from a trivial
geometrical factor, Tpp = Ly/vg which is independent of both T and n.
We shall find in Section 5.3 that tpe-is alsa cnly weakly dependent on
T and n in a degenerate electron gas. Consequently S5 is proportional
to 1 (because Cp, is pr&portional to T’) and inversely proportional to
n. The data of Ruf et 21122} exnibited in Figure LA clearly shows the
o’ dependence predicted when L < T < 10K. We also see that |si ~ 100
wkl in this temperature range. Finally, [S] - 1 uVK'l below 1K and
-2

8 changes sign at T = ¢.35 K when n + 3.49 x 10!l cm Ruf et ai

suggest that electron diffusion thermopower is dominant when T < 1K

and that the change of sign is due to quantum size effects. This
behaviocur has already been discussed in Section 4.3 in connection with
Fig, 13 which shows more of their data.

1 in the

We give data showing the proportionality of S5 to n”
next Section after making a more exact calculation exhibiting a
maximum in the temperature dependence of @ which is alsoc seen
experimentaily., It is important to emphasise that this behaviour is

characteristic of a degenerate electran gas. In a non-degenerate

electron gas Tpe—L is proportional to n and 8g is independent of

af25)



- 29 -

5.3 Calculation of the Phonon Drag Thermopower from Coupled Electron
and Phonon Boltzmann Equations
We suppose for simplicity that the electrons occupy only the
ground subband with energy 505 and wave function ®p{z). Then
Bultzmann‘s eguation for the electrons is just equation {3.4) with the

collision term given by

(3E/3t)o = -(E-fp)/T + ‘(af/au,_* (3f/3t)e (5.10)
Here Eg is the Fermi-Dirac function given by equation (3.5) and T is
the electron momentum relaxation time assoclated with static defects.

The terms (0f/9t), and (JE/9t)e in equaticn (5.10) are the
contributions to (3f/3t)s from phonon absorption and emission
respectively:

(BE(k/Bt)a(ey = L [f‘ll-EIP;‘°’l5'.5) - E[l—E']P;(e’(ErE')}

k'Q

where € = £(k), £' = £(k') and

(5.11)

a
Pglk.k'} = A(Q)Hg Slegy: ~ Eox ~ hug) Sk kg (5.12)

is the transition rate from k to k' due to phonon absorption when
there acre Ny phonons with wavevector {.

The corresponding fotmula for PQQ‘E'E') is obtained by replacing
Ng by Ng + 1 in equation }5.11) and changing the signs in front of ﬁmg
and g in the §-symbols. The 1D phonon wave vector Q = ({,qz) with g
in the (x,y)-plane. Finally A(Q) is proportional to the squared

electronic matrix element Of the screened electron-phonon interaction.
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we glve an explieit formula for AtQ) only in the case of ap isotropic

deformation potential interaction with the interaction energy

U(r,z) = E] Y.u(r,z) (5.13)
in equation (5.13) T = (x,y), w(L,2) is the 3D lattice displacement
and E; is the deformation potential constant. [In the single subband

screening approximation {(which is usually adequate)

A = (7B 0% /plluge (9)) | [0o% ) expliqzzraz|? {5.14)
where £(g) ls the dielectric function for the ground subband.
Equation (5.14) is derived by Cantrell and Butcher(268) put with €{g) =
1 because they ignore screening effects. They also derive the
corresponding formula for an anisotropic deformation potential
interaction(27’. B mulci-subband trearment of screening is given by
Smith and Butcher{28) who use it to confirm that the single subband
approximation to €(g) may be used in equation (5.14) to interpret data
for current experimental systems. The corresponding formula for a
piezoelectric interaction is given by Lyolzgl.

To solve Boltzmann's equation (3.4) for the electrons we set
3f/8t = 0, E = 0 and suppose that a temperature gradient VT is

established in the (x,y) plane. Then we may write

v.¥f = v.VEq = £5° [(€gk) = EFlV.WT/T (5.15)
so that

£ = £y - T{Eg' [Ege — €ply.TT/T - (3E/B)y - (3E/3k)e} (5.16)

There are two contributicns to {9f/3t), and (3f/3t)e in the

linear regime. The first is proportional to E-f5 and consequently
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involves only the thermal equilibrium value of Ng:

u; = [exp{hug/kpT) - 117 (5.17)

It may be allowed for by renormalising T in equation (5.16) and
dropping (9€/3t), and {I¥f/3t), altogether. The renormalisation
required is negligible at liguid helium temperatures hecause electron
scattering by equilibrium phonons is small compared to scattering by
static defects. Thus, the effect of the first contribution to
{3€/3t)5 and (3f/3t), is simply to reproduce the solution of the
electron Boltzmann equation already obtained in Section 3.3. When
substituted into equation (3.3b) it finally yields the electron
diffusion thermopower given by equation (3.9a).

The second contribution to (BE/3t)s and (If/t)y in equation
(5.16) is proportional to ANQ = Ng - NQO. It yields the perturbation
Af of f which is responsible for phonon drag thermopower. In the
linear reqime it tnvalves only the thermal equilibrium value f4 of F,
i.e. the Fermi-Dirac function given by equation (3.3). Consequently,
using equations {5.16), (5.1Il), (5.12) and the subsequent remarks

e
abcut Pg (k.k'), we find that

Af = T ] ANg [Ry(k1Q) ~ Rp(k101] (5.18)
¢ 3

where

ao [ed eo o
Ri(k1Q) = § 0" (1-E}[Pg (k' .K)/Ng + Pg (k'.k)1/{Ng + 1))
- k* - B - - (5.19a)

and

o o
(kok')/eNg + 1)1

o e
R2(k.Q) = | foll-fo' [P (k,k')1/Ng + Pg
k! {5.19b)
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In these equations 8f, T and f, are all evaluated when the electron
wave number is k and f,' is evaluated when the electron wave number is
k' (It is not the energy derivation of f5). The superscript o on the
P-symbols indicates that they are to be evaluated with NQ = Ngo.

Following Cantcell and Butcher {?8) we introduce the quantitcy

20
Try(Q) = €201 - £5°) Pry (D) {5.20a)

which is the electron Elux from k to k; due to the absorption of
thermal equilibrium phonons. Then the following detailed balance

relations are easily verified:

eo
T w(@) = £5'[1 - £o] Pxrk(Q) {5.20b})
and
aoc
Tk« (Q} = fo'lL - £ol Pty (Q) {5.20c)
ec
= foll = 5] PRk (@) (5.20d}

when equations (5.20) are used in eqguation {(5.19) we find that

equation (5.18) simplifies to

Q o
Af = 1§ (] (T - Twrwdl ANg/NgUg + 1) (5.21)
Q kT o -

The contribution Jg which Af makes to the electric current
density J is most conveniently written down by expressing the integral
in equation (3.3b) as a sum over k values for a 2DEG with area A in

the (x,y) plane:

Iq = -(2e/A) E AE vik) {5.22)

T TR

P
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Thus we find that

o 0
Jg = (-2e/A) E [% E (Pit - Prdv(k)Tik) ] Abg/NgiNg + 1}

'
orientations of each electron.

0o o
(2e/R) g lé ZIrE'E {vr - v'1']] BNg/Ng(Ng + 1) {5.23) In equation (5.26) Tpp(Q) depends on Q. It therefore differs

from T in Section 5.2 which is an a opriat rage of T . It
where v and T are evaluated when the electcon wave vector is k and v° PP ec c an appropciate average of Tpp(Q)
i 1 i - Li i £
and T+ ace evaluated when the electron wave vector is k'. 1In the is also convenient to introduce here a @ dependent generalisation o
. th ime-conat 1 1 i 2.1 ify th ffect
second line of eguation (5.23) we have interchanged k and k' in the e time-conatant Tpe used in Section to quantify the effect of
1 - i i . =
ficst term in the summation in the first line. the electron-phonon interaction on the phonons To do so we set £
f d £ = £ 1 i . . hen, i f the det d
T complete the calculation of Ig we must determine AHQ = Ng - o and £ o' in equation (5.27). Then, Saking use © the detaile
balance relations (5. ite
Noo from the phcnon Boltzmann equation alance relations (5.20), we may write
N, + o - .2
Mg/t + vpi@) .UNg = (INg/dt)c (5.24) (INg/At)a + (INg/Bt)e = ~ANg/Tpe(Q) (5.28)
. ith
where gp[g) is the velocity of phonons with wave vector Q. In the wi
- ; -1 o o
steady state BNQ/Bt 0. Moreover, for small temperature gradients Tpa(@) = 2 I Z rk'k/Ng(“g + 1) (5.29)
kK k'™~
) ' ;
gﬂg o !Fg In the case of interest to us the l1ast two terms in equation
o . £ . H b i
= 9r dng/dT (5.251 {5.26} may be neglected in comparison to the first ence by using
i . 4 h Bolt n
Finally. the collision term in equation (5.24) is equation (5.25), we find that the solution of the phonon ZMan

equation (5.24) is aimply

(Mg/dtle = - ANg/TppiQl + {3Ng/dt)a + (INg/At)e {5.26)
i a
where Tpp(Q) is the phonon momentum relaxation time due to ANg - _Tpp(g,!p(g)-!T ng/dT (5.30)
phonon~phonon and phonon-boundarcy collisions and the last two terms in
equation (5.26) are the contributions to (BNg/at)c due to phonon and equation (5.23) gives
absorption and emission. They are given by Ig = ~(2e/R) E IE E.TE'E (vr - vrr'
x Tppl@) Yp(Q).9T.hug/keT (5.31}

— afe)
(ang/at)a(Q’ =2 E Z,f'I'E ]PQ {k.k) (5.27) In deriving equation (5.31) we have used the relation

where the susmation includes all electron transitions with a given
o o o
2
. = Ny + ﬁMQ .32
spin orientation in which a phonon with wave vector Q is absorbed dNQ/dT Ng (Ng 1 /T {5.32)

{emitted). The factor of 2 allows for the two possible spin which follows immediately from equation {5.17).
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The system under discussion is isotropic in the xy-plane. We
see from the remarks following eguation (3.2) that Sg may therefore be
identified with 07! times the coefficient of 3T/dx in the x component
of equation (5.31) or with -0} times the coefficient of dT/dy in the
¥ component of equation (5.31) or (most symmetrically) with the mean

of these two expressions. Thus we obtain the final formulal2?),

Sg = (e/A0) H E Pk (¥T - v 7' LovplQ) Tpp(@)/kp??  (5.33)

5.4 Recovering the Elementary Pormsula for Phonon Drag

Equation (5.33}) is relatively complicated and is the result of
considerable algebraic manipulation. To gain confidence in its use we
begin by rederiving the elementary formula ($,9). Thus, we suppose
that T is independent of k and write @ = nelt/m*. and v-v = h(k -
k") /mr = —ﬁg/m* because of the momentum conservation law contained in
rE'E through equations (5.20a) and (5.12). Then T/m* may be taken
outside the summation signas in equation (5.33) to cancel with the
corresponding factor in . Thus we obtain

Sg = ~(Lz/ne) J § § Txrk Tpp(@) hg.vplQ)bug/kgr?

Qk Kk’ (5.34)
where 1 = AL, is the volume of the phonon bath. For acoustic phonons
vplQ} = v5i(q.qz}/Q, where vg is the velocity of scund, and hvgQ = fuyg.
The last factor in the summand of eguation (5.34) can therefore be

written in the form

Le) c o
(a/0)* (hug) */kpT? = (a/Q) hugdNg/ar (NgiNg + 1)17F  (5.19)

where we have used equation (5.32), Hence eguation (5,34) becomes
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=]
Sq = ~(Lz/2nefl) | @(Q)(ang/aT) hugla/a)’ (5.36)
& 9

where a{Q} = tpp(Q)/Tpe(Q) in which TpelQ) is given by equation
(5.2%3). We see that a(Q) is the fraction of the collisions suffered
by phonons with wave vector @ which involve the electran-phonon
interaction. It is the Q-dependent analogue of @ in equations (5.10)
and (5.11). To recover the eguation (5.11) from equation (5.36) we
have only to approximate ai{Q) and {q/Q)r by average values @ and 2/3

respectively and use equation (5.4) for Cp-
5.5 Comparieson of Theory and Experiment

Extensive calculations of Sg have heen made from equation (5.33)
by Smith and Butcher (6+28,30) 4p4 Lyo'zg) for 51 MOSFETS and
GaAs/AlGaAs heteroijunctions. All the parameters needed are measured
in other experiments and are known in principle. 1In practice, of
course, there is considerable uncertainty in some of their values.

The phonon relaxation time Tpp{@) is usually assumed to be independent
of ¢ and is either approximated by L,/vg or is derived from measured
values of the phonon thermal conductivity which is given by equation
{5.5).

In Fig. 19 we compare values of —Sg/'l‘J calculated for a Si
HOSFE% with measured values of the total thermopower divided by
-p38)  The data points are fairly flat for T > 2.5 K which reflects
the basic T* dependence predicted by the elementary treatment given in
Section 9.2. The measured values also increase as n decreases in

rough accord with the n~! behaviour predicted there. What is not
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predicted by the elementary treatment is the maximum exhibited by the
data at a temperature proportional to n’. This behaviour is due to a
*Kohn anomaly" in the summand of equation (5.33)(5'27I which is
illustrated in Figure 20 and is discussed below.

We may temove the sum over k' from equation (5.33) by using the
momentum conservation condition k' = k + g which is inherent in PE'E
{see equations (5.20a) and (S5.12)). The summation over k may then be

evaluated by writing

w«
= (asan?) i gk T a8 (5.37)
k [+] b )

where k and © are polar coordinates in the (kx,ky)-plane. The k
integration can be evaluated when ﬁwg << £gk by approximating the
product of the Fermi-Pirac Eactors invelved in FE'E by d(e-€p) times
an appropriate normalising factor. The integral over © may be

similarly evaluated by exploiting the energy conserving §-function in

Iktk. The remaining sum over Q is dominated by contributicns from q;

= 0 because of the electronic matcrix element involved in Pgigx via A(Q)
which is given in equation (5.14). When gq; = 0 the summand is the

: . o ;
product of two factors: one involving Ng which has a peak at the

"dominant phonon wave number* §8)

qp = 4.96 kpT/hvg (5.38a)
and one involving the availability of final electron states which

diverges when g = 2kg. The peak in the theoretical curves is at the

temperature Tp at which

gp = 2kp (5.38b)

This relationship shows that gp is proporiicnal to n_*. as is
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observed, and is accurately followed by the peaks in the data when an
appropriate average value of vg is useal®),

The curves are calculated using Fang and Howard
wavebunctions!3+28), deformation potentials E, = 9 eV and Eg = -6
evf3), phonon velocities vp =.5.5 X 10 mel and vy = 8.8 x 107 m
s~ 1(6) and effective masses m* = 0.1% mg in the xy plane and m;* =
0.916 mg in the z-direction where mg is the free electron mass(®),
They are in excellent agreement with the data except when T - 1K when
electron diffugion thermopower may be expected to dominate (see
Section 4.1). The sign change observed for the largest value of n
{labelled E in Figure 19) is believed to be due to the predominance of
electron scattering by interface roughness which makes 0'(EFr) necative
at high n so that the electron diffusion thermopower in equation
(3.9a) becomes posltive‘s'Jl).

Lyo points out that the contribution of piezoelectric scattering
to Sg is about the same as that of deformation potential scattering in
GaAs/AlGaAs heterojuﬁctionl(zgi. In Figure 21 we compare recent
calculationsljo' with experimental data on Sg due to Ruf et a1l3?),
The calculated curves (full lines) allow for the inelasticity of
electron-phonon scattecring {which is neglected, by Lyc) and assume
that the momentum relaxation time of the electrons is proportional to
eP with p = 0, 1 or 2. The corresponding value of electron diffusion
thermopower has been subtracted from the aobserved values to obtain the
experimental curves (dashed lines). The numbers on the curves give
the value of p. The calculations are made with standard parameters

for Gaas(d!, E] = 16 @V and vgTp = 0.14 mm which is close to the value
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determined from thermal conductivity data. In Figure 22 we compare agreement can be achieved with the oscillations seen at lower magnetic

curves calculated with p = 1 (chain line) with the data of Fletcher et induction fields by making realistic phenomenclogical assumptions

a1(33) corrected for electron diffusion thermopower (broken curve). about the overall density of astates(3%),
The full curve is calculated on the assumption that electron-phonon
scattering is elastic to assess the error involved in doing so, It is
not very large. The theoretical curves is drawn for ) = 9.3 eV and
vstp = 0.30 mm which is close to the mean free path estimated by
Fletcher et a1(33) apg Lyol29), Taking él = 16.0 eV, as was done in
Figure 21 would require us to put vglp = 0.1 mm to obtain as good a
fit between theory and experiment in Figure 22. This value of vsTp is
too small to be reascnable. Valiues of E) between 7 and 16 eV are
quoted in recent pagers"nl. New experiments on bulk GaAs designed to
remove this large uncertainty would be useful.

The diagonal component of the phonon drag thermopower tensor of
a 2DEG in a transverse magnetic induction field B has been evaluated
by Kubakaddi et al in the guantum limit(qu. We show their results
for a Gahs/AlGaAs heterojunction when B = I5" and T = 6K in Figure 23.
Curve 1 is for piezoelectric scattering alone, curve 2 is for
deformation potential scattering alone and curve 3 is for the
realistic situation in which both scattering mechanisms are present.
Standard parameters are assumed for Gahs'?) with Ep = 11.5 ev and vsTp
= 0.3 mm which is close to the value estimated in the experiments (33},
Screening is ignored and a Lorentz line shape is assumed for the
ground Landau subband with a half-width Y of 1.12 weV chosen to fit
the data points. Similar agreement in a screened calculation may be

achieved by reducing Y. 1In a screened calculation Lyo finds that good
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6. Quanium Corrections to the Boltzmann Iransport Formalism

6.1 Introduction

Most of our preceding discussioon has been in terms of the Boltzmann
transport formalism. An exception was the approximate treatment of level
broadening in Sections 4.2 and 4.3. In this Section we turn to more exolic
quantum-mechanical corrections to the predictions of semi-classical theory.
I Seclion 6.2 enacl (ormulae are derived Tor the scalar ranspor L coeflicients
of an isotropic ZDEG in zero magnetic induction field. The formulae are used
to verify the assumption made in Section 4.3 that they may be put in the form
of equation (3.7). In Section 6.3 we give exact Kubo formulae for the tensor
transport coefficients of a 2DEG whenf + 0. They are used in Section b4to
discuss Onsager sgmmetrg.(Z) Section 6.5 is devoted to "weak localisation®
corrections to the transport coefficients which are due to coherent back
scattering.(35) Finally, in Section 6.6 we discuss the "universal fluctuations’
which arise in specimens which are so small that they do not self-average, ie.
they are mesoscopic.(37)

Sections 6.2 and 6.4 are necessarily rather formai. To keep the
formalism as simple as possible we ignore phonons altogether and suppose

that the electrons are scattered by randomly lecated static impurities.

6.2 Kubo-Greenwood Formulac when 6 = 0(38. 39)

An exact quantum-mechanical formula for the dc electricat conductivity ¢
may be derived by treating o as the dc limit of the real part, Refo(w)), of the ac
conductivity d(w). The latter is easily related to the power absorbed from an
ac electric field which may be evaluated quantum- mechanically.

Thus, let us suppose that a uniform ac electric field

E(1) = Re {Ege™Y) (6.1)
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is established in the x direction in the plane of a 2DEG with effective mass m*

and area A. Then the x component of the 2D current density is
J(1) = Re{o(w)E ,e'“1) (6.2)

and the power absorbed per unit area is given by the time average of E(1)J(1),

e :
P(w) = Re 0 (W) Eg / 2 (6.3)

To write down a quantum-mechanical formula for P(w) we concentrate on the
electrons with one spin orientation and label the one-electron orbital enerqy
eigenfunctions with Greek letters: X, y etc. (These states are understood to
include the effect of the random scatterers.) The ac field can only induce 3
transition from state A to state p if A is full and p is empty. The probability

that this is so in thermal equilibrium is f 0(e;,\)[l - fol€ p)] where f, is the
Fermi-Dirac function. Let HNI denote the transition rate from a full state A

with enegy €, an empty state ji with energy €y Then

P(w) = (2/8)2. 2 Ry fo () [1 - To (el (€ - &) (6.4)
AH

where the factor of 2 allows for the 2 possible spin orientations.
A comparison of equations (6.3) and (6.4) shows that the dc conductivily

is given by
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0= 1im (4/AEGE) Y T Ry To (€)1 - Tl I (€, - €3) (6.5)
w0 Ap

This equation is exact. It is identical to the more sophisticated
Kubo-Greenwood and Kubo formulae (2,39 - 42) which we discuss here and in

the next Section.
We may conveniently write E(t) = - 9a(t)/dt where

a(t) = Re[-(E o /iw) e1¥"] (6.6)

is the x component of a vector potential A = [a(t), 0, 0]. The Hamiltonian for an

electron in the ac field may then be expressed in the form
H=(p+ea)2/zm® + v 6.7)

where V is a function of x, y and 2 which includes the confining potential as
well as the potentials of the random scatterers. For small field strengths we

may linearise H as follows
H=H, - jal) (6.8)

where j = -ep,./m" is the x component of the current operator -ep/m® and Hy =
p Z/20m* + V. In deriving equation {6.8) we have used the fact that a(t) is

spatially uniform, Fermi's golden rute for Ry, p is

R'M.l = (2n/h{pu i ?\)I2 (E.:,IZm)2 x [G(Ep— €y~ ) + 6(5“— €y + fiw)]
(6.9)

in which the first and second 6-functions account for photon absorption and

emssion respectively,

When equation (6.9) is used in equation (6.5) it is convenient to
interchange X and p in the term associated with the second &-funclion. We

find that the product f ol€ “) fo(e jl) cancels out to leave

o =lim@2n/Ahwd) Y T I (€y) - f (e W]
w30 Ay

x(ep-e,\)l(uljlbﬁé(ep—e,‘-hm)

=(h/A)%Zfo"(e)‘)lwljll)Izb(ep—ek) (6.10)
!

In the second line of equation (6.10) we have used the energy conservation

condition Gll = €y + fis which allows us to write the limit of

[fal€x) - foley, + hw))/hw when w - O as minus the derivative, f )7 (¢, ), of the

Fermi-Dirac function. We may formally rewrite equation (6.10) as

o= -[fy"(€) a(e) (6.11)
where
o(e)=(h/A)ZZ}\,.HI'A)Izb(E—EP)a(E—67\) (6.12)
Ly

This is the Kubo-Greenwood formuta for the dc conductivity at OK when the
Fermi level is at e.(39' 41) To calculate d at temperature T we must take the
thermal average of o(e) in accordance with equation (6.11). We see by
inspection that equation (6.11) is identical in structure to equation (3.7a).

Thus, the assertion made in Section 4.3 that equatton (3.7a) has validity



45
outside the semiclassical domain 1s justified.
We now give a heuristic argument showing that equation (3.7¢c) for Mis
also valid when o(e) is given by equation (6.12). Thus, by using equation
(6.11), we see that the electric current density produced by an electric field€

may be writien in the form
J=-f,7(€) o () E de (6.13)

Hence the contribution to the flux of charge from the energy range € to € + de

is just

Al =1,/ (€)0(€)E de (6.14)

To calculate the corresponding contribution to the heat flux § we have to

multiply a4 by -(€ - EF)/e because Q involve the transport of the energy

(measured from the Fermi level) instead of the charge -e. When the
integration is restored we obtain Q = ME with M given by equations (3.7¢) and
(6.12).

It remains for us to show that equation (3.7b) for L and equation (3.7d) for
N also have validity outside the semiclassical domawn. This 1s more difficult
than was the case for o and M because L and N describe the response of the
2DEG to a temperature gradient which cannot be included in a Hamiltoman. A
purely quantum-mechanical calcutation of L and N is therefore impossible.
However, we may oblain Kubo-Greenwood type formulae for them by combining
the heuristic argument used to calculate M with a consideration of local
equilibrium conditions. The effect of a non-uniform chemical potential (which
is ignored in Section 3) may be calculated in the same way. This familiar

problem provides a useful introduction to the calculation of L and N. Letus
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therefore suppose that £ = 0 while the umiform equilibrium value € of the
chemical potential is replaced by €p + p where y is a small, slowly-varying

perturbation. Then the Fermi-Dirac function for stale X becomes
f(es) = f exp {(ey - € - p)/kBT} 11]'1 {6.15)

The diffusion current density which flows in this case is conveniently written
n the form o”Y p/e where ¢’ remains 1o be determined.

Wwhen an electric field [ = -9 ¢ is aiso present it produces an additional
current density of. To find 07 we suppose that i is adjusted to establish
thermal equilibrium in the presence of an electrostatic potential ¢. The
Fermi-Dirac function (e, ) is then identical to equation {(6.15) with p = e.
Consequently, the diffusion current density is 0”%é = -0’E. This must cancel
out the conduction current of, i.e. of - o’E = 0 for all £. Hence 0" = 0. This
deceptively simple result is an expression of the Eistein relation between
conduction and diffusion processes.(i) It shows that diffusion may be taken
into account in the transport equations by replacing the electric field £ by the
emf E + e‘iyy.

Let us now turn to the case in which the chemical potential has a constant

value € but the uniform equilibrium value of the temperature T is replaced by

T + 8 where 6 is a small siowly-varying perturbation. Then f(e, ) 1s given by

equation (6.15) with p = 0 and T replacedby T + 6. To first order in 8 we may

continue to write f(g,) in the form of equation (6.15) bul with

n=6(e - e)/T (6.16)

Our discussion of the diffusion current densily shows that the
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contribution which V6 makes to J in the enerqy interval € 1o € + de is given by
(6.14) with £ replaced by Yy/e where B is now given by equation (6.15). We
therefore find, after integration, that J » LY with L given by equations (3.7b)
and (6.12). Similarly, to calculate the heat flux produced by ¥8 we have only

te multiply the AJ calculated above by ~(€ - €¢)/e and integrate. The result is

Q = N¥8 with N given by equations (3.7d) and (6.10). Luttinger(40) gives a
more rigorous ireatment of thermal transport in terms of the Kubo
formalism(Z: 41) which we outline in the next Section.

The Kubo-Greenwood formulae are useful because they immediately
establish a connection between the quantum-mechanical and semiclassical
treatment of electron transport in an isotropic 2DEG when B = 0. They provide
justification for our treatment of level broadening in Section 4.3. Moreover,
they show that the Wiedemann-Franz law (3.9b) is valid outside the weak
scattering regime.(“z) An experimental verification of this law has been
made recently in a 20e6.(43) It is clear, however, that equation (6.12) is
useless for actual calculations of o(e) because it is expressed in the energy
representation and the energy eigenfunctions include the effect of the random
scatterers. While we may take the scatterers into account in principle, it is
impossible to do so in practice. The Kubo formulae to which we now turn have

the advantage that they maybe evaluated in any convenient representation.

6.3 Kubo Formulae when B 4 0(40. 41)

When the applied static magnetic induction field B # O the conductivity
tensor @ in the transport equation (3.1) is a 2D tensor. It has a symmetric part
which governs power absorption and may be calcutated in the manner of
Section 6.2, It also has an antisymmetrical part which is responsible for the
Hall effect bul which cancels out of the power absorption. An alternative
method of calculation is therefore necessary. The simpiest approach is o

make a direct calculation of J when an ac electric field E is applied in an
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arbitrary direction in the xy plane of a 2DEG. The same calculation in 30 has
been treated by many authors (see for example, references 2, 39, 40, 41 and
44). We therefore simply state the corresponding result for a 2DEG. The ac

conductivity tensor at frequency w is given by

O plw) = (nez/iwm')éab +(2/1wA)[*® e‘“"tgab(l)dt (6.17a)
0

where, with a and b denoting x and y,
8an() = (101, 1> (6.17b)

The angular brackets in equation (6.17b) signify a thermatl average of the

commutator taken with the equilibrium fFermi-Dirac operator

folHg) = [expl(H, - ) /kgT) + 1171, (6.18)
e

9ap(®) = ML Tr{f (O, oD (6.19)

where the trace may be evaluated in any representation. In equation (6.17a) w
is given a small negative imaginary part to ensure that the integral converges.

The dc conductivity tensor [oab] is the 1imit of [oab(m)] asw-> 0. In what

follows we always give ac formulae in which the dc limit remains to be taken.

In equation (6.17b) and {6.19)

Hy = (0 + €A%)Z/2m* + v (6.20)

1s the unperturbed Hamtltonian of an electron in the 20E6. Here, :
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A% = 1/2 B x r accounts for the applied magnetic induction field and, as usual,
V includes the potential energies of the random scatterers as well as the

confining potential. Moreover,

Ip = -€(pp + eAL)/m® (6.21a)

is the bth component of the current operator ] in the presence of Band j,(t) is

the Heisenberg operator associated with j5:
ja(t) = exp(iHot /) i, exp(-iHgt/h). (6.21b)
In the energy representation specified by H, the matrix element of () is

N a0 1 ) = expliey, - €,) /) g > (6:21c)

when this representation is used o evaluate O p(w) from equations (b.15) to

(6.19) we find that

0, (0) = (e /1wom®) by, - (2/10A) % S i A<M gl wy
B

x [fle,) - f(e }l}]/ e poEN fiw] (6.22)

It is not dif ficult 1o show that equation (6.22) reproduces the Kubo-Greenwood
equations {6.11) and {6.12) when w - 0 withB=0and b = a. However, the
whole point of the Kubo formula (6.17) is that the trace may be evaluated in

any convenient representation. This flexibility helps with the evaluation of the
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trace. Of course, the evaluation remains a diff icult technical problem which
lies outside the scope of these introducing lectures. The book by Mahan{?)

gives a good description of how the problem is usually solved.
It is easy 10 show that the Kubo formuta for M, the ab th element of the
2D tensor which determines Q in an applied electric field, is obtained from

equation (6.17) as follows. Inthe first term of equation (6.17a) n is replaced

by -U/e where U is the energy density

U=(2/A) 3 T(€)) € (6.23)
A

In equation (6.17b) j,(t) is replaced by the Heisenberg operator derived from

the a th component of the heat flux operator

q= VZH-€p) v +y(H- €] (6.24)

where v = -j/e is the velocity operator. The Kubo formulae for the thermal
transport tensors L and N may also be derived by extending the heuristic
arguments already developed when in Section 6.2. Details of several other

approaches to the calculation of Kubo formulae for L and N are given by

Mahan £2) Luttinger{40) and Kubo et a1.(41) The results are that L ,yis obtained

from equation (6.17) as follows. In the first term In equation (6.17a) n is

replaced by U/eT and in equation (6.17b) j, is replaced by g, /7. Finally: Ny,

is obtained from equation (6.17) as follows. In equaticn (6.17a) n is replaced
by -W/e2T where

W=2/n 11 e ey - € ) (1525)
A
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and in equation (6.17b) j,(t) and j, are replaced by g,(t) and »qb/ T

respectively. Thus, to summarise, we have

Map = -(Ue/ium®) 84 - (2/hwA)[® e 19 (fq (t),j, ] ot (6.26a)
0
Lab = (Ve/ Tium®) 85y - (2/hwAT)[® "0t ([ ).q, 1> ot (6.26b)
0
Nab = ~(W/ Tiwom®) 85y, + (2/hwAT)[ @10 ([q (1) qp > dt (6.26¢)
0

where L and N are given by equations (6.23) and (6 75) respedctively Itis
again not difficult to verify that these equations reproduce the
Kubo-Greenwood formulae when they are evaluated in the enerqy

representation withB=0anda=b.

6.4 Onsager summetry

The tensor tr ansport coefficients in equalion (3.1) have properiies which
are due to the time-reversal symmetry of the underlying equations of
motion (44-46) They are -

Oap(-B) = 0p,(B) (6.27a)
Map(-B) = -TLy () (6.27b)
Nab(uﬁ) = Nba(_B) (6.27¢c)
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When B = 0 all the tensors reduce to scalars and equations (6.27a) and (6.27¢)
are trivial while equation (6.27b) is identical lo equation {3.7c) which we
derived using Boltzmann transport theory with 8 = 0. When B # 0, Boltzmann
transport theory also leads to the tensorial relations given in equation
(6.27).(49)
To derive these equations from the Kubo formulae for the transport

coefficients we simply write them down in the energy representation which is

defined by the eigenvalue equation Ho%\ = €3y where H, 1s given in equation
{6.20). Now p = -i¥ and A, is linear inB. It therefore follows that Yy is

replaced by lp)\' while 4 is unaltered when B is replaced by -B. Hence the

matrix elements of j and q are replaced by minus their complex conjugates
under this transformation. Equations (6.27) follow immediately when we
combine this result of time-reversal symmetry with the Hermitian character

of Jand g. In particularly, equation (6.27a) is obvious by inspection of

equation (6.22) for o (w). There is no need to go to the limit w + 0. Onsager

symmetry is exhibited by the tensors defined in Section 6.3 when w 4 0.(49)
It 15 often convenient to rewrite the ‘theoreticians transport equations
(3.1) in the “experimenialists® form which is given in equations (3.2). When
B + O the resistivity p, thermopower S, Peltier coefficient 11 and thermal
curductivity k in these equations are all 20 tensors. They are relaled to the

coefficient in equations (3.1) by

p=o1 (6.28a)
5= -g7 1L (6.28b)
m=Mg-1 (6.28¢)
k=Mo" 1L -N (6.28d)

The Onsager symmetry relations given in equation (6.27) imply that the tensor
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coefficients in equations (3.2) have the corresponding symmetry properties

Pan(-B) = ppa(E) (6.29a)
M T {F.79h)
Kap(-B) = Kap(8) (6.29¢)

6.5 Weak Localisation Correclions to the Conductivity

when B = 0 the ac conductivity o{w) of a 20EG is a scalar. We know from

linear response theory that

aw) = [* y (1) "0t gt (6.30)
¢

where y(t) is the impulse response function (@) Hence the dc conductivity o =
o(0) is simply the area under the y(t) curve. Unfortunately, the only property
of y(t) which is easy to calculate is its initial value. When an electron is
subjected to an electric field (1) in the x direction it aquires a velocity
-e/m*. Hence the initial current density is y(0) = -en(-e/m"*) = neZ/m"
where n is the electron density. We have used a classical argument to derive
this result but the Kubo formula (6.17) may be manipulated to show the same
thing.

To determine o we also need to know the shape of the (i) curve. 1t is
clear on general physical grounds that y(t) decays to zero as t » . For the
want of anything better, let us assume exponential decay with a time constant

T. Then we have, whent > 0,

() = (ne? /m")exp (-t/T) (6.31)
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so that o = nelt /m*. This is just equation (3.8) for a single subband which we
derived in Section 3.3 in a much more complicated way by using Boltzmann
transport theory. There we identified T with the relaxation time due to elastic
scattering of the electrons. We may continue to do so here. 1t is perhaps also
worthwhile to point out that equations (6.30) and (6.31) with w + O yields the

familiar Drude formula(l)

o(w) = 0(0)/(1 + iwT) (6.32)

which describes the ac behaviour of many weakly scattered free electron
systems very well.

Over the last three decades there has been a growing realised that there
is a small depariure from equation (6.31) which has a simple physical origin
and which can be both calculated and measured. This is the "weak localisation
correction” to the conductivity which we discuss briefly here. Extensive
reviews have been given by Bergmann(36) and Lee and Ramakrishnan(47)

The name "weak localisation correction’ is derived from the idea,
originally due to Anderson(4a), that interference effects can completely
localise the electron wave functions in a strengly disordered system. Most
transport experiments are concerned with systems which are only weakly
disordered. In that case Boltzmann transport theory gives the main
contribution to 0. However, interference effects between multiple scattering
paths (which are ignored in Boltzmann's equation) make a small, negative,
*weak localisation correction’ 10 ¢ when B = O which we denote by Ady, .

To see how this comes about let us consider a scattering process when

B = 0 in which an electron starts from a state with wave vector k and finishes
in a state with wave vector -k after passing elastically through N intermediate

states with wave vectorsky, ko, - -+ - - Ky This process is 1llustrated by the
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arrows in the upper half of Figure 24 for the case N = 3. The contribution that
U makes to the amplitude of state -k after some time interval t is determined

by the following product of matrix elements of the scattering potential v :

A= CRMED Gy Mgy gD+« kg M kgD kg MK (6.33a)
Let us also consider a second process in which the sequence ki, ko, <o ky is
replaced by -ky, “Kn_g e, ok 1- This is illustrated by the arrows in the

lower half of Fig. 24. For the second process , A is replaced by
A% RV K> -y Mk - - - k-1 Mk <y M kD (6.33b)

Now, the states | ki> in equation (6.33) are plane wave states and V is real. We
therefore see by inspection that A” and A are identical in both amplitude and
phase.

These two processes therefore contribute coherently to the back
scattering for atl k 1. K2 - - -+ ky. Consequently, the back scattering rate is
targer than is assumed in Boltzmann transport theory and, since back
scattering destroys momentum, ¥(1) falls below the Bottzmann transport value
given in equation (6.31) as illustrated in F igure 25. The positive full curve
shows the Bottzmann approximation to ¥(t} and the negative dashed curve is a
greatly exagerated sketch of the weak Iocéh‘sation correction which we denote

by Yy (1). It has the dimensions of conductance over time. Detailed

calculations show that it also has 3 universal form in a 2DEG :

Twi (D = - e2/mnt (6.34)

a6

when T {1 T; where T; 15 the relaxation time due to inelastic coms‘.ions.(:"Eh

47) Qutside this time range Twi (D) 1s negligible. For t ¢ T this comes about

because the Boltzmann transport approximation to y(t) already gives the
correct value of y(0). For t) T, it comes about because inelastic collisions
(which we have previously ignored) are phase randomsing and therefore
destroy the coherent back scattering. Hence, to obtain the weak localisation

correction to 0 we have only to integrate Twi (1) in equation (6.34) between the

time cut-offs T and T Thus we obtain
oy = - (€2/Th)In (x;/T) (6.35)

Equation (6.35) gives Oy ina 2DEG. The weak localisation correction to

o takes different forms in 3D and 10.(47) The transition in the behaviour of
Oy from Z0 -+ 3D and frem 20 » 1D is ireated by Cantrell and Butcher(49) and
Kearney and Butcher (50) The 1atter authors also discuss weak lacalisation
corrects to the thermal and thermoelectric transport coefficients which arise
inevitably at iow temperatures because these quantities are determined by the
conductivity through relations of the type given in equation (3.7).(42)

Most experimental work has been concerned with Oy in 2D. At liquid

helwm temperatures T is constant and T & TPwithp~1- 2(51)
Consequently, weak localisation produces a logar ithmic reduction of @ which
increases with decreasing T. In Figure 26 we give resistance data showing
behaviour of this tgpe.(51) We would also expect to find that o increases in a

magnetic induction field because that will remove the time reversal symmetry

and censequently destroy the phase coherence which is responsible for Iy

In Fagure 27 we give negative magnetoresistance data for a Si MOSFET with the



57
expected behaviour (1) Spin-orbit coupling also modifies the coherent back
scattering in a way which is well understood both theoretically and

experimentallg.(35)

6.6 Universal Fluctuations

Macroscopic conductors always differ from one another microscopically.
We usually choose 1o measure physical quantities which are insensitive 1o the
microscopic differences. Moreover, in theoretical calculations, it is
traditional to remove microscopic fluctuations by taking an average over an
appropriate ensemble of systems which are identical macroscopically although
different microscopically. Experiments are usually carried out on one sample.
However, provided the sample is large enough, it may be regarded as
constituting an ensemble of smaller (but slill macroscopic) samples in which
*sell-averaging” occurs.

The above point of view has been the standard one in electron transport
physics until very recently. The rapidiy diminishing size of electronic
microstructures has now made it untenable in many cases at liguid hellum
temperatures. Conductance measurements , for example, often exhibit
reproducible, sample-specific, fluctuations when a parameter like the
strength B of the magnetic induction field is varieq. we show two examples in
Figure 28 which is taken from a recent review of universal fluctuations by
stone.£52) The lefi-hand and centre curves show results for an 0.8um
diameter gold rl‘ng(53) and a quasi-1D S5i MOSFE 1(54) respectively. The
fluctuations produced by changing B reflect the changes induced in the phases
of the one-electron wave functions for the specific distribution of static
scatterers present in the experimental samples. To make the fluctuations

show up 1t is necessary 10 cool the specimen until the sample length L 1s in the

order of or less than the distance | = (D'I:i)” 2 which an electron at the Fermi
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level ¢ diffuses in the mean free lime T; between inglastic scaltering events.
Here D 1s the diffusion constant. H evolves the mean free time T between
elastic scattering events (which are overwhelmingly more numerous than

inelastic scaltering events, and is given by equation (3.11) with € = €.

Inelastic collisions are phase randomising because they wnvolve the excitation

of another system (e.q. phonons) with an uncontrolled phase. The condition

L< L; ensures that phase randomisation is unimportant. In the opposite
extreme, when L >} L;, the inelastic collisions have a self-average effect

which destroys the fluctuations and bring back conventional macroscopic

behaviour. Specimiens whose dimensions lie between L, (which marks the

beginning of macrescopic behaviour) and atomic length scales (which
guarantee microscopic behaviour) are callied mesoscopic.(37)

Conductance fluctuations had been observed in small systems for many
years before their origin was appreciated. They are much more interesting
than might have been supposed because, In mesoscopic systems, they have a
universal characler. The rms deviation AG of the conductance G is in the order
of e4/h. We see by inspection that this is so for the experimental curves in
Figure 28. The result was originally discovered in numerical calculations
made by stone.{55) we show one of his curves on the right in Figure 28. It has
since been confirmed by Lee, Stone and Fukagama(ss) in an analytical
treatment of the statistical behaviour of G when the distribution of static
scatterers is changed. These authors also verify numerically their “ergodic
hypothesis” that AG is independent of what is varied in a mesoscopic system !
the distribution of static scatterers, B or ¢. Calcuiations of the fluctuations
of G for all three cases are shown in Figure 29 which is taken from reference

56. The ergodic hypothesis is important because it allows the resutts of the

analyhical theory (in which the distribution of static scatterers is varied) fo be



59

used 10 interpret experiments (1n which either 8 or Er 15 varied) Lee et al

also give the enerqy scale €¢ on which the fluctuations of G are correlated
when € 1s varied as in the right-hand diagram of Figure 29. It 15 essentiaily

determtined via the uncertainty principle by the time that an electron at the

Fermi level takes to diffuse across the conductor : € = fsz/Lz-

Universal fluctuations and weak localisation corrections have the same
origin, the phase coherence of the one-electron wave function in the elastic
scaltering reqime. The relationship of the other transport coefficients to
conductivity through equations (3.7) means that both effects should also oceur
in themopower and thermal conductivity. We drew attention to that in Section
6.5 in the case of weak locatisation. However, no relevent experimental data
has been reported at the time of writing. Thermopower fluctuations have been
discussed by Esposito et al,(57) using an approach similar to that of Lee et
al,(ss) and by Kearneg(SB) who replaces o(e) by a model conductance function
G(€) in equations (3.7). The modal function is shown in F igure 30. !t has a
mean value of 6e2/h and Ac - 60peV which is appropriate to a sample with | =
1pmand D = 10~Zm2s~1 natve application of the low-temperature equation
(3.9a) with this G(e) indicates that the thermopower will fluctyate about zero.
InFigure 31 we show the resuits of detailed evaluation of the integrals in

equation (3.7) when T = 60mK (ie. kBT~ 0-lec). 5trong fluctuations about zero

are exhibited. Kearney shows that they are smoothed out by thermal

broadening when T ~ G.3K (i.e.kBT ~ O-Sec).

We lay stress here on thermopower fluctuations because the first
observations of them have recently been reported for GaAg wires.(sg) Typical
plots of the thermoelectric voitage fluctuations as B varies are shown in
Figure 32. The temperature gradient is zero for trace A and increases for

trace B and again for trace C. The latter two traces have been offset by apv
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trace B and agaw for trace C. The latter two traces have been of fset by 4pv
and 7tV respectively for clarity. The fluctuations about zero which are to be
expected on the basis of the above discussion and the ergodic hypothesis are
clearly demonstrated. The magmitude of the fluctuations 1s in reasonably good

agreement with the theory of Esposito et a1.(57, 59)
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7 Thermal and Electrical Transport Formalism for Electroanic

Microstructures with Many Terminals

7.1 Introduction

In 1957 Landauer (50!

proposed a formula for the electrical
conductance of a two-terminal electron system. This has been
expressed by Buttiker (41 in a way which is convenient for a
many-terminal system of the type shown in Figure 33. The Buttiker
formalism directly relates the conductance matrix G to the electran

scatté:ing matrix S. The formalism has been useful for the

interpretation of experiments on low-dimensional systems relating to

universal fluctuations [52'55). Aharanov-Bohm oscillations (5]].

ballistic transport (61_63). the integer guantum Hall effect (84} ang

its quenching at low magnetic fields {65-67)

In this section we derive the Landauer-Buttiker formula for G.
We also derive corresponding Eormulae for the thermal and
thermoelectric transport watrices which are associated with a

multi-terminal microstructure (ﬁa'.

They are the terminal analogues
of the local tensors describing thermopower, Peltier effect and
thermal conductivity in bulk solids which are discussed in Sections
3.1, 6.1 and 6.4. In the macroscopic regime the local tensors
determine the corresponding matrices via the solution of macroscopic
conservation equations with appropriate boundary conditions. In the
mesoscopic and ballistic regimes this is no longer the case. The
thermal and thermoelectric transport matrices are controlled by
Schrodinger's equation and, like G, they may be directly expressed

in terms of 5.

Universal fluctuations of thermopower have recently been

(59}

measured That apart, there is no current experimental data on

the thermal and thermoelectric transport matrices of mesoscopic and
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ballistic systems. Nevertheless, interesting and challenging
experiments are easily envisaged and several authors have discussed
the theory of thermal and thermoelectric transport in microstruckures.
Sivan and Imrcy (69) relate the fluxes of charge and heat in the
terminals to chemical potentials and temperatures which are also
measured in the terminals in a particular way. Esposito et al (37
discuss universal Eluctuations of thermopower. Kearney and Butcher

(42} onment on that problem and they also discuss the analcoque of the

Wiedemann-Franz law. Finally, Streda (70) outlines a calculation of
the thermopower of a guantum point contact. These discussions are
all restricted to two-terminal microstructures in zero applied
magnetic induction field.

We present here a genecal formalism in which all the transport
matrices are expressed in terms of § for a microstructure with any
number of terminals which is subjected to an applied magnetic
induction field. To do so we relate the fluxes of charge and heat in
the terminals to chemical potentials and temperatures in the resevoirs
feeding the terminals. Buttiker has stressed the overall utility of
proceeding in this way in the case of electrical measurements ‘4).

His arguments are easily extended to thermal and thermoelectric
measurements. The resulting formalism may be used to interpret
experiments in which chemical potentials and temperatures are measured
in the resevoirs. It may alsc be used to interpret experiments in
which these quantities are measured in the terminals provided that the

measurement procedures are defined. The results of Sivan and Imry

(69’, for example, may be recovered by using their definitions.
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In Section 7.2 we outline the salient properties of the electron

energy eigenstates in the terminals when a uniform magnetic induction
Eield is present. The scattering matrix is discussed briefly in
Section 7.3. With these preliminaries out of the way, the
many-terminal transport relations for a microstructure containing
non-interacting electrons are easily written down in Section 7.4, We
initially give them in a nonlinear form which relates the fluxes of
charge and heat in the terminals to the chemical potentials and
temper&tures in the resevoirs. Then we linearise the eguations by
assuming small departures from equilibrium, The formulae for the
transport matrices in the linearised equations are given both exactly
and as low temperature approximations which are particularly simple
and instructive.

In the general linear analysis it is convenient to use the
changes of the chemical potentials and temperatures in all the
resevoirs as independent variables. However, the fluxes are all
controlled by differences between these quantities and the total
fluxes of charge and heat into the microstructure both vanish. In
Section 7.5 we use these observations to simplify the terminal
relations. The simplified equations have the advantage that it is
possible to invert them so as to use the charge fluxes in the
terminals as independent variables instead of the changes of the
chemical potentials in the resevoirs. This is analogous to what is
usually done in bulk solids (see equation [3.2)). 1In Section 7.6 we
discuss Onsager symmetry and reciprocity in electrical, thermal and

thermoelectric configuraticns.
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The analysis developed here is, for the most part, relatively
new! 8} It is consequently rather more formal than is the case

elsewhere in these lecture notes. Simple applications are given in

Section 8 which will fill out the bare bones of the analysis.

7.2 The electron states in the terminals

We follow Buttiker ‘*) ang suppose that free electrons with
effective mass m enter the microstructure through ideal terminals in
the form of long, straight electron waveguides. To discuss the energy
eigenfunctions in a particular terminal it is convenlent to introduce
a leocal Cartesian coordinake system, Oxyz, with Oz parallel to the
axis of the terminal and z increasing towards the microstructure, (In
the present context this convention is more convenient than taking Oz
parallel to a direction of conEinement as we did in Section 2). The
one-electron Hamiltonian is given by

Ho= 1 (p+ed®? +vixy) (7.1)
Im*
where QD is the vector potential and V{x,y) is the poteantial energy
field confining the electrons in the terminal.

We suppose that the local magnetic induction field B is uniform
and cheoose ﬁo = {-Bzy, O, Byy - Byx) so that H does not involve z.
Then the energy eigenfunctions take the

Vak (x,¥.2) = B2 explikz) dakix,y] (7.2a)
with enetgies

Eqk = Eq(ky + hixZ/2m". (7.2b}
In equation (7.2a) & is the length of the terminal considered and a
labels the normalised transverse eigenfunctions $gg (x,y). These are
determined, together with the transverse energies BEq{k}, by the 2D
Schrodinger equation

Hbak (x,¥) = Egi dakix.y) (7.3)

in which p, = hk.
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To quantise k we introduce periodic boundacy conditions over the
terminal length L. Then we may verify that the diagonal matrix
element <ak|vz|ak> of the longitudinal velocity operatar vg =
(pzfenz)/m' is equal to the group velocity vak ~ ﬁ_ldcuk/dk {cf
reference 45). Moreover, the density of states Ngg per unit energy
range per wnit length of the terminal is Ngg = [ndtuk/dk}'i where we
have included a factor of 2 to allow for spin degeneracy. Hence

Nax<eklvzlak> = 2n7! (7.4)
The eléqance of the Landauer-Buttiker formalism is due to this simple
fundamental result.

In the above discussion we use a particular gauge to make the
treatment transparent. However, the essential results are all gauge
invariant. Thus, suppose that we change to a new gauge in which the
vector potential becomes A% = A% + Vx. Then Wgx is replaced by VYax
exp (-iex/h) and @ and x may still be used to label the
eigenfunctions. It is, therefore, easy to verify that €qg. Mgk, the
diagonal matrix element of the longitudinal velocity operator and the

fundamental result (7.4) remain the same in the new gauge.

7.3 The scattering matrix

The terminal transport relationships all involve the scattering
matrix § evaluated at some value € of the one-electron energy. In
this Section we outline the definition of S and discuss its symmekry
properties.

The case in which B + D in the terminals is well known t4)
Then Eq(k) = Eg which is independent of k. We see from eguation
(7.2b) that the channels (i.e. eigenfunctions) with Eg > € are
evanescent and decay to zero away from the microstructure. In the

asymptotic regions of the terminals we are concernad only
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with the propagating channels with Ey < €. FEqguation (7.2b) determines
|k| for each propagating mode and we may identify an incideal wWave
with X = |k| and vgk = hik|/a* and a reflected wave for which both
these guantities are negated, The general case in which 8 # 0 in the
terminals is similar but more complicated because Eq{X) in equation
{7.2b} depernds on k in a way which involves the detailed structure of
the terminals. MNevertheless, there are still evanescent channels
which may be ignored and propagating channels with incident and
reflecged waves for which we write k = kj and k = ky respectively.
They are distinguished by the sign of vgk : vak; ~ © and vgk, < ©-

In the general case it ig convenient to write the wave function

in the asymptotic regions of the terminals in the form:
Vel (aat®/vax 2 bakyt ba 8/ 1vai, 142 b, - (1.5)

a
In equation (7.5) we have generalised the interpretation of @ : it now
labels a channel in any of the terminals and the sum ranges over the
propagating channels in all the terminals. The square root facrars
have been introduced to give a convenient normalisation to the
coefficients ay and bg of the incident and reflected waves. Their
contributions to the longitudinal particle Elux l'l <¢|vz|¢> are
simply Iaul2 and -Ibul2 respectively.

The scattering matrix § determines the relation imposed by the
microstructure between the coefficients a = {ag]} of the incident waves
and the coefficients b = {bg} of the reflected waves. We write the
relation in the form

b=5a (7.6}
where a and b are column matrices. Since particles are conserved we

must have (with the normalisation introduced above) |9|2 = ia_|2 for
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all a. Hence S is unitary, i.e. §71 = st Another important symmetry
property of S5 follows from the time-reversal symmetry of Schrodinger's
equation for the entire microstructure at energy €. The Hamiltonian
has the form given in equation (7.1) with A how describing the entire
applied magnetic field B(r) and V(x,y)} replaced by the entire
potential energy fieid Vix,¥.2). Now suppose that B(r) is rever=ed
everywhere by changing the sign of A. The new wave function For the
entire system is the complex conjugate of the old one (cf. Section
6.4). bonsequently, since complex conjugation interchanges incident
and reflected waves, we have the time-reversal symmetry property:
S5(-B) = [S_l(g)]'. Fipally, when this property is combined with the
unitary character of 5 we obtain the reciprocity relation 5(-B) =

Tm ).

7.4 General Terminal Transport Relations for Microstructures

The terminal transport relations involve real quantities. The
scattering matrix enters into them through the real matrix T of
transmission and reflection probabilities with elements

Tag = |Sagl? (7.7)
We see by inspection that Taf is the probability that an electron
incident in channel B will appear in channel @, when a # 8, or will be
reflected in channel B when O = B. The reciprocity relation for §
which is derived at the end of Section 7.3 implies that T is
transposed when the magnetic induction field is reversed, i.e,

TaB (-B) = Tgy (B). 17.8)
Moreover, the unitary nature of § may be exploited easily to show that

[ Tap ¢ ] Tag = 1 (7.9)
a

We make extensive use of equations (7.8) and (7.9} in Sections 7.% and

7.6.
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Follewing Buttiker {4 and Sivan and Imry { we suppose that

the accupation probability fq(€) of the incident wave in channel o is
given by a Fermi-Dirac function:

fq 1€} = [expl{€ - uy)/kaTg) + 117! (7-10)
where Uy is the chemical potential and Ty is the temperature. Then

the total charge flux towards the microstructure in channel @ is

Jo = -efdefy (k) (vak;/R)
+e] [actg(ANgy ;) (vBK,/2)Tag
]

= -e7! §[aetplup {7.11a)
8
where we have used equation (7.4) and

Tap = 2e% i8qg - Tap)- (7.11b)

h

Similarly, to obtain the total heat flux Qy flowing towards the
microstructure in channel @ we have only to divide Jy by -e and insert
a factor (E - Ug) in the integrand of equation (7.lia). Thus we
obtain

Qg = e 2 I fchFaB(e - Hg}-. (7.11c)
In eguation (7.11) itBis left understood that a and B always refer to
propagating channels.

To linearise equation (7.11) we put

Mg = Ep-eVg (7.12a)
and

Ta = T - 8g (7.12b)
where eVy and Oy are small perturbations of the chemical potential and
temperature in channel @ Erom equilibrium values €p and T which are

common to all channels. Then

fg = Fo * Eé levg - E2EF 0g) {7-13)
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where f, is given by equation (7.l3} with Uy = € and Tg = T and EJ
is the energy derivative of En. (In contrast to the notation used in
Section 6.2, we have insected minus signs in equation (7.12) to
enhance the analogy between the final transport relations toc
microstructures and those for bulk solids}. when equation (7.13) is
subsktituted into equation {7.1l) we see that fq makes no contribution

to Jg and Qg because of equation (7.9). Hence we obtain

Ja = ] [Gag Vg * Lag @81, {7.14a)
B .
Qo = ] IMaB VB + Nog 8gl. {7.1ab)
where
Gog = - Jde ¢} Tog = Tag (7.15a)
Lag = - _i_ Jae fé Tap (€-EF) = LoeTI‘Iag. {7.15p})
eT
Mog = -T Lag - - LoeT? g (7.15¢)
and { 2
%ag = 1 Jaeg!oTapie-ep)? - - Lotlag {(7.15d)
elr

with Lo = (ﬂkg/e)Z/J denoting the Lorentz nuuwber. In these equations
the first formula is exact. The second formula is the leading term in
a Sommerfeld expansion (M) 4 10w temperatures in which Fgg and its

energy derivative I'/.-_,B are evaluated at € = Ep (cE. Section 3.3).

1.5 simplification of the Terminal Transport Relations for a

Microstructure.

The similarity between the rerminal relations (7.14) and the
local relations (1.1) is obvious. However, some care is needed in
developing the analogy. The Greek subscripts in eguation (7.14) “abel
propagating channels. We are more interested in terminals. Each

terminal may contain several propagating channels which are all fed

T0

from a common reseveir so that they have common values of Vg and 63.
Moreover, only the total fluxes of charge and heat in each terminal
are accessible to measurement. To allow for these facets of the
wmicrostructure problem we have only to reinterpret a and B in egquation
(7.14) as terminal labels and replace TQB in equation (7.15%) by

Tegg » 1 T (7.16)

a'f’ a'g’

where the summation is over all propagating channels a/ in terminal &
and BI in terminal B. Then the terminal relations m;y be written as
matrix equations:

J = G.v+L.8 (7.17a)

g = M.V + NSO (7.170)
In equation (7.17), with Ny denoting the number of terminals, I, Q, V
and Q are Nyxl column matrices with elements Jq. Og. Vg and 8g
respectively. The elements of the Ny x Ny square matrices G, L. M and
N are defined by equations (7.14) and (7.16}.

Equations (7.17) may be further simplified because equationg

{7.9}) and (7.15) show that the rows and columns of all the transport
matrices in them sum t§ zero. The first property reflects the fact

that J and Q are determined only by differences of the terminal

voltages and temperatures. The second property reflects the fact that
X Jg = { Qg * O because of particle conservation. We are therefore

::ee touchoose terminal N; as a reference {ground) terminal at which
we set Vy, = BNt = 0. Moreover, we have no need to calculate Jy, and

N, because they may be determined subsequently from Jg and Og in the

other terminals.



71

To take these observations into account we have only to remove
the Niyth row and column from all the matrices in equation {7.17). We
leave this operation understood. The reduced Eorm of equation (7.17)
which results is closely analagous to the theoretician's form (3.1) of
the local transgport equations. Moreover, it has the advantage that G

now has an inverse R = G~! so that we may rewrite the equations as

<
It

R.J + S,

f

(7.1Ba)

@ = MJ-«k.8 (7.18b)
which are the analogues of thelexpe:iuentalist's form (3.2) of the
local transport relations, The (Ng-l)x(Ng-1) matrices R, S, Il and k
in equation (7.1B} are given in terms of those in the reduced form of
equation (7.17) by equations {6.28) with G and R replacing ¢ and p
respectively. In equation (7.18) we use the conventional notation §
for thermopower because there is no likelyhood of it ever being

confused with the scattering matcix.

7. Onsager Symmetry and Reciprocity

The Onsager symmetry of the matrices in equation (7.14), in the
reduced forms of equation (7.17) and in equation (7,18) are all
dictated by equation (7.8). Together with equation (7.11b} this
equation impiies that [gg(-B) = Tga(B). Consequently, ail the
matrices in equations {7.14) and (7.17) are transposed when the
magnetic induction field is reversed. Thus the Onsager symmetzry
relations (6.27a) and {6.27c) survive intact in the micrastructure
{with G replacing 0) while equation {6.27b} is replaced by the simpler
symmetry relation L{-B) = Z}gl. However, since equation (7.l5c}
implies that M = ~TL in the microstructure, we may {if we wish) recast
this simple symmetry relation in a more complicated form which is

analagous to eguation (6.27b): L{-B) = -q;[BJ/T.

12

The Onsager symmetry retations (6.29) all survive intact in a
microstructure with R replacing p. We note that equation (6.29b)
cannot generally be simplified in a microstructure in an analagous way
to equation (6.27b) because R, which replaces p in equation (6.29),
does not commute with L and M. However, in a two-terminal network all
the transport matrices in equation (7.18) reduce to scalars and we
have the simple relation M =-T% in which both Il and 5 are even
functions of B.

Eiectrical reciprocity is discussed by Buttiker (4). It rests
on the Onsager symmetry relation (6.27a) with @ replaced by G, We
give a simple treatment which is easily extended to deal with thermal
and thermoelectric reciprocity. Thus we set 8 = 0 in the reduced form
ot equation (7.17a}. Then, We have

~ ~r
vV (-B1.d (B) = V.(-B).

(B). J (-B) (7.1%)
Here V (t B) is related to J(iB) by equation (7.17a) in magnetic
induction fields *B with =0 but are otherwise arbitrary. In the
second line of equation {7.19) we transpose the scalar product and in
the last line we use E}g) = G(-B).
Let us consider a two-terminal network. When terminal 2 is

grounded equation (7.19) gives

V) (=B)/T1(-B} = V1(B)/J1(B) (7.20)
i.é. the two-terminal resistance is an even function of B. Now

consider a four-terminal network. When terminal 4 is grounded

equation (7.19) gives

[} val-B JatB) = 1 Va(B)a(-B) (7.21)
a=1 a=1



Suppose that, in the magnetic induction fields + B and - B, we connect
an ideal voltmeter between terminals 1 and 2 and between terminals 3
and 4 respeccively. Then, for + B we have J)(B) = J3(B) = 0 and for

-B - =
B we have J3(-B) = J4{-B) = O so that charge conservation gives

J2{B) = - J;(-B). Hence equation {7.21) reduces to
vi(-8) = ViiB) - va(B)
- (7.22)
Ji(-B)
i.e. veE T3
Ri2,34(-B) = R3q,12(8) (7-23}

in the natation of Buttiker ‘%), Here; Raf,y§ denotes a four-terminal

resistance which is detecrmined by measuring the voltage drop from Y to
§ with an ideal voltmeter (which draws noc current) and dividing it by
a current which enters through @ and leaves through B. Equaticn
(7.23) expresses the electrical reciprocity theorem: Rag,y8 is
unaltered when the current source and voltmeter are interchanged
provided that B is reversed [4'. It has been verified experimentally
by Benoit et a1l?2y,

Since N(B) and K(B)} have the same Onsager symmetry as G{B) we

may immediately write down analagous reciprocity relations for thermal

" i
resistances” measured when V = O or J = O by using a heat flux source

and an ideal temperature meter which draws no heat flux. Similarly
L

since L(B) and ¥ (B) also have the same Onsager symmetry as G (B}, we
o ; ;
ay also write down analagous reciprocity relations for thermoelectric

resistances* measured {when ¥V = Q) by using a current source and an
ideal temperature meter which transmits no charge flux and {when 8=0)

by using a heat flux source and an ideal voltmeter which transmits no

heat flux. These relationships are not readily tested

74

experimentally. Most importantly: when J = 0, which is the usual
situaticn in thermopower Beasurements, no 4~terminal reciprocity
exists because S5(-B) # E]g). In the two-terminal case, however, all
the transport matrices, including §. reduce to scalars which are even

functions of B,

7.7. Conclugion

The transport relations in the general form of equation (7.14}).
in the reduced Eorm of equation (7.17), ot in the aléetnative form of
equation {7.18), all give a complete description of the linear
electrical, thermal and thermoelectric transport properties of a
microstructure. The formulae (7.15) and {7.16) for the transport
matrices are exact when the microstructure contains independent
electrons which do not have any phase-breaking interactions with
another system, e.g. phonons. They have the transparent simplicity
which is characteristic of the Landauer-Buttiker formalism.
Mevertheless, of course, evaluating the formulae is complicated when
there are many terminals.

The theory developed in this Section puts the formulae for the
thermal and thermoelectric matrices of a microstructute with many
terminals on the same footing as those for the conductance matrix.
For simplicity we have ignored spin-splitting, spin-orbit coupling and
periodic crystal fields. Further development of the formalism is
required to take account of these effects. The incorporation of
electron-phonon coupling would greatly enhance the scope of the
theory. Thermal and thermoelectric measurements on microstructures
with more than two terminals present an interesting experimental

challenge.
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8. The Aharonov-Bohm Effect{33. 73)guantym Paint
Contacts(61-63) gng the integer Quantum Hall Effect (64.75-78)

8.1 Introduction

The phenomena which we discuss now provide simple tllustrations of the
Landauer -Buttiker formatism developed in Section 7. They are simple
because, for the most part, we confine our attention to two-terminal
microstructures at low temperatures. The full subscript notation used in

Section 7 then becomes over elaborate. The reduced form of equation (7.17a)

when @ = 0 is simply Jy = 644 V4 because V, = 0. We use the notation G for

Gyq =Jq/Vy which we may write in the form

6= 6yp=(2%/n) T Torps (8.1)

(X/ﬁ/

Here, in the first equality, we have used the remark foltowing equation (17)

that Gy + Gy = 0. The second equality then follows immediately from

equations (7.11b) and (7.16). Equation {8.1) exhibits the fundamental result
that, in units of 2e2/h, G 15 equal to the sum of the transmission coefficients
of all the propagating channels B~ in terminal 2 to all the propagating channels
o in termtnal 1.

This deceplively simple equation has wide-ranging utility. 1t remains
valid in an applied magnetic induction field. We therefore use it in Section 8.2
1o discuss Aharonov-Bohm magnetoconductance oscillations. In Section 8.3 it
heips us to explain the quantisation of G when B = 0 in quantum point contacts

for which T,,/g. = 0 or 1. Finally, in Section 8.4 we fotlow Buttiker(64) and

discuss the integer quantum Hall effect from the point of view of edge states
for which the sum of transmission coefficients in equation (8.1) when f_ is
large is again integral.
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8.2 The Aharonov-Bohm Effect

in 1959 Aharonov and Bohm showed that the conductance of a ring
oscillates as a function of the magnetic flux threaded through 173 Their
argument 15 simple and we give it below. A decade and a half was to pass
before the effect was seen by Washburn and Webb in the form originally
predicled.(53)

InFigure 34 we show the 0-82pm diameter gold ring used by washburn

and Webb. The terminals are at the top and bottam of the ring. Electrons

entering at the top divide between the left-hand side C, and the right-hand side
Cr. Inthe wire on either side we may write the one-electron Hamiltonian in

the form

H = 0Z2/2m® [(p + eA%)/H12 + V() (8.3)
Here, A describes the flux threaded through the ring and, as usual, ¥(r)
describes the confining potential and the elastic scatierers. When Al is
slowly-varying we may define a local wave number which is equal to the

component of (p + eA®)/ along the axis of the wire. Hence, threading a flux ¢

through the ring produces phase shifts

in the wave functions of electrons going aleng CL(R)' The relative phase shift

between these two paths is

48 < 9 - B = (e/h) [ring A%dr = 2114/4, (85)
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where ¢, = h/e is the flux quantum. We see from equation (8.5) that A8 = 2nm,
with m integral, when ¢ = My consequently, all the transmission coefficients
T“/B/ in equation (8.1) are periodic in ¢ with period bo

In an attempt o observe this behaviour Sharvin and sharvin{74) used a

hollow tube of Mg with a diameter of 1jm and a length of 1cm. They saw

oscillations in G but with flux period ¢,/2 instead of ¢,. The reason for this

unexpected result provides an interesting application of the theory of weak
localisation corrections which is inen in Section 6.S. There we set B = 0 and
noted that coherent back-scattering along time-reversed paths reduces the
bulk conductivity of a 2DEG below the value which is predicied by Boltzmann
transport theory. A similar effect occurs in ring structures. The conductance
is reduced below the semi-classical value as a result of constructive
interference between multiple scattering paths which return to the input via
time-reversed paths going right round the ring in clockwise and
anti-clockwise directions.

Weak localisation effects in the bulk are not washed out by system
averaging when B = 0 because the necessary coherence is guaranteed by
time-reversal symmetry in every member of an ensemble. Similarly, the
corresponding effects in a ring structure also survives system averaging
provided that the flux threaded through the ring is small enough. Indeed, the
theory predicts precisely what Sharvin and Sharvin observed : G oscillates

with a flux period ¢,/2 because gach of the two paths involved completely
encirclas the flux 0.(53) The Aharonov-Bohm oscillations with flux period bgs

on the other hand, self-average to zere in the relatively long tube used by

Sharvin and Sharvin because different paths €, and C are subject to random

phase shifts preduced by the different elastic scatterers which are

encountered en route.
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The wires in the ring shown in Figure 34 are made from a 38nm. thick
goid film and are only 40nm. wide, These very small dimensions mean that

self-averaging is suppressed and the conductance data obtained with the ring,
which 1s shown at the top of Figure 35, exhibits osciliations with flux period

¢o- The Fourter spectrum at the bottom of the Figure shows weak harmenic

content with period %/ 2 which may include contributions from the weak

localisation effect seen by Sharvin and Sharvin,

8.3 Quantum Peint Contacts

In Section 8.1 we define a quantum point contact to be a two-terminal
electronic microstructure in which every transmission coefficient Ta’ﬁ’ in

aquation (8.1) is either O or 1. Then G is quantised in units of 2e2/h. The real
problem is not how to define a quantum point contact, it is how to make one.
Similar solutions to the fabrication problem were presented independently in
1988 by a group in the Netherlands(®1) and a group in the  U. k(62)

We show the structure used by the Netherlands group in the inset of Figure
36. It consists of 2DEG at a modulation-doped GaAs/AlGaAs hetarojunction

which is overlayed by a metal gate. When the gate bias Vg is negative

electrons are driven away from the region underneath the gate. The two

terminals of the device are the wide 2DEGS on either side of the gate. These

are so broad that their resistances are unequantised and are independent of Vg.
However, 1o get from one terminal to the other, electrons must pass through
the constriction produced by the gate bias. This becomes narrower and

narrower as Vg becomes more negative. Consequently fewer and fewer of the

channels in the constriction can propagate at the Fermi level.
The constriction is the quantum point contact. We see from the inset that
its width w < 0-25um. Its length L is less well defined but, (again from the

inset) L € 1.0um. Both these lengths are much less than the elastic mean free
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path in the 2DEG (8.5um) and the inelastic mean free path at the temperature
of the experiment (0-6K). Consequently, the electrons do not make a significant
number of collisions with either impurities or phonons while traversing the
constriction. Moreover, provided w varies sufficientiy slowly, they do not
~make a significant number of collisions with the edges of the canstriction
either. Instead, each of the channels which can propagate at the Fermi level in
the output terminal either passes through the constriction without reflection
or is cut off and reflected back completely. The sum in equation (8.1)
therefore reduces to the number of channels which can propagate through the
constriction which decreases by one each time another channel is cut of f by
the progressive reduction of w. This is the origin of the staircase structure
of the resistance which 1s shown in Figure 36. To present the data in its most
illuminating form it is necessary to identify and subtract the series resistance
of the terminais. The reciprocal of what remains is the conductance of the
constriction which we plot against gate voltage in Figure 37, The quantisation
in umts of 2e2/h is clearly exhibited. Similar results are reported in
reference 62.

It can be objected that the assumption on which this interpretation of the
data is based is possibly untenable. We have supposed that channels change
adiabatically en route through the constriction and this might not be the case
because of the sharp changes of width which are involved, However, Stone and
Szafer(63) have made detailed calculations of G on the basis of equation (8.1)
for the two structures shown at the top of Figure 38 in which spin degeneracy
1s ignored. In spite of a4 : 1 change of width between the terminals and the
constriction sharp quantisation is predicted.

In Section 7 we developed the Landauer-Buttiker formalism to deal with
the thermal conductance x and the thermopower S of a multi-terminal
microstructure. It is interesting to apply these ideas to a quantum point

contact. Both k and S are scalars. At low temperatures k is related 1o G by

a0

the Wiedemann-franz law K = LOTG {(where Lo is the Lorent2 number) which

follows immediately from equations (3.2) and (7.12). Moreover, the
thermopower 5 is related to G by the Mott formula (3.9a) with o replaced by G.

Conseguently, in a two-terminal microstructure, k has ihe same staircase

structure as G but with a step height of A,T ez/h. Moreover the behaviour of

3 as a function of Vg is described by the theory of the quantum size effects in

the thermopower of 2DEGS and 1DEGS which is given in Section 4.3. Ina

quantum point contact the normal component Sy of S vanishes because G is
constant between the steps. The anomalous component Sp has a negative sign
in a quanium point contact because G increases whenever € moves through a

subband minimum in the constriction. Its magnitude has the form which is

sketched in Figure 9 (as a function of eF) and is calculated in detail by

Cantrell and Butcher.(‘m) This behaviour, which remains to be confirmed

experimentally. It has been treated recently by Streda(70)

8.4 The Integer Quantum Hall Effeci

when a magnetic induction field B_ is applied in the direction
perpendicular to a 2DEG the resistivity p 1n equation (3.2) becomes a 2D
tensor. The elements of the tensor are easily evaluated in semiclassical
theory by 1aking account of the Lorentz force which § exerts on the electrons.
We consider a degenerate electron gas subject 1o elastic scattering with a
momenturn relaxation time T. Then identical results may be obtained either
from Beltzmann's equation or, more simply, by solving Newton's equation of
motion for the average electron velocitly (v) with a frictional force
-m*{y> /T added to the electromagnetic force -e(E + {v> x B]. They are

Paz = Pxx =01 (8.6a)
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Pzx = ~Pxz = WcT/0 (8.6D)

where w, = e 8/m" is the cyclotron resonance frequency, d = n el /m¥is the
conductivity when B = 0 and Oxz is orientated in the plane of the ZDEG as shown
in Figure 39(a).

These results are well known in 30{1 17,45, 71) They provide a good

description of the behaviour of a 2DEG when w.t<<1. In the opposite extreme,
when w.T>>1, it is necessary to take full account of the quantisation of the

circular motion of the electrons in the magnetic induction field. To do so it is
convenient to consider a 2DEG waveguide with width w as shown in Figure
39(a). The Cartesian axes Oxyz are oriented according to the convention
adopted in Section 7.2 with 0z parallel to the axis of the quide. We are
concerned with the solutions of the eigenvalue problem Hy = ey where the
Hamiltonian H has the form given in equation (8.3). To orientB inthey
direction (perpendicular to the 2DEG) we put A® = {0,0Bx). To take account of
the confinement of the ZDEG we make V a function of x alone which increases
rapidly as the edges of the guide are approached (The confining polential in Lhe
y direction, which created the 20EG in the first place, is irrelevant to the

present discussion). To determine y we proceed, as in Section 7.2, to write

Y = exp (ik2)¢ak(x) (8.7}
Substitution into Schrodingers equation gives

[pxz/Zm‘ +{x - xk)zm'mcz/ 2+ Vo = €ork Pork (8.8)

Here, €, 1s the eigenvalue associated with $ and X = k1M2 with

62
Iy = (h/ m"we)” 2 genoting the "magnetic” length.
In the interior of the 2DEG we may set V = 0 in equation (B.8). We then

have Schrodinger’s equation for a harmonic oscillator centred on x with

frequency w. Hence we maypula =0, 1,2, ..+, and write
¢uk - ¢u ()t - xk) (898)
€ = (0 + 1/ 2w, (8.9b)

where ¢, is the normalised octh Harmenic oscillator wave function and €, is

the acth Landau level. The spatial extent of ¢, is determined by Iy which

becomes much less than W/ when B is large. In that case it is easy to see what

happens 10 €, wWhen X, approaches the edges of the guide. The energy simply

ereases by an amount delermined by the average of V taken with the

weighting factor l¢“k|2. The dispersion curves for the propagating channels

therefore have the form shown in Figure 39(b). We see that the group velocity

has the same sign as k and is positive (negative) when x, approaches the top

(bottom) edge of the guide as indicated by the arrows in Figure 39(a). These
are "edge states”. Their importance in the integer quantum Halt effect has
bean emphasised most recently by Buttiker(®4) who cites earlier work on the
subject.

in Figure 39(b) we show a line at the Fermi level g which lies between

the third and fourth Landau levels in the buik of the 20EG. It cuts the
dispersion curves of the edge states for o= 0,1, Z at both edges.
Consequently, when the Fermi level is perturbed in a resevoir on the left

(right) of the electron waveguide, current will be carried only by the top
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{bottom) edge states. This observation is central {o understanding the integer
quantum Hall effect.

To proceed further we have to write down the terminal current/voltage
characteristics for a "Hall bar” with the typical geometry shown in Figure 40.
To begin with we ignore eleciron scattering altogether. Then the edge states
hug the edges of the Hall bar and propagate round smooth corners as indicated
by the arrows in the Figure. This behaviour 1s the quantum-mechancal

analogue of the classical motion of orbit centres along equipotential Tines.

With this picture in mind, let us consider the current 44 flowing in terminat 1.

It 15 carried by electrons moving to the right in the top edge states (which
originate in the resevoir atlached to terminal 1) and by electrons moving to the
left in the bottom edge states (which originate in the resevoir attatched to
terminal 6). Thus, the situation is analegous to that for a two-terminal
network which we treated in Section 8.1. The analogue of equation (8.1} in the

present discussion is

611 = -516 = (2e2/h) z TO(/B/ (8-10)
U/ﬁ/

where §/now labels a propagating channel in terminal 6 and oc”labels a
propagating channel in terminal 1. Moreover, since we are ignoring electron
scattering, the situation 15 also analogous to that for a quantum pownt contact
which we treated in Section 8.3. The sum in equation (8.10) is equal to the

number, v, of edge states which can propagate from terminal & to terminal 1.

Thus we arrive at the current/voltage relationship for terminal 1 : Jy =
Gv(vl - VO) where G, = 2v ez/h_ We may make similar arguments for each

terminal, Moreover, v is the same in every case because it is equal to the
number of Landau levels which are occupied in the bulk of the 2DEG. (In Figure

39(b) : v = 3). Thus we arrive at the complete set of current/voltage relations

B84
for the Hall bar :

Oy = Jy/ (Vg - Vg) = Jp/ (V3 - V1) = J3/ (V3 - V)

= Jq/(Vq-V3) = J5/(V5 - Vo) = Jg/(Vg -V5) (8.11)

We have derived these relations by ignoring electron scattering
altogether, However, they remain vatid in the presence of weak elastic
scatlering at low temperatures and high magnetic induction fields when e lies
between the broadened landau levels. This is because back-scattering is
suppressed by the exponentially small spatial overlap of the wavefunctions of
edge slates al opposite edges when § is Iarge.(64) All that elastic scattering
can do is transfer electrons between adjacent edge states which has no effect
on the sum in equation (8.10) because the electrons continue to move in the
same direction.We may therefore make use of equations (8.11) to interpret
Hall effect measurements made on a realistic Hall bar. Terminals 2, 3, 5 and

& are conventionally used as voitage probes and carry no current.
Consequently, equation (8.11) shows that V4 = V5 = Vg and V4 = Vg = Vg Tt

follows that the "longitudinal® resistance

Ry, = (V3 -~ V3)/Jy = 0 (8.12a)
and th.e "Hall' resistance

R,y = (Vo - Vg/dy = (Vg - Vg)/Jy = 6,71 =n/2v e? (8.12b)

These results hold good while € moves between the broadened Landau
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levels. The degeneracy D of each Landau level per unit area of the ZDEG may
be shown to be equal to the inter-Landau-level spacing fiw, times the density
of states m* /ﬂflz of the 2DEG when |} = 0, i.e. D = eB/mh. Hence, when v

Landau levels are full, the classical formula (8.6b) reproduces the value for
the Hall resistance given in equation (8.12b). What is remarkable about the
integer quantum Hall effect is that this value is maintained with high accuracy

while € moves between Landau levels and, at the same time, Pay = 0 instead of

having the classical value o1

Quantisation of the Hall effect was first seen by von K1itzing et al by
varying the gate voltage in a Si MOSFET with B held fixed(7>) We show some
typical data in Figure 40.(76) The plateaus in R,,are well developed and

remarkably flat as shown in the inset. The additional plateau with R, =

h/ 3e2 i3 due to splitting of the spin and valley degeneracy of the ground
subband of the Z2DEG 1n 51 which we have ignored in our discussion in the

interest of simplicity. The vanishing of R, in the region of each plateau of
R, 1s also clearly exhibited in the data. These data were soon followed by

observations of the integer quantum Hall effect in a GaAs/AlGaAs
heterojunction by varying B with n held f ixed (77} The subject has been
reviewed by Yennie{78) It is to be noted that classical behaviour is restored
when T is raised enough or B 1s reduced enough to make the simultaneous
partial eccupancy of more than one Landau level significant. A theory which
adequately describes the transition between the quantal and the classical
regimes remains to be developed.

The most unexpected development in the work on hetercjunctions was the
observation of quantised Hall plateaus with particular fractional values of v
when the lowest Landau level is only partially occupied.”gl 80) we show
some typical data in Figure 42%81) The one electron theory doveloped here
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has nething to say about the fractional quantum Hall effect. It is a consequence
of Coulomb interactien and will be discussed in the lectures given by

d'Ambrumenil(82) and Eistenstein (83)
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9. Conclusion

we have looked at three approaches 1o the theoty of electron transportin
low-dimensional semiconductor structures : Boltzmann transport theory, Kubo
formalism and the Landauer-Buttiker formalism. The semiclassical
Boltzmann equation continues to play a major role in achieving an
understanding of electron transport in these systems. Iis great attraction is
the conceptual simplicity of the formalism and the physical insight which it
provides. In addition, it is easy to include in Boltzmann's equation the many
different elastic and inelastic scattering mechanisms which often play
significant roles in determining the behaviour of the transport coefficients.
Finatly, Boltzmann transport formalism may be successfully extended to study
phonon transport as well as electron transport as we discuss in Section 5.

Boltzmann transport theery is hard to beat as a lool for investigating the
main features of electron transport in low-dimensional semiconductor
systems. What it misses out are features depending on the phase of the
electron wave function (e.g. weak localisation corrections, universal
conductance fluctuations and ihe Aharonov-Bohm effect) or on Landau
quantisation of the electron energy spectrum (the quantum Hall effect). The
Kubo formalism provides a good description of all these phenomena. However,
it is hard to use and provides physical insight only after a long apprenticeship
in the interpretation of diagrams.(z)

An outstanding feature of the last two decades has been the shrinking size
of the transport structures under experimental investigation. The behaviour
of mesoscopic and ballistic structures are now very important research areas.
Bulk transpert coefficients are not particularly useful in these regimes. One
is more concerned with terminal relationships and the Landauer-Buttiker
formalism is therefore a natural medium to use. In Section 7 we outline the
formalism for dealing with electrical conductivity. It will be developed.in
detail by Buttiker.(84} we also extend the formalism to include thermoelectric

and thermal transport. The results are very simple at low temperatures. The
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central quantity 1s the conductance matrix Geg) of the network when the Fermi
level is at eg. Numerical methods will usuatly be necessary to calculate Glep)

because of the complicated geometry of the structure. However, the
calculation is a one-electron problem and considerable progress with it has
already been made (53 03, 66)

Throughout these lectures we ignore the electron-electron interaction
except for some attention to screening and self-consistency. Very often that
is a reasonable approximation in transport calculations because the
interaction conserves both total energy and total momentum. However, the
electron-electron interaction plays an important role in producing corrections
to the conductivity which are similar to weak localisation corrections and it
dominates the fractional quantum Hall eff ect(82. 83) The Kubo formalism
again provides a good way 1o deal with the problem.(z) We have also ignored
the strong localisation effects which occur in severly disordered systems and
lead to transport by a hopping mechanism. They are reviewed by Fowler et
al.(8%) Timp. et 2186, 87) ang McInnes and Butcher(88) discuss the behaviour
of hopping conductivity in 2D and 1D systems respectively and the general
formalism is treated in 3D in the notes for 3 previous Spring Co‘llege.(Bg)

In the 1ast decade most experimental studies of electron transport in
small structures at low temperatures have been concerned with electrical
conductivity, Thermal and thermoelectric transport measurements are more
difficult to make because of the very small temperature differences involved.
There has been considerable progress recently in the accurate measurement of
small temperalure differences when the ambient temperature T 1K

Consequently, a rapid expansion of research on thermal and thermoelectric

transport has already begun and can be expected to continue.
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Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fi

Figure Captions

Schematic dtagram of an n-channel MOSFET.

The band chagram when an inversion layer (crossed-hatched) 1s

produced.
Schematic band diagram for heterojunction.
Schematic band diagram for a quantum well.

Schematic diagrams of the density of states for (a) a ZDEG and (b) a

1DEG. The minima of the first four subbands are at €q. €1, €p and €z,

Schematic plot of the Boltzmann conductivity oep) at 0K against €F.

The minima of the first three subbands are at €. €1 and €

The variation of the 2DEG conductivity with Fermi energy for the

valuesof (kgt)op given by the curves. (The depth of the dip A 1s 6% of

the highest value before the dip and the dip at B has a depth equal to
3% of the highest previous value.) The dashed lines indicate the

positions of the second and third subband mimma.(w)

Schematic plot of the negative contribution S o the thermopower of

a 2DEG against Fermi enegy in the neighbourhood of a subband

minimum indicated by the dashed line.(20)

Schematic plot of the positive contribution S, te the thermopower of



fig. 10

Fig 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

F2

a ZDEG against Ferm energy w the neighbourhood of a subband

minimum indicated by the dashed line.{20)

A plot of S agawnst Fermi energy for a 20EG. Full curve : (kel)op =

50, broken curve “‘F“ZD = 6. Both curves are drawn for T = 1K.(21)

Plots of S against T for a Z2DEG when (kFl)ZD = 6 for the vaiues of €f

in meV of (A) 48, (B) 52, (C) 4.0 and (0) 6.0.(21)

Plots of S against Fermi energy for a 2DEG when (kellop=2and T =
1K (A) and 6K (8).(21)

Experimental plots of -S/T against € and n at four temperatures.

The minimum is due to quantum size effects in the electron dif fusion

thermopower. The second subband minimum is at 12-5mey.(22)

The density of states of a 1DEG as a function of energy for (kgd)yp =

30 (&) and 5 (B). The subband minima are at 0,5and 10 mev.(24)

The electrical conductivity of a 10EG as a function of chemicai
potential for (anlD =30(A)andS(B)at T = 2K. The subband

minima are at 0, 5 and 10mev.(24)

Plots of S for a 1DEG against chemical potential for (kFl)m =30 for

T = 2K (top curve) and 8K (bottom curve).(24)

Plots of S fer a 1DEG against € for (ke2)yp=5and T = 2K (top

Fig. 18

Fig 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

F3

curve)} and 8K (bottom curve)\(zq)

Experimental plots of -5 against T for n = 3.09 and 3-49 x10!lem™2,
Phonon drag dominates above 1K. 5 changes sign at 0-35K 1n the
second case because of quantum si1ze effects in the electron diffusion

ther mopower.(22 )

Data and theory curves for n = 5.47 x 1011em2 (b), 835«
101 2em2 (d) and 141 « 101 1em™2 (1).(6) See text for detatls.

Plots against g when q,= O of the phonon distribution factor (smooth

peak) and the transition rate factor {sharp peak) in the summand of
equation (3.33). (a) T { Tp, (b) T = Tp, () T ) Ty where T is the

temperature of the maximum in - Sg/ T3 given by equation (5.38).(27)

Temperature dependence of -Sg in a GaAs/AlGaAs
heterojunction.(30) Full curves-theory, Dashed curves-data.(32) The
curves are labelled with the power of energy appearing in the

electron relaxation time.

Temperature dependence of -5g in a GaAs/AlGaAs
heterojunction.(30) Chain curve-theory with inelastic scattering.
Full curve-theory with elastic scattering., Broken curve-data(33),
The electron ralaxation time has been assumed 1o be linear in the

energy.

Temperature dependance of the diagonal component of the

phenon-drag thermopower tensor in the magnetic quantum limit.(349)



Fig. 24

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fa

Curve 1 | prezoelectric scattering. Curve2 : deformation potential
scattering. Curve 3 : Both scattering mechanisms. Crosses -

experimental data (33)

Schematic diagram illustrating two time-reversed multiple
scaltering processes from K to -k in a system with time-reversal

symmeltry. Top arrows : k + kyrkoo kz + -k Dottom arrows ;

Ll»g-)—k}-p —ISZ-) -gl -+ -k

Schematic 1llustration of the impulse response function for the
current density. Top curve : Boltzmann transport approximation.

Bottom curve : weak localisation correction,

Resistance as a function of temperature for 5i MOSFETS with
n = 2.03 x 10t2cm™2 (right-hand curve) and 5.64 x 101 2cm-2
(left-hand curve).(sl)

Magnetoresistance measured as a function of magnetic field for a S1
MOSFET with n = 4.52 x 1012cm™2 at 0-1K. The smooth curves are

theoretical fits 1o the data with with different parameter values (51)

Comparison of conductance fluctuations in units of e2/h as B varies.
Left-hand box : observed in an 0-8um diameter qold m’ng,(53) middle
box : observed in a quasi-1D Si MOSFET,(S“) right-hand box :

calculated using an Anderson model.(ss) (After reference 52).

Numerical calculations of the conductance fluctuations in units of
e2/h when the quantity varied is (a) the impurity distribution, {b) the

magnetic induction field and (c) the Ferm energy (56)

Fig. 30

Fig. 31

Fig. 32

Fig. 33

Fig. 34

Fig. 35

Fig. 36

Fig. 37

fot
FS

A model conductance function exhibiting universal fluctuations at

absolute 2ero.(5‘3)

The thermopower as a function of chemical potential at 60mK for the

model conductance function given n Figure 3p.(58)

Thermoelectric voltage fluctuations in a GaAs wire due to an
electron temperature gradient which increases from O for trace A to
larger values for traces B and C. The latter two traces are offset by
4 and 7pv respectively.(59)

Schematic diagram of an independent electron microstructure with

Ny terminals labelled 1,2, 3, .... L - N; - 1N

Transmission electron photograph of an 0-82pm diametre ring made
from a 38nm gold film. The wires are 40nm across (53)

(a) Resistance at 40mK of the gold ring shown in Figure 34 as a
function of the flux ¢ threaded through the ring. The horizontal
double headed arrow indicates the dominant ¢ = h/e flux period The
slow modulation is due to universal conductance f luctuations.(53)

{b) The Fourier transforms of the data in (a) showing a large peak at

(aHy 1. 130 7-1 corresponding to a flux period of $, and a smaller

peak at the second harmonic (aH)~! = z60 7-1

Resistance as a function of gate voltage for the gate structure shown
in the tnset (61)

Conductance of a quantum point contact as a function of gate volttaas



Fig. 38

Fig. 39

Fig. 40

Fig. 41

F6

This plot 15 obtained by subtracting the series resistance of the
terminals from the data shown in Figure 36.(61) Fig. 42
Conductance of the ZDEG structures shown at ihe top of the Figure

plotted against Ferm1 wave number. The width of the terminals 1s

four times the width of the constrictions. The quantity a is the ratio

of the length of the transition (between the tapers) to the width of the

constriction. The solid lines are exact numerical results for the

abrupt transition. The dashed line which is almost hidden by the top

curve is for the tapered transition. The dashed lines on the lower

three curves show the results of an analytical approximation for the

abrupt transition. The curves are offset verticallg.(53)

(a) A laterally confined 2DEG of width w with Cartesian axes Oxyz
lecated and oriented as assumed in the text. The arrows near the top
and bottom edges indicate the direction of electron flux in the edge
stales when B points along Oy.

(b) The dispersion curves for thé confined ZDEG shown in (a)

A typical Hall bar. The lines with arrows on them indicate the
electron flux in the edge states when the magnetic induction field
points out of the paper. Terminal 1 and 4 are current terminals,
terminals 2, 3, 5 and 6 are voltage probes.

The dependence of the Hall resistance R,y and longitudinal resistance
R, on gate voltage V(; (which controls the position of the Fermi

level) for a 31 MOSFET at 1.5K when B = 18.9T. The inset shows the

behaviour for vg ~12V 1n more detail (After reference 76).

foows

F7

The dependence of the Hall resistance R,, and the longituginal
resistance R, on magnetic {ield (which controls the Landau level
spacing) for GaAs/AlGaAs heterounction at 90mK. (a) Rox.

()R, (8D
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