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The Quantized Hall Effect

H. L. Stormer and D. C. Tsui

The Hall effect is one of the better
undersiood physical phenomena and is
widely used in semiconductor matenals
laboratories to determine the carrier con-
centration of a given specimen. A mag-
netic field of moderate strength, an elec-
tric current supply, and a voltmeter are
sufficient 1o perform combined Hall and
resistivity measurements, which can
yield direct information on the basic
electrical properties of a new material.
From an effect seemingly so well under-
stood and a measurement as routinely
performed as this, one hardly expects
any surpnises. And yet, less than 3 years
ago. a startling observation created a
new interest in the physical principles
underlving the Hall effect. Von Klitzing
et al. (1) discovered that under certain
conditions the Hall resistance of their
specimen was surprisingly constant, and
its magnitude coincided with the ratio of
two fundamental physical constants to
any accuracy to which they were able to
measure the effect {(see Fig. 1). The Hall
“resistance Ry (see Fig. 2) was found to
be quantized to

RH = -}'IT (1)

e

where # is Planck’'s constant, e is the
electronic charge, and the quantum nufm-
beri{= 1,2,3, . . .)is the number of fully
occupied quantum energy levels (the
Landau levels). This result oot only at-
tracted the attention of solid-state physi-
cists. experimentalists as well as theo-
rists, but also stirred much interest in
disciplines as distant from solid-state sci-
ence as elementary particle physics. It
presenis the possibility of a quantum
resistance standard in terms of funda-
mental physical constants and also a new
method for determining the fine struc-
ture constant, which is a measure of the
coupling between elementary particles
and the eiectromagnetic field. The fine
structure constant, a. can be related to
the quantized Hall resistance by

e= L B Ryt @

where o is the permeability of the vacu-
um and by definition equals 4w x 107
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H/m. Since the light velocity, c. is
known very precisely, the quantized
Hall effect immediately spurred specula-
tions that it could provide a new solid-
state determination of a« with an accura-
cy higher than that of previous determi-
nations. At this time an accuracy of 1.7
parts in 107 has already been achieved
{2). This is comparable to the accuracy
of earlier measurements based on differ-
ent physical phenomena, and further im-
provement is expected.

cal realization of the concept of a two-
dimensional electron system. and 1ts fun-
damental properties have been studied
extensively during the past two decades
The quantized Hall effect was first ob-
served in such a device.

More rtecently. a new structure bhe-
came feasible which, in various respects,
has proved to be a superior host materi!
for two-dimensiona! electrons (3. The
structure is called a modulation-doped
GaAs-(AlGa)As heterojunction. and it is
prepared by a highly sophisticated crys-
tal growth technique termed molecular
beam epitaxy (4). It resembies the meta
oxide semiconductor structures. but in
this case the electron gas exists at the
highly perfect interface between 1wo
crystalline semiconductors. The GaAs-
(AlGa)As interface provides a much
smoother background for the in-plane
motion of the electrons. Furthermore,
the binding electric field is not estab-
lished by an external voltage, as in the

Summary. Quantization of the Hall effect is one of the most surprising discoveries in
recent experimental solid-state research. At low temperatures and high magretic
fields the ratio of the Hall voitage to the electric current in a two-dimensional system is
quantized in units of h/e2, where his Planck’s constant and e is the electronic charge.
Concomitantly, the electrical resistance of the specimen drops to values far below the

resistances of the best normal metals.

The quantized Hall effect is observed
under conditions that are uncommon
compared to those of standard Hall mea-
surements. Magnetic fields of approxi-
mately 100 kilogauss and temperatures
close to absolute zero are required. The
specimen, 100, is exceptional. It contains
a so-called two-dimensional electron
gas, which is ultimately responsible for
the occurrence of this new quantum ef-
fect. The active region of all metal oxide
semiconductor field-effect transistors
{MOSFET's) consists of such a two-
dimensional electron gas. In these sys-
tems the carriers are confined to a very
narrow region at the interface between
two different materials; they are able to
move freely along the plane of the inter-
face but lack any degree of freedom
normal to it. Being confined to a narrow
well of approximately 107 cm, they are
quantum mechanically bound to the in-
terface. In Si-MOSFET's, the two-di-
mensional electron gas exists at the in-
terface between a slab of crystalline sili-
con and a thin (~ 107* cm) amorphous
silicon dioxide top layer. The carriers are
kept at the interface by a strong electric
field established by an external voltage
(gate voltage) applied to a metal elec-
trode (gate) which covers the oxide. The
Si-MOSFET is the most common physi-

-

MOSFET but is generated internalls
through positively charged centers watt:-
in the (AlGa)As. Shortly after the dis-
covery of the quantized Hall effect in Si-
MOSFET, the same phenomenon was
observed in GaAs-(AlGa)As structures
by Tsui and Gossard (5) (see Fig. 3). The
effect could be observed at higher tem-
peratures and lower magnetic fields,
making the experimental requirements
less stringent than in the case of the 5t
MOSFET. Hence a good fraction of
present studies are performed on GaAs-
{AlGa)As materials.

Apan from high-precision measurc:
ments of Ry, a considerable amount of
experimental and theoretical work (6-/4)
has been devoted to unraveling the phys.-
ical principles underlying the phenome-
non. The most startling recent observa-
tion concerns the resistivity of the speci-
men under study. It is found that. under
conditions where the Hall resistance 1s
quantized to any of its values Ry = £
ie*, the resistivity p,, (see Fig. 2) of the
two-dimensional electron gas appears to

H. L. Stormer is 3 member of the technical stafl
and head of the Department of Electronic and Opu-
cal Properties of Solids at Bell Laboratones, Murras
Hill. New Jersey 07974, and D. C. Tsui1s a profes.or
in the Depaniment of Electrical Engineenng anc
Computer Science. Princeton Unversity, Princeion.
New Jersey 08544,

124]



vanish as the temperature is lowered.
Two-dimensional resistivities as low as
< 5 x 10”7 ohm per square. equivalent
to three-dimensional resistivities of
< § x 107" ohm-centimeter have been
reported at 1.23 K (7). This value is
almost ten times lower than the resistiv-
ity of any nonsuperconducting material
at any temperature, and it drops further
when the temperature is reduced. Ex-
trapolation (o zero temperature indicates
that a two-dimensional electron gas in a
suitably high magnetic field is resistance-
less: it represents an ideal electrical con-
ductor. very similar 10 a superconductor.
yet the phenomenon is caused by a com-
pletely different mechanism.

The beauty of the quantized Hall effect
is that it represents the observation of
such a fundamental relation in a field of
physics seemingly so well understood.
With a superficial glance at the system
and a minimal understanding of two-
dimensional transport. one may at first

think the effect falls right into place. But
there are many hidden complications
that turn the quantized Hall effect into a
scientific puzzle. Indeed. the recent dis-
covery of fractional quantization with
i = 13 and 2/3 defies theoretical expla-
nation. In order to transmit some of
the flavor of this puzzle. we start with
a classical description to clanify some
aspects of the problem and then discuss
the effect in the case of integral quantiza-
tion.

The Classical Two-Dimensional

Electron Gas

The motion of electrons in crossed
magnetic and electric fields evades intu-
ition. In order to illustrate some of their
properties, we consider the geometry
shown in Fig. 4. The motion of the
electrons is restncted to the x-v plane
without friction or scaitering. In the ab-

sence of an electric or magnetic field, al
electrons move in straight lines in the
plane, and since the direction and the
speed are completely random, there is no
net electrical current. This monotonous
situation changes the moment an electric
field E is applied 1o the system. If E is
pointed in the negative x direction in the
plane. each electron will accelerate in
the positive x direction and. in the ideal
frictionless case. will speed up indef-
nitely. In real sysiems. eiectrons are
scattered by imperfections or vibrations
of the atoms. leading to a motion analo-
gous to that of a particle in a viscous
fuid. After a verv shont initial accelera-
tion time, the system approaches a
steady state with a constant drift veloci-
ty, vp. which for small E is proportional
to E. The resulting current density is
given by j = envp, where n is the aver-
age number of electrons per unit area. In
macroscopic terms, the relation between
E and j is characterized by either the
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Fig. 1 ttop lefy. The quantized Hall effect in a Si-MGSFET /) in
which the electeon density 15 vaned by a gate voltage V,. Instead of
being a smooth curve, the Hall resistance Ry develips plateaus
having values /A:ie”. where  is an integer. and the resistmce R, of the
Fig. 2 tbottom let), Schemat-
ic representation of a Hall experiment. The magnetr field B s
perpendicular 1o the plane of the specimen and 1o the arrent /. The
Hall resistance Ry and the resistivity p,, are determined: through the
equations shown in the figure. Fig. } 1above!. The quantized Hall
effect in GaAs-{AlGalAs heterojunctions 15). The electmn density is
fixed and the magnetic field is swept 1o exhibit the effect. &t the arrow
at 84 KG. py, i < § x 107 ohm/Z.
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conductivity o or the resistivity p of the
system throughj = oF and p = lio. The
transpori coefficient ¢ is given by o =
emvp/E = enu.  where the mobility.
p = vo/E. describes the degree to which
the carriers are able to move through the
system.

Adding a muagneti¢ field B to the sys-
tem changes the situation considerably,
In the absence of £, 4 B field in the :
direction—that is. perpendicular to the
electron plane—<xerts a constant force
F = evB on an electron traveling with
speed v. The direction of this Lorentz
force is perpendicular to the direction of
motion of the electron and perpendicular
to the direction of B. As a result. the
electron executes a rotaling motion in
the plane on a circle with a radius
r = mvieB. where m is its mass, and with
a (requency ¢the cyclotron frequency)
w. = vir = eB/m. Since the B ficld does
not change the speed of the clectrons,
their energy remains independent of B
and can be expressed as € = 1/2mwir.
Thus, an ideal two-dimensional electron
system in a magnetic field can be visual-
ized as a system of electrons rotating
with a constant frequency w, around the
~ field lines on circles having radii propor-
%-. tional to the speed of the electrons (Fig.

5).

The addition of an electric field E
* affects the electron system quite differ-
7 ently than in the absence of B. Instead of
I drifting along the x direction, the carriers
move in the direction that is perpendicu-
¥ lar to the £ and B fields—the y direction
4.5 {Fig. 6). Each electron keeps rotating

. while the center of its rotation is drifting
& aside. This. again. is a result of the
Lorentz force: the E field accelerates the
electron in the x direction while the B
field deflects the motion into the y direc-
tion. In contrast to the ideal frictionless
case in the absence of B, the carners are
:  not accelerated indefinitely. The centers
" of their orbits move with a constant
velocity vg = E/B parallel to the ¥ direc-
tion. Therefore, the entire electron sys-
tem drifts aside with a constant velocity
in the direction perpendicular to E and 8.
representing a constant current in the ¥
direction. The current density is given by
Jj = envg = enEiB. However, the cur-
rent and the electric field are not parallel,
as in the absence of a magnetic field, but
perpendicular to each other. The current
parallel to the E field is zero.

A description of this behavior in mac-
roscopic terms, which requires two inde-
pendent transport coefficients, leads to
some surprising results. The conductiv-
ity, o.,. describing the current density
along the electric field is zero. However,

’

17 JUNE 1983

Fig. 4. Schematic of an ideal two-dimensional
electron svstem where the electrons with ran-
dom speed and direction are confined to move
in the x-y plane.

the resistivity. p... defining the electric
field strength aiong the current path also
vanishes. since there is no E-field com-
ponent along the current. We encounter
an exceplional situation where the con-
ductivity and the resistivity vanish
simultaneously. This striking result is
induced by the magnetic field. which
diverts the current from the direction of
the appiied electric field. In other words.
the current and the electric field are
mutually orthogonat and the conduction
is free from dissipation. The Hall con-
ductivity, oy, and the Hall resistivity,
Pry. relating E and j through j = o E or
E = pyj, are given by

ne

Oy = g &)
and
Py ™ e )

We note that in two dimensions Ry is
identical o0 p;, and Ry = py = Blne
(see Fig. 2).

The Hall conductivity o,, and resistiv-
ity p are unusual in that they relate
current in one direction with an electric
field pointing perpendicular to it. The
usual parallel conductivity o, and resis-
tivity p.. vanish completely. This last
fact has important conceptual conse-
quences. If we consider the x direction
alone our system is an insujator since, in
spite of the application of an electric

Fig. 5. Classical mo-
tion of a two-dimen-
stonal electron sys-
tem with a magneuc
field (B) normal 1o the
plane. The energy of
the cammers is unaf-
fected by the field and
remains € = 172 m;
hence all energies are
possibic.

field. there is no current flow along this
direction. On the other hand. if we con-
sider the v direction. the system should
be termed an ideal conductor. Although
a constant current is flowing. no electric
field along this direction is necessary o
support it and consequently. as in a
superconductor. no dissipation of clec-
tric power accompanies the steady cur-
rent. However, one cannot be too sur-
prised about this result since the ideal
model system excluded any kind of frie-
tion. Even in the absence of a magnelic
field. such a svsiem would appear to be
without dissipation. In real svstems.
where electtons scatter at vibraung at-
oms or imperfections of the materal.
leading to a finite amount of friction. the
values for o,, and p,, generallyv Jdeviale
from zero. However. we will find tha
this ideal case can be realized in real
two-dimensional systems under certain
conditions.

Introduction of Some Quantum

Mechanics

The inhibition of electron scattering in
a real two-dimensional system in a high
magnetic field is due to principles that
are beyond our classical description.
They require the introduction of some
fundamental rules of quantum mechan-
ics. The laws of quantum mechanics will
not only bring about vanishing resistance
of a real two-dimensional system in a
magnetic field, but will also be responsi-
ble for the discontinuous behavior of the
transport coefficients o, and p,, that led
to the observation of the quantized Hall
resistance and, in turn, to the high-preci-
sion determination of the fine structure
constant. The following paragraphs in-
troduce the quantum mechanical rules
that are pertinent to the probiem of elec-
trons in a magnetic field.

The fundamental difference between o
quantum mechanical and a classical
treatment of an electron in a magnetic
field is that only a discrete set of orbits 1s

RPN
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accessible to the electron in the former
case. Electrons can occupy only discrete
states with well-defined discrete ener-
gies. The allowed radii for electron orbits
in a magnetic field are the so-called Lan-
dau radii

_ [?.h 2
= E_B ” - le)] (5}

where £ is an abbreviation for A2 and
the quantum number / can be any posi-
tive integer { = 1,23 ... (see Fig. 7).
Since their orbits are quantized. the en-
ergies of the electrons form a sequence
of Landau levels, given by

€ = ”2"‘!(03’12 = u - U'Z)fu»c (6)

where w.=eB/m is the cyclotron fre-
quency.

Finally, electrons have to obey Pauli's
exclusion principie that no two electrons
can agree in all their quantum numbers.
The exclusion principle in effect limits
the number of electrons per unit area
that can occupy each Landau level. This
number is the degeneracy of each Lan-
dau level and is given by

_B
s= N

At very low temperatures electrons

will occupy the allowed states with the

lowest energy. In a given magnetic field -

a system of two-dimensional electrons
with density n will arrange itself in the
following way. Of the n electrons per
unit area, s will occupy the energetically
lowest Landau level / = 1, each having
an energy €, = 1724w, and an orbit with
a radius r, = (W/eBY"”. The same num-
ber 5 will occupy the next higher level
I = 2, having energies & = 3/2hw. and
radius r, = (38/eB)'?. Loosely speak-
ing, they form a second layer. although
they actually reside within the same
plane and *‘layer’ is to be understood in

energetic terms. All electrons can be
accommodated by filling consecutive
Landau levels. The last level generally
will remain partially unoccupied since n
generally is not an integral muitiple of
the degeneracy s. The Fermi energy (er)
is the energy of the last electron accom-
modated in the system at absolute zero
temperature. It may be regarded as the
energy that divides the filied and the
empty levels of the system.

The important point to notice is that,
in distributing the electrons over the
levels, an abrupt break occurs whenever
one Landau level is completely filled.
This is due to the fact that an additional
amount Aw, of energy is required to
accommodate each electron in the next
higher level. In the region where an
integral number ! of Landau levels is just
filled (n = 1+ 5 = | eBlh) a slight varia-
tion of n (or B) will drastically change

the energy of the system. These jumps -

in energy, which do not occur in a classi-
cal treatment, have important conse-
quences for the scattering of electrons in
a real two-dimensional system, where a
finite amount of scatterers is always
present.

Electron Scattering ina
Quantized System

An electron encountering any kind of a
defect center will be scattered out of its
orbit (initial state) into a new orbit (final
state) and may lose or gain energy in the
process. Such a scattenng event can
occur only if empty orbits are available
for the electron to be scattered into. In
our quantized two-dimensional system,
since electrons can only assume discrete
energies ¢ = (I — 1/2)hw,, energetic ex-
change between scatterers and electrons
is limited to multiples of Aw, (for inelas-

ki
~
tic events) or O {for elastic cvents). At-3

"

low temperatures and high magnetic %,

fields, when the Landau level splitting ;'
fiw, vastly exceeds all thermal energies,
only elastic events, scattering of elec-
trons among orbits within the same Lan-
dau level, are feasible. The scatlering is
therefore limited by the number of empty
orbits within the same Landau level.
Total suppression of scattenng occurs
when all orbits of the occupied Landay
levels are compietely filled and alf higher
Landau levels are completely empty—
that is. when the Fermi energy resides
somewhere within the gap between two
subsequent Landau levels. In this case
no scattering can take place, since the
empty orbits in the higher Landau levels
are inaccessible 1o electrons in the com-
pletely filled Landau levels. Therefore,
the complete occupation of an integral
number of Landau levels leads 1o vanish-
ing electrical resistance. We emphasize
that the realization of this zero resistance
does not require the absence of scat-
terers within the two-dimensional sys-
tem. it requires the absence of possibili-
ties for the electrons to scatten. In this

way, the real two-dimensional system '

mimics the ideal model system, creating
a state with vanishing mesistance,
p.e = 0, in spite of the existene of scat-
terers.

In certain respects this zero-esistance
state is similar to supercondusivity. In
both cases it is the existence of a finite
gap in the energy spectrum, with all
states below the gap occupiad: and all
states above the gap unoccupied, which
leads to vanishing electrical resistance.
Nevertheless, the gaps are of wry differ-
ent origin. and various propeties, like
magnetic field exclusion in suprconduc-
tors and the existence of the guantized
Hall effect in two-dimensional systems.
are not common to both phensmena.

s

Ensigy

1244

Fig. 6 (left). Classical motion of carriers of a two-dimensiom} electron
system in crossed magnetic (8) and electric (E) fields. Whik rotating.
the carriers drift into the direction normal to 8 and normal b E. giving
rise 1o a current density j = enE/B in the y direction,

Fi 7 tright).

Quantum mechanical motion of carriers of a two-dimensiont electron
syslem in a perpendicular magnetic field B. Oniv certmnorbits and
their energies are allowed. as given in Eqs. S and 610 the uxy. (Radi
with { > 2 are omitted for clarity.)
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Integral Quantization of the

Hall Resistance

We have seen that. because of the
discrete nature of its quantum mechani-
cal energy spectrum. a real two-dimen-
sional electron system can behave as our
ideal classical model system. It can carry
an electrical current without dissipation
(that is. p,, = 0) when an intcgral num-
ber. . of Landau levels are completely
filled. Under this condition. the total
density of electrons has to remain
n=1is =1ieBlh where s = ¢B'lt is the
degeneracy of each Landau level. The
Hall resistance Ry. which in two dimen-
sions is the same as the Hall resistivity
. is then given by Ry = p,. = hiie”.
exactly as observed experimentally by
Von Klitzing er al. (1) and Tsui er al. (2).

However, our discussion, which is
based on a perfect two-dimensional sys-
tem, also prectudes the experimental ob-
servation of this quantum phenomenon.
It does not provide the means to keep the
filled Landau levels completely occupied
for an extended range of either the elec-
tron density or the magnetic field. which
is necessary for an experimental obser-
vation in the form of Hall plateaus (see
Flgs | and 3). Interestingly, the exis-
. tence of imperfections in the samples is
# essential for the observation of the quan-
; tized Hall effect.

Imperfections in the two-dimenstonal
#* system give rise to the states that can
trap electrons. The trapped electrons do
- not contribute to the electrical current
% and are referred to as localized elec-

. trons, setting them apart from the cur-
} rent-carrying delocalized electrons. De-
*2 pending on the strength of the localizing
i} potential, the energies of localized elec-
‘F trons deviate more or iess from the quan-
"c tized energies of the delocalized elec-
Z * trons and consequently are found some-
? where within the gap region between the
" Landau levels. The modified energy
; spectrum of a real two-dimensional sys-

tem thercfore consists of Landau levels
: representing the delocalized orbits and a
- broad distribution of localized orbits fill-

ing the gaps in between (see Fig. 8). The
existence of localized orbits buffers the
abrupt jumps of the Fermi level from one

Landau level to the next which would

occur in the absence of these gap states.

As long as a variation in density or in

magnetic field adds electrons to or sub-

tracts electrons from consecutive local-
ized orbits. the Fermi energy resides
within the gap region between Landau
leveis and the number of delocalized
orbits remains unaltered for an extended
" range of electron density or magnetic
field. Since only delocalized orbits con-

1T JUNE 1982
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tribute to the electric current, the trans-
port properties of the system remain
constant as long as Ef resides in the gap,
leading to the occurrence of piateaus in
pr, and zero in p,,. In this sense it is the
imperfection of a real two-dimensional
system which brings about the plateaus
as a sighature of the quantized Hall ef-
fect.

However.,. this scenario is unable to
account for the high accuracy to which
the values of the plateaus are quantized.
Since a given fraction of the carmers are
localized. the density of delocalized elec-
trons is diminished accordingly and the
number of current-carrying electrons in
each Landau level deviates considerably
from its idea! value of s = eB/h. Hence
pry is expected o deviale accordmgly
from its quantized value p,, = hiie®.

Some light was shed on this puzzling
situation by Prange (8) and Aoki and
Ando (9), who calcutated the current of
an ideal two-dimensional system in a
magnetic field containing an isolated
scatterer which traps one electron,
thereby removing it from the current-
carrying electrons. They obtained the
startling result that the remaining elec-
trons make up in current for the localized
electron. which they skirt, by increasing
their own velocity. The situation is anal-
ogous to the flow of an incompressibie
fluid circumventing an obstacle and in-
creasing its speed at the position of the
bottleneck in order to keep the current
constant (/5).

Laughlin’s Explanation
A very elegant gedankenexpenment

by Laughtin (/0), which was extended by
Halperin (/1), treats the quantized Hall

R

Fig. 8 (lefl). Energy spectrum of a two-dimensiona!
electron system in a perpendicular magnetic field
including electron localization. The energies of
localized orbits {on short lines} are found in the
gaps between Landau levels (long linest. The Fer-
mi energy e resides beiween Landau levels.
Fig. 9 (right). Geometry for Laughlin’s gedanken-
experiment. The two-dimensional electron sysiem
forms a cylinder. A strong magnetic field B picrces
it everywhere normal 1o its surface, A current /
circles the loop, giving rise to a Hall voltage ¥y
and a small magnetic flux P along the axis of the
cylinder.

effect from a very general point of view
and arrives at the correct answer, inde-
pendent of the physical details of the
system. Their gedankenexpenment re-
quires the notion of gauge invariance, a
physical symmetry beyond common in-
tuition, and we will outline the basic
ideas underlying their arguments.

Laughlin based his consideration on
an unusual, but feasible, geometry (see
Fig. 9). The two-dimensional electron
system is bent to form a cylinder whose
surface is pierced everywhere by a
strong magnetic field B normal to the
surface. An arbitrary current [ is as-
sumed to circle the loop. As descnibed
earlier. the action of the magnetic field
on the charged carriers gives nise to a
voltage Vy perpendicular to the cur-
rent—that is, from one edge of the cylin-
der to the other. As a result of this
circulating current, a small magnetic
field threads the current loop, giving rise
to a magnetic flux ¢ through the cylin-
der. The aim of the gedankenexperiment
is 1o establish the relation between [ and
Vi

To determine I, we use an electromag-
netic equation .

1= @®
5

which relates [ to the total energy. /. of
the electronic system. which is free of
dissipation, and the magnetic flux. ¢.
piercing the current loop. The value of /
can then be established by a slight vana-
tion, &9, of the magnetic flux and simul-
taneous determination of the change in
the total electronic energy, &/, of this
system. The carriers are separated into
two distinct classes: localized electrons,
which are excluded from the transpon of
current. and delocalized electrons.
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which encompass the loop. The two
groups react quite differently to &d. Lo-
calized electrons remain totally unaffect-
ed, as one would expect, since there is
no change in magnetic field at their posi-
tions and they do not enclose any frac-
tion of &. Delocalized electrons. which
enclose &. experience the flux change
and generally do change their energy.

Since &¢ is too small to transfer elec-
trons between Landau levels. its only
effect is to move the electron orbits of
the same Landau level within the surface
of the cylinder. Any motion in the direc-
tion of the external electrc field E estab-
lished by the potential drop Vi will
modify the electron energy by some
amoumt &U/. To determine the actual
value of 8/, Laughlin noticed that after
the magnetic flux @ is varied by a finite,
though exceedingly small. amount of a
flux quantum, A® = h/e, all electron or-
bits of the system are identical to those
before the flux quantum is added. The
distribution of electrons among the or-
bits might have changed during the pro-
cess—for instance, electrons might have
moved into other orbits, leaving empty
orbits behind. or several eiectrons might
have exchanged positions. Nevertheless,
the orbits available to the carners before
the flux change are identical. For the
general case of an arbitrary magnetic
field, the change in orbit occupation is
unknown and the evaluation of AU infea-
sible.

However, an exceptional sitvation de-
velops when the Fermi level, €, resides
within the unaffected localized states. In
this case. all delocalized orbits of all
Landau levels below ep are completely
filled, and excitation into a next higher
Landau level is impossible because of
the large amount of energy, Aw.. re-
quired for such a transition. Since all
accessible delocalized orbils were occu-
picd before the addition of Ad. all acces-
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sible delocalized orbits are occupied af-
ter the addition of A®, and all orbits
before and after the change coincide, the
total energy U of the system has to
remain unchanged and AU = 0. Howev-
er. since one is unable 1o trace the mo-
tion of the electrons during the flux in-
crease, one has to allow for the possibili-
ty that an integral number of electrons
were transferred through the system dur-
ing the flux change, entering the cylinder
at one edge and leaving it at the opposite
edge. without knowing their actual path.
This electron transfer is the only way in
which the highly degenerate two-dimen-
sional electron system can vary its clec-
tronic energy. Moving from one edge of
the cylinder to the other through the
electrostatic potential Vy. an electron
changes its energy by eVy. If i electrons
are transferred, the total change of the
electronic  energy is Al = ieVy,
i=0,123, . Returning to Eq. 5 and
replacing the infinitesimal quantities by
their finite equivalents, we find the cur-
rent to be

.2
l=——_=_VH )]

and the Hall resistance, Ry = VI, giv-
en by Eq. |, Halperin {11 later identified
the value of i as the number of occupied
Landau levels.

The preceding discussion represents
the present understanding of the origin of
the quantized Hall effect. It shows that
the existence of localized states is essen-
tial for the experimental observation. It
is remarkable that a high-precision mea-
surement should require the physical
system to be imperfect, that the accura-
cy of quantum electrodynamics can be
tested by an experiment resting on the
localized states in a disordered system.
and that the absence of electrical resis-
tivity can be a consequence of the exis-
tence of imperfections.

2

Fractional Quantization ;

h

Very recently, investigations of GaAs-

"
o

. -
{AlGa)As heterostructures th magnetic =

fields as high as 200 kG and temperalures
as low as 0.5 K revealed new surprises.
In the so-called extreme quantum limit,
when only the lowest Landau level is
partially occupied, the quantum phe.
nomena discussed above should not be
present. Nevertheless, it has been dis-
covered (/6) that p., vanishes and p, is
quantized in units of /e’ when occupa-
tion of the lowest Landau level is 1/3 and
2/3. This fractional quantization of the
Hall resistance—that is, Ry = hfie® with

= 1/3 and 2/3—differs from the integral
quantization in that it is observable at
lower temperatures and higher magnetic
fields and is more pronounced in samples

with higher electron mobility. These fea- -

tures suggest that the effect is more

fundamental, and the search for an ex-
planation of it is currently an active area
of solid-state research. In short, the puz-~
zie of 1the guantized Hall effect has not _
yet been entirely put together. Lt
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THE FRACTIONAL QUANTUM HALL EFFECT
J. P. Eisenstein and H. L. Stormer

AT&T Bell Laboratories
Murray Hill, N. J. 07974

Recent research has uncovered a fascinating quantum liquid made up solely of
electrons confined to a plane surface. Found only at temperarures near absolute zero
and in extremely strong magnetic fields, this liquid can flow without friction. The
excited states of this liquid consist of peculiar particle-like objects which carry an
exact fraction of an electron charge. Called quasiparticles, these excitations can
themselves condense into new liquid states. Each such liquid is characterized by a
fractional quantum number which is directly obscrvablc in a simple electrical
measurement. This article attempts to convey the qualitative essence of this stll-

unfolding phenomenon, known as the Fractional Quantum Hall Effect.



L INTRODUCTION

The collective behavior of the many atoms or molecules in a mAacroscopic system
is a fundamental issue in modern physics. The periodic solid and the shapeless liquid
are condensed forms of matter, distinguished from the gaseous state by the strong
collective interactions of their constituent atoms. Of particular interest are those
condensed systems whose macroscopic behavior is dominated by the laws of quantum
mechanics. Such systems, in which the quantum uncertainty in’ the positions of the
constituent particles exceeds their separation, often exhibit bizarre propertes.
Superconductors are notable examples; these materials can carry electrical current
without any dissipation of energy. Less well known are the superfluids which exhibit
frictionless flow and other pccﬁliar properties like quanturh whirlpools. These unusual
effects are examples of macroscopic quantum phenomena, belying the notion that

quantum mechanics concerns only the atomic world.

Physical systems of reduced dimensionality, in which the particles are confined to
a plane or line rather than occupying three-dimensional space, have recently become
subjects of intense scrutiny. Most often these systems are artificially fabricated from
semiconductor crystals. While their great interest lies partly in real and potential
electronics applications, they are equally fascinating from the pure physics point of
view. Beyond providing an ideal testing ground for modem theories of condensed
systems, these man-made structures have revealed totally new physical phenomena.
Preeminent among these is the fractional quantum Hall effect; a macroscopic quantum
phenomenon due to the condensation of a collection of electrons into a bizarre fluid

state.
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A two-dimensional system of electrons is surely one of the simplest many-particle
systems imaginable. Add a magnetic field to it and a fascinating microcosm unfolds.
An electron gquantum liquid, unlike any other existing liquid, is created. Near absolute
zero this liquid flows without dissipation, circumventing obstacles in the plane.
Simple electrical measurements reveal the so-called Hall resistance to be quantized to
exact rational multiples of a universal constant. A slight increase in temperature
creates peculiar particle-like objects in the liquid that carry a precise fraction of the
charge of an electron. These quasiparticles themselves can condense into liquid states,
leading to a hierarchy of parent and daughter fluids. Very recently the spin of the
electron has been found to further enrich the spectrum of phenomena. On the horizon
lies the possibility that these strange liquids can somehow freeze into electron solids

with new properties as yet unseen.

The first glimpse of this intriguing microscopic world was provided by the
discoverym of the fractional quantum Hall effect in 1982. Since then much progress
has been made toward a theoretical understanding of the underlying physics and many
new experimental observations have been made.[?! Our article attempts to convey the
qualitative essence of this nc\;v many-particle phenomenon and to highlight those

aspects which remain enigmatic.

II. PRELIMINARIES

There are no truly two-dimensional systems in nature. Like a game of billiards
however, some are well approximated by a 2D model. In the same way we can

construct only approximately 2D systems of electrons. Nowadays the best such
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construction confines a pool of electrons to the interface between two ideally matched
semiconductor crystals. It is a fascinating reality, due to quantum mechanics, that if a
perfect crystal could be grown, without impurities or defects, an electron could move
through it without resistance at zero temperature. Its wave-like nature allows it to
flow through the crystal lattice of atoms without collisions. The same is true at the
interface between two crystals, provided they are perfectly matched. The best such
systems are fabricated from the semiconductors gallium arsenide. (GaAs) and gallium
aluminum arsenide (GaAlAs) which are grown in thin layers atop a suitable substrate.
Excess electrons, donated by remote impurities, find their way to the interface and are
bound there by the different chemical nature of the two semiconductors. After
donating their electrons, the impurity atoms are left positively charged, the net charge
of the sample thus being zero. Typical samples contain some 10! electrons per cm?,
corresponding to a mean spacing of a few hundred angstroms. The interfacial binding
does not restrict the electrons from moving in the plane. In fact, at present the best
such samplest®! allow electrons to move the huge distance of about 0.1 mm in the 2D
plane, passing some 400,000 atoms without suffering a severe collision. Such freedom
is only obtained at temperatures near absolute zero where the crystalline vibrations -

really a type of "imperfection” - are minimized.

The simplest way to probe the properties of any system of freely moving electrons
is to measure their electrical properties. These so-called transport measurements have
provided essentially all that we know about the fractional quantum Hall effect. To
make such measurements a small "chip” of the layered semiconductor sample,

typically a few millimeters on a side, is processed so that the region containing the 2D
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electrons has a well-defined geometry. The frequently used "Hall bar" geometry is
depicted in Fig. 1. A tiny electrical current is driven along the central section of the
bar, while the various side arms serve as probes to measure the induced voltages.
Two probe configurations are important: the longitudinal voltage difference V between
two probes on the same side of the central bar, and the so-called Hall voltage Vy
between probes situated opposite one another across the bar. We usually convert these
voltages into resistances by dividing by the current running down the bar. The
longitudinal resistance R has the same significance as one’s conventional notion of the
electrical resistance of an ordinary material. Its magnitude is a measure of the

frequency of collisions suffered by the electrons. The Hall resistance Ry however, is

different.

Discovered 120 years ago, the Hall resistance is one of the most frequently
measured quantities in solid state physics. Ry is zero in the absence of a magnetic
field. When a field is applied perpendicular to the 2D plane the magnetic force causes
the moving charges to accumulate at one side of the bar. This continues until the
electric field that results from the charge separation exactly cancels the magnetic force.

A classical analysis yields the simple result:
Ry=B/Ne : (1)

where B is the magnetic field, N the number of charges per unit area in the plane, and
e the charge of an electron. Thus, a Hall measurement establishes N, the carrier
concentration. Only a decade ago this simple result was expected to remain valid in

very high magnetic fields and at the lowest temperatures. Figure 2 shows both the Hall
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resistance Ry and the longitﬁdinal resistance R in a 2D electron sample as functions of
magnetic field. Obtaining such data is difficult; not only does the sample represent
state-of-the-art crystal growth, but the magnetic fields (up to 30 Tesla = 300,000
Gauss) and temperatures (often as low as 0.02 Kelvin = 20mK) are extreme. The
diagonal dotted line represents the simple result expected from Eq. 1. Obviously, 2D

electrons in high magnetic fields were not at all understood 10 years ago.

There are two astonishing aspects to Fig. 2. While oscillations in the longitudinal
resistance R were anticipated, that it would fall essentially to zero over wide ranges of
magnetic field was totally unexpected. The second aspect, perhaps even more amazing
than the first, are the platequs in the Hall resistance Ry. Close examination of the

values of Ry at these plateaus reveals that all can be described by a universal formula:

Ruy=(hie®)/(piq) )

This expression depends only on the ratio of fundamental constants; the Planck
constant 4 and the electronic charge e. The numbers p and g are simply integers.
These quantized values are totally independent of the sample specifics. The plateaus
in Ry and zeros in R, known collectively as the quantum Hall effect, are clear

signatures of hitherto unappreciated aspects of 2D electron systems.

The subset of plateaus for which the rado p/g = I,2,3.. is an integer were
discovered™! before the first fractional value p/g =1/3 was found. We now know that
the two cases reflect very different physics. The integer case can be understood solely
in terms of individual electrons in a magnetic field. The fractional p/q values are far

more subtle, reflecting entirely new physics arising from the collective behavior of all
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the electrons.

The essential ingredient for understanding the integer quantum Hall effect (IQHE)
has been known for more than 50 years. It is the quantization of the circular motion
of a charged particle in the presence of a magnetic field. Classically, an electron
moves in a circular orbit perpendicular to the magnetic field. Any radius is allowed,
only the period of revolution is fixed by the magnetic field strength, B. Quantum
mechanics however, demands discrete values of the radius, in the same way as it
enforces discrete Bohr orbits on an atom. Like the Bohr atom, these discrete orbits
correspond to discrete energy levels, here called Landau levels. The Landau levels are
spaced equally by an amount called the cyclotron energy which is proportional to the
magnetic field B. Thus, for a éystcm of electrons conﬁnéd to a 2D plane, the entire
energy spectrum consists of a ladder of discrete Landau levels with wide energy gaps
in between. For neither 3D nor 1D systems do similar gaps exist. These gaps are at

the heart of the integer quantum Hall effect.

Each Landau level can accommodate a large number of electrons, all at the same
energy, because it is possible to place the center of each orbit at many equivalent
places in the 2D plane. Since the size of the orbits decrease with increasing magnetic
field (radius about 80A at 10 Tesla), this so-called "degeneracy" of the Landau levels
increases with field. In fact, every Landau level can accommodate D=eB/h electrons
per unit sample area; about 2.4x10" per cm?® ar 10 Tesla. This is already a

remarkable result since it is independent of all sample parameters.

Figure 3 illustrates these concepts. Dividing the number of electrons per unit
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sample area, N, by the degeneracy D of the Landau levels, defines the "filling factor”
v=N/D. This quantity tells how many Landau levels are occupied. At very high
magnetic field the degeneracy D exceeds N, all electrons lie in the lowest Landau level
and v<l. On reducing the field two things happen: The spacing between Landau
levels, as well as their degeneracy D, decreases. A magnetic field B, is reached for
which the lowest level is exactly filled, i.e D=eB,;/h=N and the filling factor is v=I.
Further reduction of the field forces some electrons up into the second Landau level
Eventually a field B, is reached where the two lowest levels are exactly filled,
D=eB;/h=N/2 and the filling factor is v=2. For any integer j there is a field
B;=Nh/je at which the j lowest Landau levels are exactly filled and all higher levels
are empty. Let us evaluate the Hall resistance Ry at these special magnetic fields.

First, using Eq. 1 and the definition of D, we can express Ry in terms of the filling

factor:
Ry=B/Ne=(hD/e)/Ne=(hie® Iv 3y
At the special fields B; the filling factor v equals the integer j giving:
Ry=h!je* (4)

These are exactly the integer quantum Hall plateaus! We can even understand the
vanishing of the longitudinal resistance R at these fields. Zero resistance implies no
energy dissipation. Dissipation only occurs if electrons can casily scatter into empty
energy levels. At the special fields B; the nearest empty states are at much higher

energy across the Landau gap. At low temperatures these states can not be reached and

thus dissipation can not occur.
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Is this all there is to the IQHE? A moment’s thought reveals a serious problem
with this simple picture. Our solution only works for the precise field values B;. How
can Ry remain flat over wide stretches of magnetic field? This is a formidable

question and its solution[’]

represents the second fundamental ingredient of our
understanding the IQHE. The missing element is the residual imperfection inherent in
any real sample. There are always some impurities or defects remaining in the sample
despite one’s best efforts. These imperfections can trap some of the 2D electrons and
prevent them from participating in the current flow. Slight departures of the magnetic
field from the special values B; merely changes the number of these trapped electrons
but not the number of occupied Landau levels. This causes no change in the
resistances R and Ry which reflect only the non-trapped, current-carrying electrons.
Larger magnetic field shifts overwhelm the capacity of the traps and thereby change
the number of occupied Landau levels and thus the resistances. One is led to a
paradoxical truth: the existence of the plateaus requires imperfections in the sample

while the value of Ry on the plateau is a universal constant. Were the sample truly

perfect the plateaus would be absent and Ry would retumn to the straight classical line!

What about the fractional i)latcaus, which actually dominate Fig. 27 Are they
explained by some simple extension of the above argument? The answer is an
uncquivocal "no”. We have argued that the integer plateaus are the result of gaps in
the energy spectrum. Since the phenomena of the fractional effect appear the same as
the integer case, we are led to search for additional energy gaps. Considering each
electron individually leads only to the Landau gaps associated with integer values of

the filling factor v; there are no gaps at fractional values of v. The fractional quantum
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Hall effect (FQHE) must result from some new collective state in which all electrons

participate.

L THE STANDARD MODEL

Any description of the collective motion of many particles has to take into account
the forces acting between them. In the case of electrons, this is the familiar coulomb
repulsion of like charges. The motion of each electron depends, tl_lrough this force, on
the motion of all other electrons, especially those nearby. Furthermore, as we are
dealing with electrons interacting on a microscopic scale, the notions of classical
physics are inadequate and the inherently probabilistic principles of quantum
mechanics must be considered. The final result of applying these principies is a
wavefunction y whose magnitude gives the probability for finding the electrons in any
particular configuration. For the most prominent FQHE state, at filling factor v=1/3, a
remarkably simple, and nearly exact wavefunction has been obtained. This ingenious
result, due to R.B. Laughlin, provides the basis for the standard model of the FQHE.
Our objective is to qualitatively illustrate this wavefunction and thereby the electronic

configuration underlying the FQHE.

Even with Laughlin’s wavefunction in hand, we are confronted with the difficulty
of illustrating a function which depends on the positions of many particles with only a
single picture. To accomplish this, we make the great simplification of imagining a
"snapshot" in which all of the electrons in the sample, save one, are held in fixed
positions. The remaining electron, which we henceforth call the "representative”, will

be described by a smooth landscape whose elevation denotes the probability for
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finding this electron at a given location. This picture is thus a mixture of classical and
quantum concepts and is not strictly correct. In reality, all electrons should be treated
equally. This means any electron could be chosen as the representative. It also must
be kept in mind that the companion electrons are not fixed in position and our
"snapshot” is merely one frame of a larger film. On average the total electron

distribution is really completely uniform.

We begin our illustration by stepping back to the simplest situation, for which the
system has only one electron. In this case our earlier description of quantized circular
orbits should be valid, and we can assume the single electron lies in the lowest Landau
energy level. Since we do not know where the electron is in the 2D plane, we cannot
locate the center of its cyclotroh orbit. The probability of finding the electron is then
completely uniform across the 2D plane, just as it would be if there were no magnetic

field at all. How then does the magnetic field influence the probability distribution?

Associated with the magnetic field are so-called "flux quanta”. In some sense these
are the quanturmn counterparts of the classical notion of magnetic flux lines. While
classical physics insists these lines themselves have no reality, in the quantum world
they are more tangible. In fact, the regular array of flux lines trapped in a
superconductor has been observed by various techniques. As with electrons, quantum
mechanics requires uncertainty in the position of the flux quanta. Thus, just as a
uniform charge density can result from a collection of discrete electrons, so a uniform
magnetic field derives from a collection of discrete flux quanta. The magnitude of the
flux quantum ®g=h/e=4.1x10"7 Gauss-cm? is tiny by ordinary standards. The earth’s

small magnetic field of 0.3 Gauss corresponds to almost 10% flux quanta per square
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centimeter. Far higher flux densities than this are required for observation of the

FQHE.

These flux quanta associated with the magnetic field create tiny vortex-like dimples
in the probability distribution of our representative electron. As depicted in Fig. 4a, at
the center of these vortices the probability of finding the electron is zero. How can
this distribution be regarded ‘as uniform? The answer to this lies in the huge
degeneracy of the Landau level that we have already encounteréd. There are many
equivalent ways to distribute the vortices around in the 2D plane, Fig. 4a represents
just a specific choice. On the average, the probability for finding the electron is again
completely uniform. Only when additional electrons are added to the system is this
indeterminacy in the vortex posiﬁons tempered. As we wiil see, the FQHE arises from

an unusually strong correlation between the positions of the electrons and the vortices.

1) The Ground State at v=1/3

We now would like to add electrons to our system. These additional electrons will
be placed in fixed positions and our probability distribution will be that of the original
"representative” electron. Again, any electron could be chosen as the representative
and our illustration can only be thought of as a snapshot which belies the continual
state of motion of all the electrons. On adding the first of the "companion" electrons
we immediately confront a basic tenet in quantum mechanics: the Pauli exclusior
principle. This requires that no two electrons may reside at the same position. Thus,
we must put this second electron in a position avoided by the representative. From

Fig. 4a, we see the obvious place is directly on one of the vortices associated with a
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flux quantam. All subsequent companion electrons must be placed onto unoccupied
vortices. We can keep adding electrons untl all available vortices are occupied. This
situation, shown in Fig. 4b is clearly special; it corresponds to complete filling, v=1, of
the Landau level. Attempts to add more electrons requires placing them in higher
Landau levels, at enormous energetic cost. We have stressed the indeterminacy in the
position of any given electron or vortex. We now have a special case, the fully-filled
Landau level, in which every electron has a single vortex artached to it. This
association is due entirely to the Pauli exclusion principle. For the FQHE the Landau
level is only partially filled and there are more vortices than electrons. | The Pauli
principle does not require any specific distribution of the "extra” vortices. It is the
repulsive interactions between the electrons, the heart of the FQI—HE‘., that creates a new,

correlated, arrangement between all the vortices and the electrons.

To see these new correlations, we now decrease the number of electrons below the
v=1 condition. As depicted in Fig. 4c, there is now an excess of vortices over
electrons. While the companion electrons must sit on vortices, due to the Pauli
principle, there are many equivalent permutations of the electrons among the vortices.
The unoccupied vortices represent random positions that the representative electron
avoids, t0 no energetic advantage. A far preferrable arrangement is to place these
empty vortices onto the existing electrons. Multiple vortices are larger than single
ones and are therefore more strongly avoided by the representative. Since a
companion electron sits at the center of each multiple vortex, the repulsive interactions

with the representative are reduced, and along with it the total energy of the system.
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A particularly favorable state is created when the number of flux quanta is a
multiple of the number of electrons. Such a situation arises at filling factor v=1/3
where there are three flux quanta for each electron. In this commensurate state, each
electron sits in a large dimple and the total energy is significantly reduced. The
situation is illustrated in Fig. 43 for the representative electron. Such a representation
continues to hold true in the actual many-particle state in which all electrons create 3-
fold vortices about all companion electrons. Similarly favorable situations should exist
at filling factor v=1/5, 1/7, etc. As we will see, states in which an even number of

quanta are bound to each electron are quantum mechanically not allowed.

All these v=1/m FQHE states have a beautifully simple mathematical
representation first proposed by R. B. Laughlin.lﬁ] We dénote the position (x;,y;) of
each electron j in the 2D plane by a complex number z;=(x;-iy;). Then, aside from an
unimportant factor, the many-particle wave function for n electrons can be written as a

simple product over all differences between particle positions (zj-24)

W(21,22,23..2n) = (21-22)™X(21-23)"X(22-23) "% X(Zj=2 )" X "+ * (Zp1=22)" )

The square of the wave function ly|? represents the probability of finding a
configuration in which there is one electron at position z;, another clectron is at

position z,, a third electron at position z3 and so forth.

This mathematical representation automatically obeys the Pauli principle. The
probability of finding two electrons at the same site is zero since one of the factors on
the right-hand side becomes zero. A more subtle property of y is that if any two

electrons are interchanged (e.g. Zz ¢ z3), W will change its sign if m is an odd
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integer.

It will not change its sign if m is even. Quantum theory insists that if y is to describe
electrons, then it must change its sign under particle exchange. Thus Laughlin’s wave
function can hold only for filling factors v=1/m with m-odd. For the Laughlin
ground states the distribution of electrons is optimally correlated, reducing the
repulsive Coulomb interaction to & minimum. Addition or subtraction of a single
elecoon or flux quantum disturbs this inherent order at a considérablc energetic cost.
For this reason states at v=1/m are referred to as condensed many-particle ground
states. Since the mutual electronic positions are not fixed as in a solid, but rather free
like in a liquid, and since this freedom is of a quantum-mechanical, rather than a

classical nature, the term condensed quantum liquid applies.

2) Quasiparticles

The Laughlin ground state is an accurate description of the FQHE state only at
absolute zero temperature and at the exact magnetic field for v=1/m filling. Departure
from either condition results in the creation of defects, called quasiparticles, in the

liquid state. Theory asserts these defects camry fractional charge.

The charge —e of an electron is the fundamental quantum of electric charge. No
particle carrying a fraction of —e, has ever been directly observed. Even the famous
quarks of high-energy physics, which are held to carry fractional charge, have not been
found in isolation. The notion of quasiparticles charged to an exact rational fraction of

e is, at first sight, a puzzling implication of the theory of the FQHE.
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What are these quasiparticles? To be certain, our electrons do not dissociate into
3, 5, or 7.. identical pieces. Fractionally charged quasiparticles are a convenient
theoretical concept. They describe the fact that this many-electron system is able to
harbor defects which act as though they carry fractional charge. Removal and addition
of charges to the rotal system, can only be performed in units of e. With the
framework of illustrations developed in the last section, these quasiparticles can, in

fact, be intuitively described.

Using again the v=1/3 state as a concrete example, we recall that at ;xactly 1/3
filling all particles are condensed into a highly correlated many-particle ground state.
This ground state is a uniformly charged 2D electron liquid in which the negative
charge of each electron cxactl}} compensates for the chafgc depletion caused by the
surrounding threefold vortex. A minute change in filling factor, slightly off v=1/3, is
not expected to destroy this condensed phase. The quantum fluid instead tries to
remain condensed by creating a few defects in its fabric. To visualize these defects,
imagine the removal of an electron from the 1/3 state in Fig. 4d. This leaves behind a
threefold vortex effectively carrying a charge of +e. In the absence of the electron, the
three surplus flux quanta are no longer bound together and, therefore, are able to drift
apart, each one of them dragging with it a vortex in the electron distribution. The
charge deficiency in each vortex amounts then to exactly +e/ 3. These local depressions
in the charge density are called quasi-holes. Similarly, one can imagine the absence of
one flux quantum. This situation, while harder to visualize, comresponds to a
negatively charged defect (—e/3) called a quasi-electron. A number of recent

experimcntsm have suggested that these fractionally-charged quasiparticles may, in
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fact, be observable.

Existence of such quasiparticle defects in the parent quantum liquid disturbs the
correlated motion of the condensed carriers. The introduction of each quasiparticle
raises the energy of the system by a fixed amount. This finite energy threshold for the
creation of quasiparticles represents the sought after gap in the energy spectrum of the

quantum liquid.

The existence of mobile charged particles, a gap in the eneréy spectrum, and the
presence of a small degree of imperfection, provides all the ingredients for the
observation of a quantization in the Hall effect and vanishing longitudinal resistance,
R. From the point of view of electrical transport, the condensed quantum liquid at
exactly v=1/m filling, separated by a gap from its excited states, resembles the
completely filled Landau level. There the nearest excited states are across the large
Landau gap. The inaccessibility of these states at low temperature explains the
vanishing resistance R in the IQHE. By exact analogy, we now expect R to vanish at
v=l/m in the FQHE. The only difference is that much lower temperatures are

required since the FQHE gaps are much smaller than the Landau gaps.

Slight variaton of the filling factor from exactly v=1/m creates quasiparticles.
Again in analogy to the IQHE, these initial excitations are trapped by imperfections.
Hence, we expect R to remain zero and the Hall resistance to remain at its v=1/m
value RH=h!ve2=mh/ez. Thus, the transport features of the FQHE are analogous to
the IQHE. The fundamental new physics in the FQHE is the creation of a many-

particle ground state separated from its excitations by an energy gap. Without this no
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analogy could be made.

The magnitude of the energy gap is characteristic of each FQHE state. Apart from
the condensation energy of the ground state, it is the single most important parameter
of the quantum liquid and has been determined theoretically by a variety of different
analytical and numerical schgmes. This gap energy is also the quantity most
accessible to t::i:pt:riment.8 Raising the temperature at exact fractional filling creates
equal numbers of quasi-clecrons and quasi-holes. These™ thermally created
quasiparticles enhance the electrical conductivity of the system. The temperature
dependence of the conductivity provides a measure of the energy gap. For the v=1/3
liquid, the strongest and best understood of the FQHE states, the experimentally
determined energy gap approaéhcs the theoretically calcullatcd value to within 20%.
Considering the tremendous computational difficulties in deriving the theoretical gap
value, this represents an astonishingly good agreement and a great success for the

standard theoretical model of the FQHE.

3) The Hierarchy

Laughlin’s wave function, together with fractionally charged quasiparticles,
provides an explanation for the FQHE at filling factor v=1/m with m an odd integer.
A case can also be made for v=(1-1/m)=2/3, 4/5, 6/7... arguing that at such filling
factors the Landau level is depleted by 1/3, 1/5, 1/7... and condensed states develop
among the holes in the distribution. However, many of the pronounced FQHE states,
such as v=2/5, 3/5, 3/7, 4/1.. are not included. The prevailing theoretical model

regards these states as daughter states derived from the fluids at 1/m. How does this
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come about? As the filling factor deviates considerably from exactly 1/m, a large
number of free quasiparticles are created in the quantum-liquid. Being charged, these
quasiparticles correlate their relative positions and try to stay optimally apart. At a
critical density they themselves can condense into a correlated quantum liquid of
quasiparticles. As an example, the FQHE at filling factor v=2/5 is the many-particle
daughter state condensed from —e/3-charged quasi-electrons of the v=1/3 primitive
state. The equivalent daughter state condensed from quasi-holes emerges ar v=2/7.
Since daughter liquids develop quasiparticles of their own, the theoretical argument
can be continued ad infinitum if not terminated by the formation of a yet ﬁnobserved

quantum crystal.

Haldane showed how to arrange the resulting quantum;ﬂuids into a hierarchy®®! of
exclusively odd-denominator fractions which defines their line of descent. Fig. 5
shows the first daughter states of the primitive v=1/3 Laughlin liquid, several of which
are visible in the experimental data of Fig. 2. The hierarchical scheme of daughter
states provides a rationale for the existence of FQHE features at filling factor v=p/g
and orders the sequence of their appearance. However, compared to the Laughlin
liquids at filling factor v=1/m, very little is known about these higher-order many-
particle states. The theoretical calculatons rapidly become intractable as one
progresses down the hierarchy and experimental data on the energy gaps of daughter

liquids have begun to emerge only recently.

The standard model seems to have established a satisfactory interpretation for the
origin of the FQHE. Condensed quantum liquids at fractional filling factors with

excitation gaps for fractionally charged quasiparticles provide all the necessary
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ingredients for an explanation of the experimentally observed transport features. For
the most prominent and best studied of the FQHE states, at v=1/3, good quantitative
agreement has been reached between theory and experiment. It appears that the FQHE

has basically been understood.

IV. EVENS AND SPIN

Perhaps the most obvious feature of the hierarchy is the odd-denominator rule.
Stemming from the grand Pauli exclusion principle applied to the primitive Laughlin
states at v=1/3, 1/5..., this "rule" seemed almost a "law", which it is not. Despite
rumblings about possible fractional states at v=3/4, 11/4, 5/2, and 9/4, the widespread
view was that these "bad actors” would evaporate under closer scrutiny with better
samples. To most everyone’s surprise and excitement, one of these fractions has
survived the critical test: a plateau has recently!!” been clearly identified with Hall
resistance Ry=(h/e2)/(5/2). Figure 6 shows the first solid evidence for the 5/2-state.
These data were obtained at the very low temperature of 25mK, attesting to the
fragility of the new liquid state. Since these data were published, better samples have

shown the state much more clearly though it remains delicate.

This first even-denominator state not only represents an egregious failure of the
hierarchical model, but goes to the very root of our picture of the FQHE. Since two
levels are completely filled and one is 1/2-filled at v=5/2, this state is really a 1/2-state
and we are led back to Laughlin’s family of v=1/m wavefunctions. All such
wavefunctions with m an even integer were discarded for not changing sign under

interchange of two electrons. While no one seriously doubted this fundamental law of
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physics, it was clear that fitting v=5/2 into the picture required major revision of the

standard model. Despite great effort, we still lack a conclusive theoretical

understanding of this new surprise from the 2D electron system.

Suggestions of how one might in principle construct a 1/2-state had been around
for several years. The most obvious way was to imagine particles which, under
interchange, required their wavefunction to nor change sign. Such particles exist in
nature, they are called bosons, a helium atom being a notable example. With such
particles the Laughlin wavefunction would be valid only for m=2.4,..., leading to states
at filling factors v=1/2, 1/4.... Electrons are not bosons however, and so this approach
is not of much help. Another early suggestion!! for creating even-denominator states
turned on a property of electrons which we have so far‘ignored: the electron spin.
Each electron behaves like a tiny bar magnet, which can point either "up" or "down".
This intrinsic magnetism of the electron is called spin. In a magnetic field the spin
prefers one of the two orientations, which we will call "up". It requires energy, called
the Zeeman energy, to force the electron to point "down" against the magnetic field.
This energy increases linearly with field. The spin acts to split each Landau level in
two, with the Zeeman gap in between. While not nearly as large as the Landau gap,
the spin gap doubles the number of integer Hall plateaus. Although not mentioned
above, all the odd-integer plateaus (v=1,3,5...) are due to the spin gap, while the
even-integer plateaus (v=2,4,6...) are due to the Landau gaps. But how does this help
to explain an even-denominator fractional state which occurs in one or the other of the
spin sublevels? Halperin'!} pointed out that if pairs of electrons with opposite spin

could form, one could regard the composite objects as bosons, and even-denominators
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woutld follow.

The problem is that it costs energy to flip spins, and at high magnetic fields this
was considered prohibitive. In Laughlin’s original work the spins were all simply
assumed to be "up”, an excellent assumption for explaining an effect occurring at
enormous magnetic fields. But today’s samples are so pure that fractional states can
be seen at very low magnetic fields; the v=5/2 discovery was made at only 5 Tesla,
much lower than the old v=1/3 state. At such fields spin flips may be relevant. If
reversed spins are important in forming the condensed state at 5/2-filling then the
application of a second magnetic field, this one parallel 1o the 2D plane, should
destroy the state. Why is this so? To good approximation, only the spin-flip energy is
affected by such an in-plane field, and it is increased. Lodsely speaking, in order for a
liquid to form the electrons had to expend some condensation energy on flipping spins.
Increasing that expense may eventually prevent the state from forming at all. Recent
experiments[m have established just such an effect, lending strong support to the spin

reversal hypothesis.

There is no theoretical agreement on the electronic structure of the even-
denominator state. One very elegant modell’®! has been proposed, for which spin
reversal is crucial, but it is not clear that it is a viable description of realistic 2D
electron systems.[“] Some workerst!?) have even argued that the spins are not reversed
at all, which is hard to square with experiment. At present we are far from

understanding this obvious inadequacy of the standard model.

One may also fairly ask: If spin is important at the top of the hierarchical pyramid,
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then what about further below? The answer to this is simply not known yet.
Interesting effects have already been observed. Certain fractions, for example v=8/5,
occur in two distinct hierarchical schemes. In one the 8/5-state has all its spins
aligned with the magnetic field, while in the other scheme half the spins are reversed,
and the net spin of the state is zero. Which state is lowest in energy? This depends
on the magnetic field at which v=8/5 occurs. If the spin-reversed variant is lower in
energy, then adding a parallel magnetic field will destabilize it, just as with the 5/2
state. Adding as large enough paralle! field can result in the spin-aligned 8/5-state
becoming lowest in energy. The system thus undergoes a phase transition between
the two ground states. The latest experiments!'® have uncovered just such
phenomena. While most believe the standard model to apply at the highest magnetc
fields, at lower fields, where spin becomes important, the subject is far less settled.

Sdll more suprises may be in the offing.

V. CONCLUSION

The present picture of the dynamics of 2D electrons in high magnetic fields is an
intricate web of distinct quantum liquid states connected by strange quasiparticle
excitations carrying fractional charge. While the dominance of the coulomb
interaction was recognized early on, only a small subset of the observed FQHE states
are understood in any detail. This has been highlighted by the recent discovery of an
even-denominator state and its likely connection to the electron spin. As a

consequence, considerable reworking of the hierarchical model is underway.

Essentially all we now know of the FQHE has been determined through one type
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of experiment: simple electrical conduction. While many other potential probes exist,
they are only just beginning to be employed. Optical investigations, microwave
absorption studies, tunnelling experiments, and thermodynamic measurements will all

add significantly to our understanding of the collective states underlying the FQHE.

Having appreciated the dominance of correlations in many-electron systems in high
magnetic-fields, we expect further manifestations of this phenomenon. In two
dimensions, the hierarchy of liquid states should eventually ‘terminate with the
electrons freezing into a solid. Much interest surrounds this predicted transition but
conclusive experiments have yet to be done. Multilayer 2D electron systems in which
electrons are allowed to interact between planes will allow for novel electron
configurations as yet unobserved. Even “old-fashioncd“. éD electron systems are
expected to reveal new classes of condensed states. Novel crystal growth techniques
are beginning to achieve the dramatic reductions in impurity levels required for the
observation of such states. Intense interest has been generated quite recently in
one—dimensional electron systems. A fascinating quantization of the resistance, akin
to the integer quantum Hall effect, has already been observed.!” In retrospect, the
diversity of phenomena observed or expected from a system of only electrons seems
astonishing. The fractional quantum Hall effect is perhaps only one spectacular

example.

It is a pleasure to thank our many colleagues for their frequent and extensive help
to us in this subject: K. W. Baldwin, G. S. Boebinger, A. M. Chang, S. M. Girvin, A.
C. Gossard, F. D. M. Haldane, B. 1. Halperin, T. Kovacs, R. B. Laughlin, P. B.
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FIGURE CAPTIONS

Figure 1. A typical Hall bar sample. The structure is formed by chemically etching
away unwanted material. The dotted line indicates the two-dimensional electron gas at
the interface between gallium arsenide (GaAs) and aluminum gallinum arsenide
(AlGaAs). The magnetic field B and electrical current I are shown, as are the
longitudinal and Hall voltages, V and Vj, respectively. The shaded regions at the ends

of each arm of the bar are where electrical contact is made to the le electron gas.

Figure 2. Composite view showing the Hall resistance Ry and longitudinal resistance
R of a 2D electron gas vs. magnetic field. The diagonal dashed line passing through
the Ry trace represents the classically expected Hall resistance for this sample. For
each of the plateaus in Ry there is an associated minimum in R. The numbers give
the value of p/q determined from the value of Ry on the plateaus. While some of the
plq values are integers, the great majority are fractions. Note in particular the "1/3-
state" at the far right. This most prominent example of the fractional quantum Hall

effect exhibits a Hall plateau at Ry=(h/e2)/(1/3)=3h/e>.

Figure 3. Three lowest Landau levels, j=1,2,3, in a five-electron system. Each panel
corresponds to a specific magnetic field, B. The number of available states within
each level is indicated. In the right-hand panel the magnetic field is high enough so
that all five electrons may reside in the lowest level. In the middle panel the field has
been reduced to the value By where the lowest level is completely occupied and all
higher levels are empty. This corresponds to the filling fraction v=1. In the left panel

the field has been further reduced, forcing some electrons into the j=2 Landau level.
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Figure 4. [Illustration of the wave function for the fracrional quantum Hall effect

(FQHE).

a.

"Snapshot” of the probability of finding a single representative electron in a
two-dimensional (2D) system pierced by a magnetic field. The flux-quanta

(arrows) create tiny vortex-like dimples. At their center the probability of

finding the electron vanishes.

Additional electrons (spheres) can only be placed in the vortex centers. Only
they are avoided by the representative electron and the Pauli Principle requires
that no two electrons ever reside at the same position. When all vortices are

populated, the Landau level is completely filled characterized by a filling factor

v=1.

At lower electron density only a fraction of the vortices is populated and there
are many equivalent permutations. The placement of the companion electrons
on to the vortices is necessitated by the Pauli principle. The avoidance of
arbimary positions in the 2D plane not associated with a companion electron is
an energetic waste. An energetically preferable state is obtained by placing the

extra vortices onto existing electrons (see Fig. 4d).

Probability distribution for the representative electron in the v=1/3 Laughlin
state. In this commensurate state each electron "binds” exactly three flux quanta.
The resulting wide dimples formed in the distribution of the representative
electron around each fixed companion reduces the repulsive interaction and

lowers the total energy. In the real system in which all electrons are
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delocalized, each electron develops a threefold vortex around each of its

companions.

Figure 5. The hierarchy of fractional states deriving from the primitive 1/3-state. The
2/5 and 2/7-states are the first daughters of the 1/3-state being formed from its quasi-

electrons and quasi-holes respectively.

Figure 6. First observation of a fractional quantum Hall effect at an even-denominator
fraction, v=p/q=5/2. A weak plateaun is just beginning to form at Ry=(h/e?)1(5/2)
and a strong minimum is seen in the longitudinal resistance, R. This data was
obtained at a temperature of only 25mK. The straight diagonal line gives the
classically expected Hall resistance. The nearby integer quantum Hall states at v=2 and
3 are also shown. Since this observation, better samples have shown a much stronger

5/2-state.
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QUANTIZED HALL EFFECT AND ZERO RESISTANCL STATE
IN A THREE-DIMENSIONAL ELECTRON SYSTEM

H.L. Stormer, J. P. Eisenstein, A. C. Gossard.
K. W. Baldwin, and J. H. English

ATE&T Bell Laboratories
Murray Hill, New Jersey 07974
UNITED STATES

Quantization of the Hall effect and vanishing diagonal
resistivity are observed in 3 GaAs-(AlGa)As superlattice
which, in the absence of = magnetic field, conducts in all
three spatial dimensions. In the quantized state. the
conductivity parallel to the magnetic field tends toward
zero. These findings suggest that rather than two-
dimensionality of the electronic system, it is the absence of
conductivity along the magnetic field which is a necessary
condition for the observation of the quantized Hall effect.

Since the discovery of the integral quantized Hall effect (IQHE) in 2 Si-
MOSFET!, its confirmation in & variety of HI-V heterojunction52 and its
interpretation in terms of the singular density-of-states of a two-dimensional
system in a high magnetic field®, there has developed a prejudice that two-
dimensionality of the electronic system is a prerequisite for its existence.
Indeed, by now the IQHE has been observed in a variety of structures*®
that deviste from the simple one-layer, one-subband systems of the early
work. Nevertheless, all those structures consist of electronically strictiy
two-dimensional systems lacking any dispersion and, therefore, conduction in
the direction normal to the layers. Hence, they must be regarded as a stack
of independent quantized Hall resistors connected in parallel. The question
arises whether strict two-dimensionality is indeed a prerequisite or whether 2
generalization has to be adopted. In fact, Azbel has considered this question
for highly anisotropic materials.® While he argues for vanishing diagonal
resistivity, he does not predict quantization of the Hall effect.
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In order to test this case we studied a system which is electrically three-
dimensional by virtue of being a good, although anisotropic, conductor in all
spatial dimensions. In spite of its three-dimensionality, this system exhibits
the 1QHE, p;, = h/ie2 and a pronounced zero-resistance state, p,, > 0.
While the conductivity, ¢,., along the magnetic field (B} direction in general
is non-zero, it vanishes (¢,, = 0) at values of B at which the system assumes
the quantized state. This result suggests that rather than strict two-
dimensionality. it is the absence of conductivity along the magnetic field
direction which is a necessary condition for the occurrence of a IQHE and
zero-resistance state.

The structure used in the experiment is a GaAs/AlGaAs superlattice
(SL) with highlv penetrable barriers. Two identical samples were grown via
MBE on a semi-insulating substrate for in-plane transport and on a n*
-substrate for normal transport. The dimensions of the SL are illustrated in
Fig. 1(a). Measurements of the Hall density and Hall mobility at 4.2K vield
ng = 2.1 X 107 ecm™? and py = 6400 cm?/V-sec, assuming & thickness of
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Heterostructures fabricated from GaAs/{AlGa)As are well understood
and extremely well represented by & simple square-well potential® We
ealculate the miniband structure and wave function of the electronic system
usipg & Kronig-Penney with the parameters listed in Fig. 1(b).
Nonparabolicity of the conduction band, a small difference in mass between
GaAs and (AlGae)As, and a slight distortion of the potential well are
neglected. From the calculations we obtain the dispersion relation shown in
Fig. 1(b). Fig. 1{a) shows the z dependence of the wave function for k, = 0.
The variation from maximum in the well to minimum in the barrier is less
than a factor of 4, demonstrating the high degree of transparency of the
barriers.

Fig. 2 shows contours of constant energy in the k,, k;, plane for varicus
energies up to Ep = 16.4meV. The three-dimensionality of the electrenic
system is evident. In comparison, a strictly two-dimensional system is
represented in such a plot as a set of straight lines parallel to the k, axis.
indicating the lack of dispersion in the 2 direction. For lateral transport the
samples were fabricated into Hall bars, while the specimen for normal
transport were etched into mesas with 1004m diameter, see insert Fig. 5.
The in-plane conduction at zero-field is o = 210(Qtem)™!.  The
perpendicular resistance of the mesa amounts to R = 1.20) which translates
into o, = 0.12(ncm)'1, suggesting & rather large anisotropy of a ~ 10°.
This value of a represents an upper limit of the anisotropy since a major
fraction of the perpendicular resistance is due to contact and substrate
resistance.

Experiments on the in-plane transport allows to determine the actual
shape of the Fermi surface. The magneto-oscillations shown in Fig. 3(a)
indicate a beating pattern between two different oscillations close in
frequency. A node is clearly visible around B ~ 2.3 which establishes the
difference between belly and neck orbit to be AA = 1.1 X 10" cm~2%, The
calculated value is AA = (9.0 - 7.6) X 10" em™? = 1.4 X 10" em™ 2.
Tilting the magnetic field away from ¢ = 0 deg shifts the node to lower
fields (see Fig. 4) i.e. smaller differences between belly and neck orbits as
expected from the Fig. 2. The non-vanishing conductivity in the z-direction
at zero-field and the observation of separated belly and neck orbits establish
convincingly the three-dimensionality of the electronic system under study.
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Fig. 3(b} and 3(c) show our lowest-temperature data on p,, and p,;. At
B ~ 9 T, p,, develops a clear zero-resistance state with p,, < 0.01 /0. For
015K < T < 4.2 K p,, is activated over more than two decades with an
activation energy of A/2 = 0.13 meV (Fig. 68). Concomitant with the
minimum in g, 8 plateau appears in p,, which is defined to about 0.01 02
over a range of 1.5 T. The normal conduectivity o, (Fig. 5} oscillates in
phase with p;; and tends towards o,, -> 0 at a field position where p,,
approaches a plateau and p,; vanishes. With decreasing temperature, the
Hall resistance converges upon & constant value ggy = 537.73 +0.03 Q2 or p,,
= h/48e? to 5 parts in 10°, well within the advertised aceuracy of 1 part in
10 of the decade resistor. These findings suggest that in the quantized
state the resistivity and the conductivity tensor assume the form
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One can develop an intuitive picture which is able to explain some of the
experimental facts. In an ideal two-dimensional system in a high magnetic
field along 2z, the Landau levels consist of 5 functions separated by the
eyclotron energy Awv.. In a three-dimensional system, each quantized state in
the plane is associated with » range of k,, each having a slightly different
energy. Therefore, each Landau level develops into a band. Since the z
motion is ot affected by the magnetic field, the shape of each band is field
independent and reflects the one-dimensional density of states of the k;

~S/ -
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dispersion in the absence of a field. Its width reproduces the zero-field
miniband width W. In high magnetic fields B, when f, exceeds W, the
density of states again exhibits gaps, as in the ideal two-dimensional case,
and the condition for the cbservation of a IQHE seems to be fulfilled.

With = total thickness L = jc there exist j different k, states for each
state in the plane. With a Jevel degeneracy of d — ¢B/h in the x-y plane, a
total of jeB/h states exist in each Landau band, and arguments used for the
strictly two-dimensional case yield Pry = h/jie?. Therefore, with i = 2 and ]
= 30, one expects Py = h/t‘vOe2 which, however, differs from the
experimental result of Pry = h/48¢?. This discrepancy is associated with the
depletion of several top and bottom layers of the superlattice. In order to
investigate this aspect, we fabricated a gate electrode on top of the
superlattice allowing us to vary the depletion depth. Figs. 7 and 8 show the
variation of p,, and Pzy in the i = 2 state versus the gate voltage. Large
oscillations in p,, and concomitant step-like transitions from one quantized
value to the next are being observed when the sample is depleted to
increasing depth. A similar pattern results when a backside bias is applied
to the substrate side. Since the repetitive pattern is assumed to arise from
the periodicity of the superlattice, we expect the peaks in p., (the best
defined structures) to appear at gate voltages.

e
€€,

Vit V= > Ne [k~ k, +6]%, k k, =0,1,2,,;0< ¢ < 1
Here, V (a negative voltage) is the built-in surface potential measured from
Er, N is the 3D density, ¢ is the pericd of the superlattice, £, is the
unknown number of initially depleted layers and ¢ is a phase factor close to
}/2. The voltage differences then are linear in k.

[
€€,

Vigr— V= 5 Ne? [2(k — k, +8) + 1]

Fig. 9 shows a plot of this quantity from which ¢ = 207A and k, = 4 are
deduced. The periodicity is in good agreement with the period determined
by TEM. In the absence of a gate voltage there are k, = 4 layers from the
top and from g, = h/48e* we conclude that only two layers are depleted
from the substrate side. It is striking that the transitions between
subsequent states are so well defined and that a model assuming sequential
depletion of individual layers seems to account for the observations. Yet, in

—Sa’
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a superlattice such a distinction between individusl layers is no longer
possible due to strong interlayer tunneling. Indeed, the transition between
subsequent quantized states in this superlattice are not due to sequential

depletion of layers but are transitions at which the whole bulk participates.
09

<4 Fig. 9  Voltage difference
between neighboring peaks of

Fig. 7 versus peak index.

I ) 1 L
-2 -l [ 1 ]

INDEX OF PEAK IN p,,

In 2 periodic one-dimensional system with finite boundaries, the
variation of the uppermost state of each subband varies rather abruptly with
decreasing distance between boundaries. These state which initially extend
all across the superlattice are sequentially peeled off the continum and move
rapidly to higher energy crossing the Fermi level whenever the confinement
is reduced by one period. It is this pericdicity which is responsible for Fig. 7
and 8.

A remaining puzzle is the small activation energy observed. At B ~ 9T
and with W ~ 2.5meV, we arrive at a gap energy of A = kv, - W ~ 12meV,
while experimentally, we find only A ~ 0.26meV. In general, broadening of
the Landau level (here Landau band) is assumed to be responsible for such a
reduction. With & mobility of u4 «= 6400 cm’[Vsec one deduces a lifetime
broadening of AE ~ &/r ~ 2.8meV, which accounts in part for the small
activation energy. A better understanding of the magnitude of A will
require a better knowledge of the occurrence and position of a mobility edge
and its relation to the IQHE in such an anisotropic three-dimensional
system. This problem should be at least as challenging as the much simpler,
strictly two-dimensiona! case where a conclusion has still not been reached.

In summary, our findings suggest a generalization of the conditions
under which the IQHE can be observed. Two-dimensionality of the
electronic system is not essential. Rather the absence of conductivity along
the magnetic fleld, either pre-existing (as in the two-dimensional case) or
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field-induced (as in the above case) seems to be the required criterion for the
existence of a IQHE,

At present the high scattering rate of the heterojunction superlattice
structures prevent observations of the fractional quantized Hall effect
(FQI"IE).10 Yet other material combinations might ultimately provide such a
possibility. Since the FQHE results from strong correlations among the
carriers, we expect dramatic consequences for this phenomenon from such a
strong interlayer coupling.

We would like to thank R. C. Dynes, F. D. Haldane. B. 1. Halperin, M.
G. Lamont, V. Nerayanamurti, A. Pinczuk, M. A. Schliiter, D. C. Tsui, and
D. J. Werder.
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Density of States and de Haas—van Alphen Effect
in Two-Dimensional Electron Systems

J. P. Eisenstein. H. L. Stormer, V. Narayanamurti, A. Y. Cho, A. C. Gossard, and C. W. Tu
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(Received 28 May 1985)

The density of states of wo-dimensional electron systems in GaAs/AlGaAs single-layer and
multilayer heterostructures has been determined through measurements of the high-field magneti-

zation. Our results reveal a substantial densit

v of siates between Landau levels, even in high-

mobility single quantum wells, There is no existing theoretical explanation for this anomaly.

PACS numbers: 71.20.+c. 71.25.He, 73.40.Lq

After more than a decade of intense study of two-
dimensional electron systems' (2DES) the density of
states (DOS) in high magnetic fields has oniy recently
come under direct scrutiny.Z3 Current theoretical
understanding of the quantum Hall effect (QHE)
makes incisive assumptions about the DOS, the dis-
tinction between localized and extended electrenic
states being essential.® The remarkable phenomena of
the QHE depend directly on the different topologies of
these states, vividly demonstrating the unsuitability of
transport measurements for DOS determinations. The
DOS at the Fermi level can, however, be obtained by
measurement of a thermodynamic quantity such as
magnetization or heat capacity,’ extended and local-
ized states contributing equally in equilibrium. Early
attempts® ® 1o measure the magnetization of the 2DES
were hindered by insufficient sensitivity, by low-
quality samples, and, in the case of ac measurements,’
by spurious signals arising from nonequilibrium eddy
currents. In this Letter we report high-precision dc
measurements of the oscillatory magnetization (de
Haas-van Alphen effect) of the 2DES in homogene-
ous, high-mobility GaAs/AlGaAs single-layer and
multilayer heterostructures. From the data we have
extracted important new information about the DOS,
inciuding the Landau-level widths and their magnetic
field and mobility dependences. In spite of the high
quality of the samples studied, we find a significant
density of states between Landau levels, in agreement
with recent heat-capacity measurements but far in ex-

cess of theoretical estimates.

Ideally, the DOS of a 2DES in a large perpendicular
magnetic field B consists of a sequence of sharp Lan-
dau levels separated by gaps void of electronic states.
If we ignore the small spin splitting of these levels, the
degeneracy of each is 2¢B/h per unit area. At absolute
zero, both the Fermi leve! and the magnetization
exhibit a saw-tooth oscillation periodic in inverse field,
with discontinuities when an integral number of Lan-
dau levels are exactly filled.® The magnetization oscil-
lations are of constant amplitude M= NA ug, where N
is the fixed 2D carrier density, 4 the sample area, and
up the effective Bohr magneton obtained by substitu-
tion of the carrier effective mass (m"=0.0665m, for
GaAs). In a real 2DES, with Landau levels broadened
by various mechanisms, the oscillations will be at-
tenuated and smoothed out.” Measurements of the
amplitude and shape of the magnetization oscillations
can be used, when compared to those calculated from
a model DOS, to obtain information on the underlying
electronic spectrum.

Our samples are modulation-doped GaAs/AlGaAs
heterostructures, grown by molecular-beam epitaxy8
on GaAs {100} substrates, rotated during growth to
ensure homogeneity. While each single interface con-
tains but one 2D electron iayer, the multiquantum
wells consist of many, well separated, layers stacked
upon one another. The carrier densities, mobilities,
and other struciural parameters for the samples stud-
jed are listed in Table I. The last column of the table

TABLE 1. Structurat and two-dimensional parameters for all three samples.

AlGaAs rms AN/N
‘ GaAs Si-doped Low-T 2D Total 2D (%)
S well Iayoer' mobility density area In Layer to
Sample (A) (A) Periods (m¥V-s) (cm~?)  {cm’) plane layer
1 140 400 50 80 5.4x 10" 99 1.1 < 1.8
1000 1 285 3.7x 10" 1.5 1.0 nfa
3 175 450 51 39 5.5x 10! 12.6 08 <20
3Including undoped spacer layers.
© 1985 The American Physical Society 875
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gives the measured rms variations in the carrier densi-
ty of the samples, both within the 2D plane and per-
pendicular to it. To determine the transverse variation
of density more than a dozen independent
Shubnikov—de Haas (SdH) measurements were made
on small segments {(0.1x1-mm? bars) of the
molecular-beam epitaxial wafer near each magnetiza-
tion sampie. An upper limit on the layer-to-layer vari-
ation of the density follows from the observed width
of the low-temperature ( ~ 0.3 K) SdH peaks. For a
single 2D layer the width of these peaks, whose mag-
netic field positions are proportional 1o carrier density,
is determined by the fraction of extended states.
Therefore, in a muitilaver sample the peak width sets
an upper limit on the density variations between
layers. All three samples show a well-developed QHE
at low temperature.

The magnetization measurements are performed
with a recently developed torsional technique.” The
samples are mounted on a thin fiber held perpendicu-
lar to the applied magnetic field and are oriented so
that the normal to the 2D plane, along which the orbit-
al magnetic moments maust lie, is tilted away from the
field direction by a small angle; this geometry is de-
picted in the inset to Fig. 1. The measurement con-
sists of our slowly sweeping the field and recording, by
a capacitive method, the torque on the sample. These
measurements are quasi dc, limited only by the sweep
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FIG. 1. Normalized magnetization for (a) sample } and
{b) sample 2. Note different field scales. Dotied and
dashed lines are fits; [ = 2.4 meV and T'= (1 meV/TY2)VB,
respectively. The basic geometry of the magnetization mea-
surements is depicted at top right.
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rate of the field ( ~ 1 T in 5 min). Typical angular ex-

cursions of the sample are less than 10~ * and the reso-
lution is about Sx 10~ J/Tar j0T

Figure 1(a) shows normalized magnetization data
from sample 1, along with theoretical curves which are
described below. A small, smooth background has
been subtracted from the magnetometer output. In a
narrow region around 5.8 T. the data represent an
average of sweeps up and down in field. This was
done to eliminate the effect of eddy currents'” associ-
ated with the deep zero-resistance state in this field
range (pgo ~— 107° £2/0 a1 0.4 K). While the magneti-
zation varies smoothly over the entire field range the
resistivity (not shown) undergoes order-of-magnitude
fluctuations as the Fermi level passes between extend-
ed and localized states. The magnetization osciliations
have the correct phase and perodicity 1o be unambigu-
ously identified with the de Haas~van Alphen (dHvA)
effect but the amplitude and general shape indicate
significantly broadened Landau levels. The lack of
discontinuities suggests the absence of gaps in the
DOS. Our data show no evidence of the spin contribu-
tion to the magnetization; this is not surprising given
the relatively small size of the spin splitiings in n-type
GaAs (more than 10 times smaller than the Landau
splitting, even after including g-factor enhancement
effects'!).

Figure 1(b) represents the first observation of the
dHvA effect in a single layer of electrons {sample 2)
by a true dc technique. A large anisotropic back-
ground magnetization, nearly linear in magnetic field,
has been subtracted from the data. The magnitude
and temperature dependence of this background
prevent reliable determination of the 2D magnetiza-
tion below 4.2 K and above 4 T. Although unceriain-
ties in the background subtraction preclude analysis of
the shape of the oscillations in Fig. 1(b), the ampli-
tudes are well determined and can be used 1o gain sig-
nificant information about the DOS.

Figure 2 presents a synopsis of the magnetization
data on the samples listed in Table I. Here the ampli-
tudes of the magneto-oscillations, normalized by the
ideal amplitude M, are plotted versus magnetic field,
these points provide a basis for comparison to numeri-
cal calculations. The solid lines represent theoretical
envelopes for the dHvA oscillations resulting from a
DOS consisting of Gaussian Landau levels:

(f—éj)z

2r?

D(e)= 2¢8 i ! exp

h S QmVr W

In this definition I is the rms half-width of the lev-
els and ¢; = (j + 7 )enB/m" is the Landau-level ener-
gy. 1tis clear from the figure that the observed oscilla-
tions from all three samples are considerably smaller
than the ideal-gas result and require Landau-level
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FIG. 2. Normalized dHvA oscillation amplitude vs mag-
netic field for all three samples: filled circles, sample 1,
squares, sample 2; open circles, sample 3. The solid lines
are theoretical envelopes described in text; the labels give
the rms half-width of Landau levels. The dashed line is the
result of assumption of a linewidth proportional to vB.

half-widths in the 1-3-meV range. It is also apparent
that the model DOS with a constant T does not give
the correct magnetic field dependence for the oscilla-
tion amplitudes. The dashed line in the figure
represents a calculation in which the widith I is as-
sumed to vary as vB. With a prefactor of 1 meV/TY?
the calculated magnetization oscillations are in consid-
erably better agreement with the data for sample 1
than are any of the constant-linewidth calculations.
Under the assumption of a width that is proportional
to B, the resulting oscillation amplitude would be field
independent and therefore give a horizontal line in
Fig. 2. The dotted and dashed lines in Fig. 1{a) give
the calculated results for the above DOS, for constant
and VB linewidths, respectively. The widths are ad-
justed to fit the oscillation amplitude around 6 T for
sample 1. For the VB fit, both the amplitude and gen-
eral shape of the oscillations are reasonably approxi-
mated. Better fits to the low-field oscillations can be
obtained with different line-shape functions, but dis-
cussion of such higher-order features of the DOS is
not our purpose here.

For sample 2, unlike samples 1 and 3, the measure-
ment temperature (4.2 K) contributes noticeably to
the attenuation of the dHvA oscillations. The effect
can be approximated by a mere increase of the effec-
tive Landau-level widths. At 2 T the observed rms
half-width is 1.1 meV; removing the temperature
broadening reveals a residual linewidth of about 0.9
meV, approximately 25% smaller than that observed in
sample 1 at the same field. This is 2 modest narrowing

} SHORT ~RANGE THEORY '
E 0.6 mev :

‘__'_STWV—__I

DIE} (Q.u)

EXPERIMENT
2.2mev

ENERGY

EIG. 3. Comparison of model DOS (solid line). used to
fit the datz from sampie 1 at 5 T, with the shori-range
theory. At this field 8.7 meV is the Landau-level spacing.
The rms half-widths of the levels are also shown.

given the almost factor-of-4 mobility difference
between these two samples. It should be emphasized,
however, that the link between mobility and high-field
Landau-level width is highly uncertain.!2-14

Small-scale sample inhomogeneities may present a
plausible explanation for the apparently broad Landau
levels. While our SdH studies rule out significant at-
tenuation of the dHvA oscillation arising from varia-
tions of the 2D density on a gross lateral scale ( ~ 1
mm), as well as from layer to layer, we cannot assess
smaller scale variations. Under the assumption that a
local 2D density can be defined, the effect of inhomo-
geneities can be calculated by a simple averaging tech-
nigue, the result being attenuated dHvA oscillations.
We have not succeeded in generating the correct field
dependence for the oscillation amplitude with such a
simple model. The local-density assumption itself may
be incompatible with the effect on the Landau levels
of long-range potential fluctuations.'®

At present there does not exist a coherent theoreti-
cal picture of the DOS of a 2DES in a high magnetic
field. Theoretical calculations date back to times be-
fore the discovery of the QHE and are not necessarily
applicable 1o our system. Ando and Uemura'®
derived, under various approximations, an expression
for the rms width of the Landau levels sssuming
short-range scatterers and, while their result does give
a VB dependence for the width, the calculated magni-
tude is approximately 4 times smaller than our experi-
mental results. The model DOS used to fit the data
from sample 1 (at 5 T} is compared to the shert-range
result, appropriate to this sample, in Fig. 3. The ab-
sence of gaps in the observed DOS is striking. Given
the large discrepancy between theory and experiment,
it is not possible to ascertain the origin of the sbserved
rough VB dependence reported here.

Comparison of our results with the receat heat-
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capacity studies’ shows agreement on the basic issue of
the residual DOS between Landau levels but we do not
find evidence for the relatively narrow structures alop
a constant background cited by Gornik er g/} This
discrepancy is not understood at present. The most
current theoretical picture'®'"® reveals the DOS
depending nontrivially on magnetic field and strongl
upon the Landau-level filting. Neither in this work
nor in the heat-capacity study were such complications
included in the model DOS used for anatysis. Without
inclusion of such complex dependences there is no ob-
vious way to compare the two experiments.

In summary, we have used the de Haas—van Alphen
effect to determine the high-magnetic-field DOS of 2D
electrons in GaAs/AlGaAs heterostructures, for both
single-layer and multilayer samples. Qur results give
Landau-level widths which are magnetic field depen-
dent, varying roughly as B, but whose magnitude is
about a factor of 4 larger than theoretical estimates.
These widths imply a significant density of siates
between Landau levels, even in high-mobiiity
( ~ 300000 cm?/V - s) single-interface structures.

It is a pleasure to thank W. Wiegmann for growing
some of the samples and K. Baldwin and A. Savage for
their excellent technical assistance. We also thank
T. Haavasoja for his help in the early stages of this

.work.
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Observation of an Even-Denominator Quantum Number in the Fractional Quantum Hall Effect
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An even-denominator rational quantum number has been observed in the Hall resistance of a two-
dimensional electron system. At partial filling of the second Landau level v=2+ 1 =% and at tempera-
tures below 100 mK, a fractional Hall plateau develops at pg = (h/e?)/ % defined to better than 0.5%.
Equivalent even-denominator quantization is absent in the lowest Landau level under comparable condi-

tions.

PACS numbers: 73.40.Kp, 73.20.Dx, 73.50.Jt

The observation of exclusively odd-denominator ra-
tional quantum numbers in the fractional guantum Hall
effect'~? (FQHE) represents a surprising experimental
fact. This transport phenomenon manifests itsell in
two-dimensional electron systems at low temperatures
and in high magnetic fields as minima in the diagonal
resistivity pxx and concurrent plateaus in the Hall resis-
tance p,, quantized to (h/e?)/(p/q). These characteris-
tic features occur at fractional Landau-level filling
v=p/q, where g is always odd (v=nh/eB, n is the areal
density, and eB/h is the Landau-level degeneracy). The
FQHE is presently accepted as being the consequence of
the formation of an incompressible quantum fluid.¢ The
ground state is well described by Laughlin’s many-
particle wave function® which, because of the require-
ment of antisymmetry under particle exchange, applies
exclusively to odd-denominator fractional Landau-level
filling. This odd-denominator restriction propagates to
the hierarchical model® of daughter states which em-
braces all odd-denominator rational fractions and is well
supported by numerical few-particle calculations.**’
While at present there exists ample evidence in theory
and cxperiment alike for the absence of even-denom-
inator quantum numbers, no physical symmetry has been
found to exclude them a priori. In fact, recent work®?
has pointed to the possibility of condensation at v= 1} al-
though perhaps without display of the FQHE. Under
these circumstances firm experimental evidence for an
even-denominator rational quantum number will require
a reevaluation of our understanding of two-dimensional
electrons in the quantum limit.

The possibility of observing the FQHE at even-

denominator filling factors has been suggested by some
experimental findings. A minimum in p,. has beer not-
ed by Ebert ef al.'" at v=1% in the lowest Landau jevel.
More recently, Clark and co-workers'"'? have tonjec-
tured that a family of even-denominator fractions may
exist in the second Landau level at v=5, 3, &, as
displayed by weak minima in py,. Since minima in p.,
at such high filling factors are notoriously wide and in-
variably shift significantly with temperature, their #ssoci-
ation with a particular fractional filling is problematic.
Only quantization of p,, to the correct fractional value
provides firm evidence for the existence of a giver frac-
tional state. Such crucial evidence has been lacking.

In this Letter we present experimental evidence for the
appearance of the characteristic features of the FQHE at
an ecven-denominator filling factor. This unexected
phenomenon occurs in the first excited Landam level
4 < v <2 at a filling factor v=2+ § = 3. Transpert ex-
periments show a plateau developing in p,, centered at
(h/e?)/% to within 0.5% concomitant with a deep
minimum in px.. An equivalent quantization is st ob-
served in the lowest Landau level v <2 at similar tem-
peratures. While all of the data reported here wene ob-
tained from a molecular-bcam-cpitaxy—-grown sgingle-
interface GaAs/AlGaAs heterostructure of mability
1.3x10°% cm2/V s and areal density 3.0x10" am~2,
similar but somewhat weaker structures were obsewved in
two other samples. Low-temperature illuminatisn for
several minutes with a light-emitting diode is nearssary
to produce the persistent carrier concentration ani! mo-
bility given above. These parameters are found ro de-
pend slightly on the precise illumination conditions.

1776 © 1987 The American Physical Society
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FIG. 1. Overview of diagonal resistivity pxx and Hall resistance p,, of sampic described in text. The use of a hybrid magnet with
fixed base field required composition of this figure from four different traces (breaks at =12 T). Temperatures were = 150 mK ex-
cept for the high-field Hall trace at 7=85 mK. The high-ficld p,, trace is reduced in amplitude by a factor 2.5 for clarity. Filling

factor v and Landau levels N are indicated.

Transport measurements were performed at magnetic
fields up to 30 T and at temperatures down to 20 mK
with two different dilution-refrigerator-magnet systems.
Great care has been exercised in order to assure thermal
equilibrium between the 2D electrons and the crysial lat-
tice. Since large changes in resistivity were observed
upon cooling of the crystal lattice from 40 to 25 mK (as
measured with a nearby carbon resistance thermometer)
a gross ciectron-lattice disequilibrium seems unlikely.

Figure | displays the low-temperature diagonal and
Hall resistivities over a wide range of magnetic field and
filling factor. 1n Fig. 2, the interval 3> v > 2 is expand-
ed, revealing our most startling result. The p,, data at
25 mK show a plateau forming at the field corresponding
to v=#, intersected by the classical Hall line deter-
mined from the measured 2D density. More important-
ly, this plateau is centered at p,, *=(h/e?)/% to within
0.5%. Simultaneously a deep relative minimum is found
in py.. While not yet fully developed, these features
emerge in a manner analogous to conventional! odd-
denominator FQHE states. Taken together, these data
provide striking evidence for an even-denominator
FQHE. ‘

To highlight further the p,, data contained in Fig. 2,
the positions of the high-order odd-denominator frac-

-6 -.

tions # and ¥ are indicated (3 £ 1.5%}. No features

are found in p,, at these fractions which lie well clear of
the observed + plateau. From this it can be assumed
that the 3 plateau is not likely the consequence of two
high-order odd-denominator plateaus blending together
to form an apparent, but spurious, plateau at v=%

Figure 2 also shows that the strong temperature
dependence of the § minimum in p,, commences below
100 mK, indicating a very small associated energy scale.
Although not shown in the figure, the plateau in p,, at
v=$ exhibits the same temperature dependence as the
minimum in ps,. Above about 100 mK the plateau
disappears and the Hall resistance follows the classical
line. The development of the resistivity feature is
noteworthy. Instead of forming a zero in p,,, the
minimum itself remains roughly constant while the adja-
cent flanks rise steeply as the temperature is reduced.
The same phenomenon has been observed at odd-
denominator fractions as well.'> Such behavior results
from the competition between the tendency for the p,,
background to rise as the temperature falls and the de-
velopment of the resistivity minimum.

In addition to the plateau at v= % there is other evi-
dence of the FQHE in the first excited Landau level,
4> v>2 Asshown in Fig. 2, there are broad minima
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FIG. 2. Diagonal resistivity p,, and Hall resistance p,, [en-
larged section (a) of Fig. 1] at 7=100 to 25 mK. Filling fac-
tors v are indicated in p., while quantum numbers p/q are
shown in p,,.

near v=§ and % which shift considerably with temper-

ature. By the lowest temperatures a plateau, off the clas-
sical line, has formed at % corroborating the earlier
work of Clark et a/.'? and a much weaker onc is appear-
ing near v . Thus, aside from v=$, we have no evi-
dence for an even-denominator FQHE in the range

3I>v>2,
At high temperature (=100 mK) p,, data from the

higher spin state of the first excited Landau level,
4> v >}, are broadly similar to the range 3> v> 2, A
minimum is found at v=7] as well as in the vicinity of
ve=1 and {. Lowering the temperatures causes an
overall increase in resistivity over the entire range
without significant enhancement of the fractional
features. Only weak structure in p,, is found at v= T.
Potential observation of the FQHE at v=$ awaits sam-
ples of higher quality.

Having evidence for an even-denominator fraction
within the first excited Landau level, we reexamined the
lowest Landau level for equivalent features. Using the
same specimen, we focused on v<1. As Fig. 1 shows
there exist a broad basin in py, around v=1}, but no
inflection occurs in p,y. In fact, in this field range, p,,
follows the classical Hall line. Furthermore, the broad
feature around v* ¥ is in stark contrast to the much
sharper neighboring odd-denominator minima which
have now been observed with denominators up to g =13
(Fig. 1). The absence of a quantized plateau in p;, and
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the uncharacteristically wide depression in p,,, in spite
of the fact that higher magnetic fields vastly amplify
FQHE features, '* suggests a characteristic difference be-
tween clectron correlation in the lowest and first excited
Landau levels. A similar observation can be made
around v= % which was closely investigated at tempera-
tures as low as 25 mK without showing evidence for
even-denominator quantization.

With the resolution of increasingly higher-order odd-
denominator fractional states of the sequences® v=(m
+1)/2m+1) and v=m/QCm+1) (m=1,2,3,...),
which converge toward v= %, the broad basin in its vi-
cinity may actuaily be caused by even higher-order, yet
unresolved members of the same sequences. Such a con-
jecture is supported by distinct features now observed
around v=g. With our high-mobility sample, we
discovered representatives of both odd-denominator se-
quences converging towards v= 3. Distinct minima are
observed at v=$ and v=# associated with plateaus
(not shown in Fig. 1) quantized to the appropriate values
to better than |%.

To summarize our results, in the first excited Landau
level we have firm evidence for fractional quantizatien of
the Hall effect to an even-denominator fraction, v= 3
with no other even-denominator fraction appareat at
v=p/4 for temperatures as low as =20 mK. In spite of
our resolving several new fractions in the lowest Landau
level, no evidence for even-denominator quantization ex-
ists presently for v < 2.

Although no physical principle has been found exciud-
ing the observation of even-denominator fractions in the
FQHE, there cxists presently no theoretical mode!
describing such states. Theory has been very sucoessful
in developing an understanding of odd-denominator frac-
tions in terms of a highly correlated quantum fluid exist-
ing specifically at primitive odd-denominator #lling
(ve=4,%,...,0=4+,1=%,...).% Laughlins wave
function fulfills the requirement for antisymmetry of the
wave function only for odd-denominator rational Sling.
The same restriction applies to the hierarchy of fraction-
al daughter states (v=#%,%,%,4%,...) derived from
those primitive parental ground states.

Generalization of this theoretical model to indude
even-denominator quantum numbers requires the parti-
cles to be bosons rather than fermions. Such possibdities
have been discussed previously by Halperin'> who pro-
poses bound-clectron pairs as such candidate besons.
Given the low field at which we find the v=4% FGHE
and the consequent small spin Zeeman energics, ahzady
predicted to influence the FQHE state,'® potential pair-
ing mechanisms involving spin-reversed electrons caanot
be rejected a priori. Numerical few-particle cakula-
tions* have led to considerable progress in quantifying
the properties of the fractional states. None of theseela-
borate techniques has hinted towards the existenm of
even denominators. A recent cooperative ring exchmge
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theory!” may allow for quarter fraction, but makes no
mention of p/2. However, most of these calculations
have focused on the lowest Landau level, where even-
denominator quantization indeed remains unobserved.
Studies for higher Landau levels rest largely on a gen-
cralization'® of Laughlin’s quantum fluid. Numerical
calculations for the second Landau ievel'® find con-
densed ground states at filling factors v=1 % 4 1t
¥ and . However, there is no evidence for the ex-
istence of even-denominator quantum numbers found in
these numerical results.

Our observation of the first even-denominator quan-
tum number, p/g = 3, shows that fractional quantization
of the Hail effect is not limited to odd-denominator frac-
tions. If the odd-denominator FQHE is any guide, we
must expect to find more and possibly different even
denominators in the future. It remains to be seen wheth-
er a common theoretical description can be found or
whether one is dealing with two distinctively different
“new states of matter.”’
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Evidence for 2 Phase Transition in the Fractional Quantum Hall Effect

J. P. Eisenstein, H. L. Stormer, L. Pfeiffer, and K. W. West

AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 22 December 1988)

We observe a novel transition between distinct fractiona! quantum Hall states sharing the same filling
fraction v= 1. The Lransition is driven by tilting the two-dimensional clectron-gas sample relative to the

external magnetic ficld and is manifested by a sh

tion energy on tilt angle. After an initial decline,

tilt angle exceeds about 30°. A plausible mod

arp change in the dependence of the measured activa-
the activation energy abruptly begins to increase as the
el for these results implies a transition from a spin-

unpolarized quantum fluid at small angles to a polarized one at higher angies.

PACS numbers: 73.40.Kp, 73.20.Dx, 73.30.)t

The earliest ideas concerning the fractional quantum
Hall effect (FQHE) in two-dimensional electron systems
(2D ES) held the spin Zeeman encrgy to be so large that
all fractional states could be safely assumed to be fully
spin polarized. It was also generally thought that only
one incompressible quantum liquid existed at any given
filling fraction that displayed the FQHE. Halperin' was
the first to point out that the small g factor (g~0.5) in
GaAs made the usual assumption of full spin polariza-
tion worth reexamining. He proposed various candidate
ground states containing reversed spins. In particular,
the unpolarized ground-state wave function he suggested
for the v=4% FQHE was later shown? to have a lower
energy, in the absence of the Zeeman term, than the usu-
al polarized state thought to be a “daughter” of the
primitive v=§ fluid. While at high magnetic ficlds the
Zeeman energy will stabilize the polarized state, the pos-
sibility remains for a transition to an unpolarized fiuid at
lower fields. The purpose of this Letter is to present evi-
dence consistent with just such a spin transition in the
FQHE ground state at v= .

It is becoming apparent that the spin degree of free-
dom may in fact play an important role in forming both
the condensed ground state'"® and its quasiparticle exci-
tations,™'° at least at sufficiently low magnetic field B.
The encrgy gap for creating spin-reversed quasiparticles
above the v= | state has been found®' to be less than
that for polarized quasiparticies, at sufficiently low mag-
netic field. This has been suggested as a way to explain
the magnetic field dependence of the observed energy
gaps'' in the FQHE. Recent tilted-ficld studies'>"? on
the FQHE have also been cited as suggestive of the
influence of spin.

The recent discovery'® of a Hall plateau in the FQHE
at the even-denominator filling fraction v=1 has gen-
crated rencwed interest in the possibility of spin-
unpolarized ground states. A plausible way to overcome
the odd-denominator restriction inherent in Laughlin’s
many-body wave function'® describing the primitive
FQHE ground states at v=1}, t, etc, is to form pairs
of electrons with opposing spins. This was made con-

crete by Haldane and Rezayi® who proposed an unpotar-
ized spin-singlet wave function for the v=% FQHE.
Eisenstein et al.'® have presented experimental evidence
that the underlying ground state at v=3% may, in fact,
be unpolarized. Their data showed a rapid coflapse of
the & state as the magnetic field was tilted away from
the normal to the 2D plane, while nearby odd-
denominator states remained largely unaffected. Since
the predominant effect of the tilt is the enhancement of
the spin-fiip energy,!” the collapse of the ¥ state with in-
creasing tilt angle was cited as evidence for a
significantly reduced spin polarization.

In the present paper we describe a transition between
two distinct FQHE states at the same odd-denominator
filling factor v=1%. The transition is driven by tilting
the magnetic field and the data are consistent with a
change from a spin-unpolarized fluid to a polarized one.
We have so far found no similar transition in the FQHE
statesat v=3, %, ¥,or 4.

The sample employed in this study is a GaAs/AlGaAs
heterostructure grown by molecular-beam epitaxy. With
a 2D carrier concentration N, =2.3x 10! cm ™2 and mo-
bility of about 7x10¢ cm?*/Vss, both established by brief
low-temperature illumination with a red light-emitting
diode, this sample is of extremely high quality. This is
evidenced by the substantially enhanced strength of the
delicate v= % FQHE in comparison to carlier observa-
tions.'#15!8 The sample has allowed for a quantitative
study of the even-denominator state, the results of which
will be published separately.

The sample is mounted upon an in situ rotation device
attached to the mixing chamber of a dilution refrigera-
tor. Magnetotransport measurements arc typically per-
formed using 10-nA, 5-Hz excitation. We have reliably
obtained electron temperatures as low as 16 mK with
this arrangement. As in our carlier work, 16 the tilt angle
is determined by observing the orderly cosé shift of
strong features in the diagonal resistivity pxz. Details of
our techniques have been published carlier. 1618 The
use of in situ rotation at low temperatures (<100 mK)
is a prerequisite for obtaining reproducibility of delicate

1540 ' © 1989 The American Physical Society
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FIG. 1. Overview of diagonal resistivity p,, and Hall resis-
tance py, at 25 mK, with the magnetic ficld perpendicular to
the 2D plane. Dashed lines indicate location of the $ FQHE.
Other important FQHE states are indicated.

FQHE features. Since the bulk of our data is comprised
of activation energy determinations, reliable ther-
mometry in the millikelvin regime is necessary. For this
we have employed a ’He melting-curve thermometer
similar to that described by Greywail. '

Figure 1 shows an overall view of both p., and the
Hall resistance p,, at 25 mK with the magnetic field per-
pendicular to the 2D plane, ic., #=0. Only the field
range corresponding to filling factors 2> v> 1 is shown.
The filling factor is defined as v=N,/(eB/k), where
eB/h is the degeneracy of the individual spin subbands
of each Landau level. Thus, Fig. 1 displays electron
correlation effects in the upper spin subband of the
lowest Landau level. While numerous fractional quan-
tum Hall states are present, as evidenced by minima in
Pxx and plateaus in p,,, we will be primarily interested in
the v=§{ state.

Upon tilting the sample relative to the applied mag-
netic field an interesting reentrant behavior obtains at
ve}. With the field perpendicular to the 2D plane a
well-developed FQHE minimum is observed at v}
(see Fig. 2). Qualitatively, as the angle @ is increased
from zero, the ¥+ FQHE gradually weakens. At about
25° a weak satellite minimum appears about 1% higher
in field (i.e., lower in filling factor) than the main ¥
minimum. Increasing @ further, to about 30°, results in
two weak minima of about equal strength whose field po-
sitions straddle the location of the v=} filling factor.
The typical splitting of the doublet is only 1% in filling
factor. “Further tilting reverses all these trends. The
high-field component of the doublet becomes dominant
and gradually centers on v~$. Beyond about 37° a
single, well-developed } mirima dominates, steadily
strengthening as @ is increased. For both the low- and
high-angle regimes, the Hall resistance exhibits the ex-
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FIG. 2. Left three pancls: Expanded views of Pxx ¥s filling
Jactor in a narrow range around v=}_. Note the splitting of }
minima at #=30°. Data shown were taken at about 30 mK.
Right panel: Arrhenius plots for ¥ minimum at various an-
gles. Plota, 6=0°; b, 6=18.6°% ¢, #=42.4°; and d, 9 =49.5°.

pected plateau at p,, =5h/8e?,

To obtain a quantitative picture of this phenomenon
we have carcfully measured the activation energy A
versus tilt angle for the ¥ minimum in p,.. We define A
80 that p.. =poexp(—A/2T). Complete temperature
dependences are important since we found it easy to be
deceived when assigning relative magnitudes to activa-
tion energies based solely upon the depth of p,, minima
at a single temperature. Figure 2 shows typical Ar-
rhenius plots for the $ state at several tilt angles. For
6<25° and 6> 40° the p,, data display activated be-
havior over almost two decades in resistivity. On the
other hand, around 30°, where the ¥ minimum is split,
the temperaturc dependence is complicated. Figure 3
shows the angular dependence of the observed activation
energy. As & increases from zero, A smoothly declines.
Beyond about 30° A begins to rise again, eventually
exceeding its value at 8=0. In the range where the dou-
blet is resolved, assignment of an activation energy is
somewhat questionable. This is due to the complex in-
terdependence of the two minima, especially at the
lowest temperatures. For this narrow range of angles
and where it appeared sensible from the Arrhenius plot,
we used the high-temperature portion of the data to as-
sign activation encrgies to one or both members of the
doublet. This slight complication is rendered moot since
the reentrant behavior of the activation energy is ap-
parent from the data outside the doublet regime.

The data presented in Fig. 3 are all obtained at a fixed

filling factor v=$ and hence a fixed perpendicular mag-
netic field B, ~5.95 T. They are plotted against roral
magnetic ficld, B. =B ./cos6. This is the natural choice
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FIG. 3. Activation energy for § FQHE vs Bix. Difference
between symbols is relevant only in doublet regime around 30°.
Solid and open symbols refer to low-field and high-ficld com-
ponents, respectively.

if the spin Zeeman energy, which is proportional to B,
dominates the tilt dependence of the activation energy.
It is clear that a sharp transition occurs in the slope
dA/dB,, at around 30°. The transition occurs in coin-
cidence with the splitting of the px, minimum.

This behavior suggests a possible phase transition be-
tween two distinct quantum-liquid states v= $. Howev-
er, the data in Fig. 3 cannot be directly interpreted as a
crossover of two separate liquid ground-state energics.
The activation energy A reflects the energy gap for excit-
ing quasiparticles out of the ground state. Thus, a tran-
sition between two species of quasiparticles arising from
the same ground state cannot be ruled out. Neverthe-
less, a plausible model for our results can be proposed by
assuming the ground statc at smali angles (i.e., small
Zeeman enecrgy) is an unpolarized state analogous to
Halperin’s # state. The % and # states arc presumably
closely related, at least in the absence of inter-Landau-
level coupling, since v=2=1% + } represents the fully
filled lowest Landau level. Halperin’s unpolarized state
is expected? 10 be lower in encrgy than the polarized
state at sufficiently low magnetic field. As the Zeeman
energy at v=1} is increased by tilting, the relative ener-
gy advantage of the unpolarized state decreases and
eventually the polarized state will become the new
ground state. Other contributions to the ground-state
encrgy, such as exchange and correlation effects, depend
to first approximation on B alone and this is constant at
fixed v.

For the unpolarized fluid at small angles, spin- ¥
quasiclectron and quasihole excited states must cach be
spin split. Thus, the cnergy cost for creating an unbound
pair of such excitations is smallest when each aligns it-
self appropriately with the applied ficld. This implies an
activation energy of the form A=Ag = gugBia, Where Ag
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is the energy gap in the absence of a Zeeman term. We
will assume both excitations have the same g factor. In
addition, we will ignore any residual angular dependence
of Ay due, for example, to wave-function “squashing”
effects.!® From the slope dA/dB, at small angles in Fig.
3 we find g~0.4 in remarkable agreement with recent
spin-resonance measurements” on 2D electrons in
GaAs. Interestingly, Furneaux, Syphers, and Swanson '
obtain a similar result from tilted-field studies of the
ve=4 FQHE. Whether the g factor for the fractionally
charged quasiparticles should be so close to that of un-
correlated electrons is not known.

In the high-angle, polarized state the excitation ener-
gics may also depend on the spin of the quasiparticles.
At sufficiently low magnetic field, excitation of a spin-
reversed quasielectron and spin-polarized quasihole out
of the v=4 FQHE ground state has been predicted™'?
to provide the lowest-cnergy gap, with the net Zeeman
contribution being +gusBix. Hence, we now write
A=A}+gusBia with Aj the gap in the absence of the
Zeeman energy. The high-angle data in Fig. 3 yield a
slope dA/dB,x which is nearly the same, but of opposite
sign, as that of the low-angie unpolarized state. Hence,
the same g factor obtains. At still higher total fields, ex-
citation of polarized quasielectrons should be favored,
yiclding a roughly anglec-independent gap. Such mea-
surements require a larger magnet than is currently
fitted on our apparatus,

There are aspects of our data which are not under-
stood at present. In particular, the spiitting of the p,.
minumum around the critical angle is intriguing. It may
result from small density variations in the sample that
lead to spatial separation of the polarized and unpolar-
ized phases. The splitting is small, requiring a density
variation of not more than ~ 2% across the entire 5-mm
sample. Such a level of inhomogeneity is not at all
unusual. On the other hand, phase separation might
occur even in the absence of inhomogeneities, peshaps in
analogy with domain formation. A consistent picture
describing the nature of the phase scparation would be
most interesting. A puzziing feature of our data con-
cerns the lack of a discontinuity in the magnitude of A at
the transition. Although the ground-statc enexgics are
becoming degenerate at this point, there is no obvious
reason why the excitation gaps should also coincide.

We have also studied the v=%, ¥, and § FQHE
states in tilted ficlds. All show some variation is activa-
tion energy with tilt. They do not, however, display the
qualitative reentrant behavior we find at v= $. at least
within the same range of angle, field, and temperature.
Further measurements on these states arc underway.

In summary, we have presented evidence for a phase
transition in the FQHE at a filling factor v=4%. The
transition is driven by tilting the magnetic field away
from norma! to the 2D plane. We propose a model for
our observations in which the FQHE ground state at
ve} undergoes a transition from being spin unpolar-
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ized at small angles to spin polarized at larger angles.
The angular dependence of the activation energies yields
a g factor for quasiparticles of the FQHE that coincides
with that found for uncorrelated 2D electrons in GaAs.
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ACTIVATION ENERGIES FOR THE EVEN-DENOMINATOR
FRACTIONAL QUANTUM HALL EFFECT

J. P. Eisenstein, R. L. Willett, H. L. Stormer, L. N. Pfeiffer and K. W, West

AT&T Bell Laboratories, Murray Hill, NJ 07974

Quantitative activation energy data on the v=05/2 even-denominator
fractional quantum Hall effect are reported. The energy gap is found to drop
linearly with total magnetic field in tilted fields with a slope roughly consistent
with the bare g-factor for electrons in GaAs. These data further support the

suggestion that the v=5/2 ground state is spin unpolarized.
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ACTIVATION ENERGIES FOR THE EVEN-DENOMINATOR
FRACTIONAL QUANTUM HALL EFFECT

J. P. Eisenstein, R. L. Willett, H. L. Stormer, L. N. Pfeiffer and K. W. West

AT&T Bell Laboratories, Murray Hill, NJ 07974

The discovery{l] of a plateau in the Hall resistance pzy of two-dimensional
electron systems (2DES) at the even-denominator Landau level filling fraction
v=>5/2 has generated a renewed interest in the general theoretical picture of the
fractional quantum Hall effect (FQHE). Prior to the work of Willett, et al.[1]
the FQHE appeared restricted. in theory and experiment, to solely odd-
denominator filling fractions. In the standard picture, this restriction arose
from the requirement of exchange antisymmetry of the variationa) wavefunction
constructed by Laughlin{2] to describe the primitive FQHE correlated states at
v=1/3, 1/5, 1/7, ete. and was found to persist through the higher order

fractions v=p/q, ¢— odd, via the hierarchical model[3].

In the original picture of the FQHE, the electron spin was generally
assumed fully polarized. The formation of spin-reversed pairs{4] of electrons,
while energetically expensive, would obviously alter the effect of exchange
antisymmetry and provides a plausible route to even-denominator quantization.
Haldane and Rezayi[5] constructed an explicit spin-singlet wavefunction which
displayed the FQHE at 1/2-filling. They further :argued their wavefunction
would be favored in the second Landau level and thereby account for the
observation of the FQHE at v=2+1/2=5/2 and its apparent absence[l] at

v=1/2 or 3/2 in the lowest Landau level. The tilted-field studies of Eisenstein.
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et al.[6] showed a rapid collapse of the 5/2-FQHE as the angle between the
normal to the 2D plane and the magnetic field was increased. Since the primary
effect of such tilting is an enhancement of the spin Zeeman energy while the
coulomb energy stays fixed, this result was cited as evidence that the ground
state at v=5/2 contained a large number of reversed spins, in agreement with

the model of Haldane and Rezayi[5].

The degree to which the so-called "hollow-core model” proposed by
Haldane and Rezayi approximates real coulomb interactions between 2D
electrons has been criticized(7]. Recent numerical calculations[8] on few-electron
svstems suggest the ground state at v==5/2 filling may be spin-polarized after
all. It is the purpose of this contribution to present new data on the 5/2-FQHE
from which the activation energy associated with the quasiparticle energy gap
has been determined. The tilted-field dependence of the activation energy has
also been measured, and lends further support to models in which the liquid

ground state has a reduced, or even zero, net spin polarization.

The data presented here have been obtained using a GaAs/AlGaAs

heterostructure with mobility u=7z10%cm?/Vs and 2D carrier concentration

N,-t2.31:10“cm'2. Details of our experimental method have been published

previously[8]. Figure 1 shows p,; data at three temperatures over the magnetic
field range spanning the filling factors 3>v>2. .At low temperatures the
dominant feature is the strong FQHE minimum at v=>5/2 filling. In contrast to
our earlier data[l], there are additional FQHE features observable in this filling

factor range. A strong minimum is observed at v=7/3 and a weaker one at 8/3.
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There is no evidence of states at 9/4 and 11/4 as suggested earlier[9], although
additional weak minima are evident in Fig. 1. Still higher sample quality and

lower temperatures may be required to observe any hierarchical descendants of

the 5/2-state.

Figure 2 shows the Hall resistance Pzy at 20mK for this sample. A fully
formed plateau at _o,,,=2h/5132 is observed. In addition, we find a plateau at
p,y=3h/‘ife2 establishing the existence of the 7/3-FQHE in the second Landau
level. It must be noted that as our samples are not etched into Hall bar |
geometries, the data contained in Fig. 2 may contain an admixture of the
magnetoresistance p,;. This has no significance for the well-established FQHE
state at 5/2 for which p,, is very small. We have verified this by employing
several different contact configurations; in all cases the correct plateau at 5/2 is

found.

In common with our earlier findings{l] the flanks adjacent to the 5/2-
minimum rise up steeply as the temperature is reduced. In this sample
however, the minimum at v=5/2 falls with temperature, rather than remaining
roughly fixed as it did earlier. .This obvious sign of higher sample quality allows
for a determination of an activation energy A as defined by p,,=const. X
ezp(—A /2T). Figure 3 shows Arrhenius plots of p,, at the 5/2-minimum uvs.
1/T. For the data taken in a perpendicular field, 9—;-0, the plot is linear over a

decade in resistivity with a slope giving A(=0)=105mK.

The activation energy measured for a perpendicular field, A(0), contains

coulomb, exchange and Zeeman contributions as well as some effect of the
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disorder present in the sample. As such, it is hard to interpret its magnitude.
On the other hand, the use of the tilted-field method allows isolation of the
Zeeman contribution. This is because the correlation energies and the effect of
disorder depend, to first approximation at least, on the perpendicular
component of the magnetic field B, alone and this is held fixed in a tilt
experiment. The spin Zeeman energy, by contrast, depends on the total

magnetic field By,y=B /cosd.

In Fig. 4 the activation energy A is plotted vs. By,. This is the obvious
choice if the tilt dependence of the energy gap is dominated by the spin flip
energy. It is apparent that the data exhibits a roughly linear dependence upomn
By, supporting the idea that spin flips are involved. A simple model for the
energy gap above an unpolarized ground state contains spin-1/2 quasi-electron
and quasi-hole states each of which are Zeeman split. This leads to a gap of the
form A=Aq(B,)—gupBi,. From the slope of the straight line drawn in Fig. 4
we infer a g-factor of 0.56. The most recent ESR measurements{10] on
uncorrelated 2D electrons in GaAs/AlGaAs heterostructures obtain g¢~0.4
This approximate agreement, while supporting the general picture outlined
above, should not be over-emphasized. Without a definitive theoretical modsl
for the 5/2-state we do not know whether such an agreement is to be expected.
Secondly, the uncertainty in A& becomes larger as @ ‘increases since the span of

p;. values used to determine A is narrowing.

An important question is whether the data in Fig. 4 could result from a

polarized ground state with spin-reversed excitations. This seems unliikely sine



creation of such a quasiparticle will reduce the net spin of the total system
leading to an increase in the net Zeeman energy. It has been predicted(11,12]
that spin-reversed excitations above the fully polarized v=1/3 FQHE ground
state do lead to a positive Zeeman component to the energy gap. Thus,
observing a gap that falls with increasing Zeeman energy (via tilting) seems a
sign of spin-reversal in the ground state. Whether the ground state is
completely unpolarized, or is only partially so cannot be determined from our

data alone in the absence of a theoretical model.

There have recently been additional indications of unpolarized FQHE
states within the 'conventional’ odd-denominator FQHE[13,14]. At v=8 /5 for
example, Eisenstein, et al{l4] have observed a re-entrant behavior strongly
suggesting a phase transition between an unpolarized ground state at small tilt
angles and a polarized one at higher angles. The collapse of the unpolarized
8/5-state at small angles is qualitatively the same as seen for the 5/2-FQHE.
The interesting difference is that a polarized 8/5-state is available at higher
angles (i.e. higher By,), whereas no such polarized version of the 5/2-state has

so far been found.
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Figure Captions

Figure 1. Magneto-resistance p,, in filling factor range 3>¢>2 showing deep
minima at =5 /2 and 7/3.

Figure 2. Hall resistance Pzy 8t 20mK in the region around v=5 /2.

Figure 3. Arrhenius plots of p,, at v=5/2 FQHE minimum for selected tilt
angles 4.

Figure 4. Energy gap A vs. total magnetic field By,;. Straight line gives g-factor
g=0.56.
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