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Regularization Algorithms for Learning That Are
Equivalent to Multilayer Networks

T. PogGgio AND F. GIroSI

Learning an input-output mapping from a set of examples, of the type that many
neural networks have been constructed to perform, can be regarded as synthesizing an
approximation of a multidimensional function (that is, solving the problem of
hypersurface reconstruction). From this point of view, this form of learning is closely
related to classical approximation techniques, such as generalized splines and regular-
ization theory. A theory is reported that shows the equivalence between regularization
and a class of three-layer networks called regularization networks or hyper basis
functions. These networks are not only equivalent to generalized splines but arc also
closely related to the classical radial basis functions used for interpolation tasks and to
several pattern recognition and neural network algorithms. They also have an
interesting interpretation in terms of prototypes that arc synthesized and optimally
combined during the learning stage.

OST NEURAL NETWORKS AT-  puts from a set of correct input-output pairs,
tempt to synthesize modules that  called examples. Some of the best known

transduce inputs into desired out-  applications are a nerwork that maps En-
glish spelling into its phonetic pronuncia-
tion (1) and a network that learns the map-
Artificial Inteligence Laboratory, Center for Biological

Infermation Processing, Massachuserts Institute of Tech- ping corrcspondmg t_o a chaotic dynamical
nology, Cambridge, MA 02139 system, thereby predicting the future from
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the past (2). In these cases, learning takes
place when the weights of connections in a
muldlayer network of simple wunits are
changed, according to a gradient descent
scheme called backpropagation (3). It would
be highly desirable to establish theoretical
foundations for using multilayer networks
of this general type to learn from cxamples.
To show how this goal can be achieved, we
first explain how to rephrase the problem of
leaming from examples as a problem of
approximating a multivariate function.

Te illustrate the connecton, let us draw
an analogy between leaming an input-out-
put mapping and a standard approximation
problem, two-dimensional (2-D) surface re-
construction from sparse data points. Learn-
ing simply means collecting the examples,
that is, the input coordinates x;, y; and the
corresponding output values at those loca-
tions, the heights of the surface d;. General-
izaton means estimating 4 at locations x, y
where there are no examples, that is, no
data. This requires interpolating or, more
generally, approximating the surface (the
funcuon) between the data points (interpo-
lation is the limit of approximation when
there is no noisc in the data). In this sense,
learning is a problem of hypersurface recon-
struction (4, 5).

From this point of view, leaming a
smooth mapping from examples is clearly an
ill-posed problem (6), in the sense that the
information in the data is not sufficient to
reconstruct uniquely the mapping in regions
where dara are not available. In addition, the
dara are usually noisy. A pricri assumptions
about the mapping are needed to make the
problem well-posed. One of the simplest
assumptions is that the mapping is smooth:
small changes in the inpurs cause a small
change in the output (7).

Techniques that exploit smoothness con-
straints in order to transform an ill-posed
probiem into a well-posed one are well
known under the term of regularization
theory (6, 8). Consider the inverse problem
of finding the hypersurface fx), given its
value d; on a finite set of points {§;} of its
domain. This problem is clearly ili-posed
because it has an infinite number of solu-
tions, and some constraint must be imposed
on the solution. A standard technique in
regularization theory solves the problem by
minimizing a cost functional consisting of
two terms. The first term measures the
distance between the data and the desired
solution £, the second term measures the
cost associated with the deviaton from
smoothness. Its form is ||P f], where P is
usually a differential operator, called a stabi-
lizer, and |- || is a norm on the function
space to which P f belongs (usually the L
norm). The term is small for smooth f

23 FEBRUARY 1990

whose derivatives have small norms. Thus,
the method sclects the hypersurface f that
solves the variational problem of minimiz-
ing the functional

HIf1 = 2 (@ - & + NPAIP (1)

where d; are the values of the hypersurface at
the given N points £;, and A, the regulariza-
tion paramcter, controls the compromise
berween the degree of smoothness of the
solution and its closeness to the data (9). For
instance, in one dimension with

2 = & =)

1P = | dx [J——d & @

the funcrion f(x) that minimizes the func-

tonal of Eq. 1 is a “cubic spline,” a curve

that is a cubic polynomial between the

knots, with continuous second-order deriva-
tive at the knots (10).

The formulation of the learning problem

Fig. 1. The HyperBf network used to approxi-

mate a mapping berween x,, x3, ..., X, and f
given a set of sparse, noisy data. The data, a set of
points for which the value of the function is
known, can be considered as examples to be used
during learning. The hidden units cvaluate the
functon G(x;t,), and a fixed, nonlincar, invert-
ible function may be present after the summation.
The units are, in general, fewer than the number
of examples. The parameters that may be deter-
mined during learning are the cocflicients ¢, the
centers t,,, and the matrix W. In the radial case, G
= G(lx - tf%) and the hidden units simply
compute the radial basis functions G at the “cen-
ters” t,. The RBFs may be as matching
the input vectors against the “remplates™ or “pro-
totypes™ thar correspond to the centers (consider,
for instance, a radial Gaussian around its center,
which is a point in the n-dimensional space of
inputs). Updating a center t,, during leaming is
equivalent to modifying the corresponding proto-
rype. Changing the weights W corresponds to
performing dimensionality reduction on the input
fearures. In addirion to the lincar combination of
basis functions, the figure includes other terms
that contribute to the ourput: constant and linear
terms are shown here as direct connections from
the inpur ro the output with weights ag, 91, 23, . . .
a, (37).

in terms of regularization is satisfying from a
theoretical point of view, because it estab-
lishes connections with a large body of
results in the area of Bayesian estimation and
in the theory of approximation of muldvari-
ate functions {(17). In particular, Eq. 1 can
be used to definc generalized splines in any
dimension. At this point, it is natural to ask
about the connection between this perspec-
tive on learning as an approximation prob-
lem and feedforward networks, such as
backpropagation, that have become popular
recently, exactly because of their capabilitics
to “learn from examples.”

In the following, we provide an answer to
the previous question by showing that the
solution to the approximation problem giv-
cn by regularization theory can be expressed
in terms of a class of multilayer networks
that we call regularization networks or
hyper basis functions (HyperBFs) (see Fig.
1) and that are similar to previously suggest-
ed networks (12, 13). Our main result is that
the regularization approach is equivalent to
an expansion of the solution in terms of a
certain class of functions that depends only
on the form of the stabilizing operator. We
explain how this expansion can be interpret-
ed in terms of a network with one layer of
hidden units whose characteristics are dictat-
ed by the theory. We also discuss a computa-
tionally efficient scheme for synthesizing the
associated nerwork from a set of examples,
which has an interesting interpretation and
several promising extensions.

We outline first how an approximation in
terms of a specific class of functions, often
radial, can be derived directly from regular-
ization. The regularization approach sclects
the function f that solves the variational
problem of minimizing the funcdonal of Eq.
1. It can be proved (5) that the soludon has
the following simple form:

N

fx) = Z 4 Glxig) 3)
where G(x) is the Green’s funcrion of the
seif-adjoint differential operator PP, P being
the adjoint operator of P, and the coeffi-
cients ¢; satisfy a lincar system of equations
that depend on the N “examples,” that is,
the data to be approximated (14). If P is an
operator with radial symmetry, the Green’s
function G is radial and therefore the ap-
proximating functon becomes:

N

fix) =2 o Gk - £

P C)

which is a sum of radial functions, each with
its center §; on a distinct data point. Thus
the number of radial funcdons, and corre-
sponding centers, is the same as the number
of examples.

Our derivation shows that the type of
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basis functions depends on the stabilizer P,
that is, on the specific a prion assumption
(5). Depending on P we obtain the Gaussian
G(ry = ¢V, the well-known “thin-plate
spline® G(r) = P Inrs, and other specific
functions, radial or not (15). As observed by
Broomhead and Lowe (72) in the radial
case, a superposition of functions such as
that in Eq. 3 is equivalent to a network of
the type shown in Fig. 1. The interpreration
of Eq. 4 is simple: in the 2-D case, for
instance, the surface is approximated by the
superposition of, say, several 2-D Gaussian
distributions, each centered on one of the
data points.

Equation 4 has the same form as an
interpolation technique, called radial basis
functions (RBFs), that has been extensively
studied (16). In 1986 Micchelli proved a
powerful result that justfics the usc of a
large class of functions as interpolaring
RBFs (17, 18). It turns out {5) that the class
of radial functions satisfying Micchell’s con-
dition is closely related to the larger class of
functions defined by Eq. 1.

The network associated with Eq. 4 has a
complexity (number of radial functions) that
is independent of the dimensionality of the
input space but i1s on the order of the
dimensionality of the training set {number
of examples), which is usually high. Broom-
head and Lowe (12) used fewer centers than
data points. A heuristc scheme with mov-
able centers and Gaussian functions has also
been proposed and rested (73). It turns out
that our previous rigorous result can be
extended in a natural way to a scheme in
which the number of centers is much smaller
than the number of examples. In the frame-
work of regularization the consistent exten-
sion we derive has the feature of center
positions that are modified during learning
{5). The extension is

L]

Fx) = 2 @ Gxity) (5)

a=zl

where the parameters t,, which we call
“centers” in the radial case, and the cocth-
cicnts ¢, are unknown and are in general
fewer than the data points {n = N) (19).
Equation 5, which can be implemented by
the network of Fig. 1, is equivalent to
generalized splines with free knots, whereas
Eq. 4 is equivalent to gencralized splines
with fixed knots. This scheme can be further
extended by considering in Eq. 5 the super-
position of different types of functions G,
such as Gaussians at different scales (20). In
addition, the norm |ix — & may be consid-
ered as a weighted norm

e - Edfy = (x — £ WIW(x — E) (6)

where W is a matrix and the superscript T
indicates the transpose. In the simple casc of
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diagonal ¥, the diagonal clements w; assign
a specific weight to each input coordinate.
They play a critcal role whenever different
types of inputs are present. Iterative meth-
ods of the gradient descent type can be used
to find the optimal values of the various sets
of paramerters, the ¢,, the wy;, and the t,,
thar minimize an error functional on the set
of examples. Since this functional is no
longer convex, a stochastic term in the gra-
dient descent equations may be used to
avoid local minima (21).

The network of Fig. 1 may be interpreted
as follows. The centers of the radial func-
tions are simelar to prototypes, since they are
points in the multidimensional inpur spacc.
Each unit compures a (weighted) distance of
the inputs from its center, which is a mea-
sure of their similanity, and applies to it the
radial funcrion. In the case of the Gaussian, a
unit will have maximum activity when the
new input exactly matches its center. The
output of the nerwork is the linear superpo-
sition of the activides of all the radial func-
tons in the nerwork. One finds the corre-
sponding weights during learning by mini-
mizing a measure of the error between the
network’s prediction and each of the exam-
ples. At the same time, the centers of the
radial functions and the weights in the norm
are also updated during leamning. Moving
the centers is equivalent to modifying the
cotresponding prototypes and corresponds
to task-dependent clustering. Finding the
optimal weights for the norm is equivalent

Fig. 2. (A) The HyperBF
network proposed for the
recogniton of a 3-1) object
from any of its perspective
views. The network ar-
tempts to map any view (as
defined in the text) into a
standard view, arbitranly
chosen. The norm of the
difference berween the out-
put vector f and the stan-
dard view s is thresholded o
yield a 0, 1 answer. The 2N
inputs accommodate the in-
pUt VECTOT ¥ FEpresenting an
arbitrary view. Each of the

to transforming appropriately, for instance,
scaling, the input coordinates and corre-
sponds to task-dependent dimensionality re-
duction.

Figure 2 shows a specific application of
HyperBFs. Consider the problem of recog-
nizing a wire-frame 3-D object from any of
its perspecnive views. A view of the object is
represented as a 2N vector x1, Y1, 2. Y20 - -
xxn, yn Of the coordinates on the image
planc of N labeled and visible points on the
object. Additional different types of featurcs
can also be used, such as angles between
vertices. The network leams to map any
view of the object into a standard view. The
results with images generated with comput-
er graphics tools (of the type indicared in
Fig. 2B) are encouraging and have promis-
ing extensions to more realistic data (22).

Many existing schemes for nerworks that
learn arc encompassed by the HyperBF
framework (5). Past work, in the special case
of fixed centers, indicates good performance
in a number of tasks (23). Our own prelimi-
nary work, as well as earlier experiments of
Moody and Darken with a similar network
(13), suggests that the more general form of
HyperBFs has a promising performance.

The scheme is a sartisfying theory of net-
works for leaming. HyperBFs are the feed-
forward network versions of regularization
and are therefore equivalent to gencralized
splines. The HyperBF nerwork is similar to
the architecture used for backpropagation,
being a multilayer network with one hidden

K RBFs is initially centered

-3

on one of a subset of the M
views used to synthesize the
system (K = M). During
training cach of the M in-
puts in the training set is

associated with the desired 0.1

output, the standard view s.

0.1

(B) A completely equivalent interpretation of (A) for the special casc of Gaussian RBFs. Gaussian
functions can be synthesized by muktiplying the outputs of 2-D Gaussian receptive ficlds thar “look™ at
the retinotopic map of the object point fearures. The solid circles in the image plane represent the 2-D
Gaussians associated with the first RBF, which represents the first view of the object. The dotred circles
represent the 2-D receptive ficlds thar synthesize the Gaussian RBF associated with another view. The
2-D Gaussian receprive ficlds transduce positions of fcarures, represented implicidy as activity in a

retinotopic array, and their ct *

> the radial functon without the need to calculate norms
and exponentals explicitly. Scc {3) for morce details.
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layer and two or even three sets of adjustable
parameters. Its Boolean limiting version
carves the input space into hyperspheres,
cach corresponding to a center: a radial unit
is active if the input vector is within a certain
radius of its center and is otherwise silent.
The Boolean limit of backpropagation
carves the space with hyperplanes. With an
arbitrary number of units each network can
approximatc the other, since cach network
can approximate arbitrarily well conrinuous
functions on a limited interval (24, 25).
Multilayer networks with sigmoid units do
not have, however, the best approximation
property that regularization networks have
(25). The Boolean limit of HyperBF is
almost identical to Kanervas associative
memory algorithm (26), which is itself closc-
ly related to vector quantization. Parzen
windows, potential techniques in pattern
recognition, and kemnel estimation methods,
in general (27), can be regarded as special
cases of the HyperBF method. Close analo-
gies bertween Kanerva’s model and Marr’s
{28) and Albus’s (29} models of the cerebel-
lum also exist (5, 30). The update equarion
that controls the evolurion of the centers t,
[sec Eq. 14 in (21}] is also similar to Kohon-
en’s topology-preserving algorithm (5, 31)
[which is also similar to the k-means algo-
rithm (32)] and can be interpreted as a
learning scheme in which the centers of the
radial functons move to find centers of
clusters of input vectors (33). Coarse coding
techniques and product upits (34) can be
interpreted neatly within the HyperBF
framework {for the special case of Gaussian
RBFs) (5, 35).

Thus HyperBFs represent a general
framework for learning smooth mappings
that rigorously connects approximation the-
ory and regularization with feedforward
muitilayer networks. In particular, it sug-
gests that the performance of nerworks of
this general type can be understood in the
framework of classical approximation the-
ory, providing limits on what feedforward
networks may be expected to perform (3).

In the Gaussian case, it also suggests a
scheme for learning a large class of map-
pings that has intriguing features from the
point of view of a brain scienust, since the
overall computation is a simple bur powerful
extension of a look-up table, that is, 2 mem-
ory, and can be performed by the superposi-
tion of “units,” in the appropriate mulridi-
mensional input space. These units would
be somewhat stmilar to “grandmother” fil-
ters with a graded response, rather than
binary detectors, each representing a proto-
type. They would be synthesized as the
conjunction of, for instance, 2-D Gaussian
receptive fields Jooking at a retinotopic map
of features (sec Fig. 2B). During leaming,

23 FEBRUARY 1990

the weights of the various prototypes in the
nerwork output are modified to find the
optimal values that minimize the overall
error. The prototypes themselves are slowly
changed o find optimal prototypes for the
task. The weights of the different input
features are also modified to perform task-
dependent dimensionality reduction.

A scheme of this type is broadly consistent
with recent physiological evidence [sec, for
instance, (36)] on face recognition ncurons
in the monkey inferotemporat cortex. Some
of the neurons described have several of the
propertics expected from the units of Fig. 2
with a center, that is, a prototype that
corresponds to a view of a specific face. A
similar scheme could be used to learn other
visual tasks, such as the compuration of
color constancy or shape from shading from
a set of examples, although the biological
relevance in such cases is more questionable.
In any case, it remains to be seen whether
some cortical neurons indeed have the mul-
tidimensional, possibly Gaussian-like, recep-
tive fields suggested by this approach.
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Representation Properties of Networks:
Kolmogorov’s Theorem Is Irrelevant
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Many neural networks can be regarded as attempting to approximate a
multivariate function in terms of one-input one-output units. This
note considers the problem of an exact representation of nonlinear
mappings in terms of simpler functions of fewer variables. We review
Kolmogorov’s theorem on the representation of functions of several
variables in terms of functions of one variable and show that it is
irrelevant in the context of networks for learning.

1 Kolmogorov’'s Theorem: An Exact Representation Is Hopeless

A crucial point in approximation theory is the choice of the representation
of the approximant function. Since each representation can be mapped
in an appropriate network choosing the representation is equivalent to
choosing a particular network architecture. In recent years it has been
suggested that a result of Kolmogorov (1957) could be used to justify the
use of multilayer networks composed of simple one-input—one-output
units. This theorem and a previous result of Arnol’d (1957) can be con-
sidered as the definitive disproof of Hilbert's conjecture (his thirteenth
problem, Hilbert 1900): there are continuous functiens of three variables, not
representable as superpositions of continuous functions of two variables.

The original statement of Kolmogorov’'s theorem is the following
(Lorentz 1976):

Theorem 1.1. (Kolmogorov 1957). There exist fixed increasing continuous
functions hp,(z), on I = [0,1] so that each continuous function f on I™ can
be written in the form

2n+1 n

[y, ...,z =) gq(Zh (zp)),

q_

where g, are properly chosen continuous functions of one variable.

Neural Computation 1, 465-469 (1989) (© 1989 Massachusetts Institute of Technology
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Figure 1: The network representation of an improved version of Kolmogorov's
theorem, due to Kahane (1975). The figure shows the case of a bivariate function.
The Kahane’s representation formula is f(zy,...,zs) = g:{ 1 gl =1 lphg(zp)]
where hq are strictly monotonic functions and [, are strictly positive constants
smaller than 1.

This result asserts that every multivariate continuous function can be
represented by the superposition of a small number of univariate contin-
uous functions. In terms of networks this means that every continuous
function of many variables can be computed by a network with two
hidden layers (see Figure 1) whose hidden units compute continuous
functions (the functions g; and £,,).

Does Kolmogorov’s theorem, in its present form, prove that a network
with two hidden layers is a good and usable representation? The answer
is definitely no. There are at least two reasons for this:

1. In a network implementation that has to be used for learning and
generalization, some degree of smoothness is required for the func-
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tions corresponding to the units in the network. Smoothness of the
h,, and of the g, is important because the representation must be
smooth in order to generalize and be stable against noise. A number
of results of Vituskin (1954, 1977) and Henkin (1964) show, how-
ever, that the inner functions h,, of the Kolmogorov’s theorem are
highly not smooth (they can be regarded as “hashing” functions).
Due to this “wild” behavior of the inner functions hy,, the functions
g, do not need to be smooth, even for differentiable functions f (de
Boor 1987).

2. Useful representations for approximation and learning are paramet-
rized representations that correspond to networks with fixed units
and modifiable parameters. Kolmogorov’s network is not of this
type: the form of g, (corresponding to units in the second “hidden”
layer) depends on the specific function f to be represented (the hy,
are independent of it). g, is at least as complex, for instance in
terms of bits needed to represent it, as f.

A stable and usable exact representation of a function in terms of
two or more layers network seems hopeless. In fact the result obtained -
by Kolmogorov can be considered as a “pathology” of the continuous
functions: it fails to be true if the inner functions A, are required to be
smooth, as it has been shown by Vitushkin (1954). The theorem, though
mathematically surprising and beautiful, cannot be used by itself in any
constructive way in the context of networks for learning. This conclu-
sion seems to echo what Lorentz (1962) wrote, more than 20 years ago,
asking “Will it [Kolmogorov’s theorem] have useful applications?...One
wonders whether Kolmogorov’s theorem can be used to obtain positive
results of greater [than trivial] depth.” Notice that this leaves open the
possibility of finding good and well founded approximate representa-
tions. This argument is discussed in some length in Poggio and Girosi
(1989), and a number of results have been recently obtained by some
authors (Hornik et al. 1989; Stinchcombe and White 1989; Carroll and
Dickinson 1989; Cybenko 1989; Funahashi 1989; Hecht-Nielsen 1989).

The next section reviews Vitushkin’s main results.

2 The Theorems of Vitushkin

The interpretation of Kolmogorov’s theorem in term of networks is very
appealing: the representation of a function requires a fixed number of
nodes, polynomially increasing with the dimension of the input space.
Unfortunately, these results are somewhat pathological and their practical
implications very limited. The problem lies in the inner functions of Kol-
mogorov’s formula: although they are continuous, theorems of Vitushkin
and Henkin (Vitushkin 1964, 1977, Henkin 1964; Vitushkin and Henkin
1967) prove that they must be highly nonsmooth. One could ask if it is
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possible to find a superposition scheme in which the functions involved
are smooth. The answer is negative, even for two variable functions, and
was given by Vitushkin with the following theorem (1954):

Theorem 2.1. (Vitushkin 1954). There arer(r = 1,2,...) times continuously
differentiable functions of n > 2 variables, not representable by superposition
of r times continuously differentiable functions of less than n variables; there
are r times continuously differentiable functions of two variables that are
not representable by sums and continuously differentiable functions of one
variable.

We notice that the intuition underlying Hilbert’s conjecture and theo-
rem 2.1 is the same: not all the functions with a given degree of complex-
ity can be represented in simple way by means of functions with a lower
degree of complexity. The reason for the failing of Hilbert’s conjecture is
a “wrong” definition of complexity: Kolmogorov’s theorem shows that
the number of variables is not sufficient to characterize the complexity of
a function. Vitushkin showed that such a characterization is possible and
gave an explicit formula. Let f be an r times continuously differentiable
function defined on I™ with all its partial derivatives of order r belonging
to the class Lip[0, 1]*. Vitushkin puts x = (r + @)/n and shows that it can
be used to measure the inverse of the complexity of a class of functions.
In fact he succeded in proving the following: :

Theorem 2.2. (Vitushkin 1954). Not all functions of a given characteristic
xo = go/ko > O can be represented by superpositions of functions of charac-
teristic x = g/k > x0,9 > 1.

Theorem 2.1 is easily derived from this result.
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A network that learns

to recognize
three-dimensional objects
T. Poggio & S. Edeiman

Artificial intelligence Laboratory, Center for Biological Information
Processing, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

THE visual recognition of three-dimeusional (3-D) objects on the
basis of their shape poses at least two difficult problems. First,
there is the problem of variable illumination, which can be
addressed by working with relatively stable features such as
intensity edges rather than the raw intensity images'”. Second,
there is the problem of the initially unknown pose of the object
relative to the viewer. In one approach to this problem, a hypothesis
is first made about the viewpoint, then the appearance of 2 model
object from such a viewpoint is computed and compared with the
actual image>’. Such recognition schemes generally employ 3-D
models of objects, but the automatic learning of 3-D models is
itself a difficult problem®®. To address this problem in computa-
tional vision, we have developed a scheme, based on the theory of
approximation of multivariate functions, that learns from a small
set of perspective views a function mapping amy viewpoint te a
standard view. A network equivalent to this scheme will thus
‘recognize’ the object on which it was trained from any viewpoint.

Is the need for 3-D range-based or manually specified models
real? Structure from motion theorems'™'', pioneered by Ul
man'?, indicate that full information about the 3-D structure of
an object represented as a set of feature points (at least five 1o
eight) is present in just two of their perspective views, provided
that corresponding points are identified in each view. A view is
represented as a 2N vector X, ¥y, X3, ¥z,..., XN, ¥n Of the
coordinates on the image ptane of N labelled and visible feature
points on the object. Here, and in most of the following, we
assume that all features are visible, as they are in wire-frame
objects. The generalization 10 opaque objects follows by par-
titioning the viewpoint space for each object into a set of
‘aspects’’ corresponding to stable clusters of visible features.
In principle, therefore, having enough 2-D views of an object
is equivalent 1o having its 3-D structure specified.

This line of reasoning, together with properties of perspective
projection, indicate (1) that for each object there exists a smooth
function mapping any perspective view into a 'standard’ view
of the object, and {2) that this multivariate function can be
synthesized, or at least approximated, from a small number of
views of the object. Such a function would be object-specific,

FIG. 1 2 Network representation of approximation
by GRBFs. In & special simpie case, there are as
many basis functions (K} as views in the training
set (M. in general, K <M). The centres of the
radial functions are then fixed and are identical
with the training views. Each basis unit in the
‘higden’ layer computes the distance of the new
view from its centre and applies to it the radial
function. The resulting value G(|lx—t,})) can be
regarded as the ‘activity' of the unit. If the function
G is gaussian, a basis unit will attain maximum
activity when the input exactly matches its centre,
The output of the network is the linear superposi-
tion of the activities of all the basis units in the
network. b, An equivalent interpretation of a for
the case of gaussian radial basis functions. A
multidimensional gaussian function can be synthe-
sized as the product of 2-D gaussian receptive
fields operating on retinotopic maps of features. The solid circles in the
image plane represent the 2-D gaussian functions associated with the first
radiat basis function, which corresponds to the first view of the cbject. The
dotted circles represent the 2-D receptive figlds that synthesize the gaussian

Output x;

with different functions corresponding to different 3-D objects.
Furthermore, the application of the function that is specific for
one object to the views of a different object is expected to result
in a ‘wrong’ standard view that can be casily detected as such.

Synthesizing an approximation to a function from a small
number of sparse data—the views—can be considered as learn-
ing an input-output mapping from a set of examples™'’. A
powerful scheme for the approximation of smooth functions
has been recently proposed under the name of Generalized
Radial Basis Functions (GRBFs), and shown'*® to be
cquivalent to standard regularization’®'” and generalized splines
(ref. 14; see closely related work by Poweli'®, and Broomhead
and Lowe'?}. The approximation of f: R" - R is given by

f(x)=2f-l an("x_ta") (1

where the K coefficients ¢, and the centres ¢, are found during
the learning stage and G is an appropriate basis function (see
refs 14 and 15}, such as the gaussian function. A polynomial
term of the form X, d,p.(x) can be added to the right-hand side
of equation (1). In this paper we omit the polynomial term (see
ref. 14). If the function f is vector-valued, each component f,
is computed using equation (1) with the appropriate ¢, in
which case the equation is equivalent to the network of Fig. 1.

The weights ¢ are found during learning by minimizing a
measure of the error between the network’s prediction and the
desired output for each of the M examples. Computationally,
this amounts to inverting a matrix (when M # K the generalized
inverse is computed instead). When the number of basis func-
tions is less than the number of views in the training set, the
centres of the basis functions are also updated during learning.
Updating the centres is equivalent to modifying the correspond-
ing ‘prototypical views'. For a detailed description of this
approximation technique, of its theoretical motivation and its
relation to other techniques such as backpropagation™, see refs
14 and 15.

Figure 2 shows an application of GRBFs to the recognition
problem. We consider here the special case of recognizing a
wire-frame 3-D object from any of its perspective views with N
feature points {we mainly used N = 6). A GRBF module, trained
on several tens of random views, maps any new view of the
same object into a standard view (for example, into one of the
initially chosen training views).

We have also explored the use of fewer basis functions than
training views and used gradient descent to look for the optimal
locations of the centres t, in addition to the optimal value of
c,. We found satisfactory performance with just two basis units
{for 10-40 training views and with the attitude of the object
limited to one octant of the viewing sphere). This indicates that
a very small number of units are needed for each aspect'® of
an opague object {compare with ref. 21). It is of interest that

Products of
receptive fieids

radial function associated with another view. The gaussian receptive fields
transduce positions of features represented implicitly as activity in a
retinotopic array, and their product ‘computes’ the radial function without
the need of calculating norms and exponentials explicitly.



FiG. 2 Application of a general module for multi- REF module RBF module
: A ; for object O
variate function approximation to the problem of @ Training views Sbiect Oy Stindacd vew b !
recognizing 8 3-D object from any of its perspec. LY — m— 5 o view N — — l?_, Standard view
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6. ¢ (the latitude and the longitude of the camera

on an imaginary sphere centred at the object) that correspond to the training
views. When given a new random view of the same object (b}, the module
recognizes it by producing the standard view. Other objects are rejected by

after training, the centres of the radia} basis units correspond
to views that are different from any of the training views.

It should be clear that the scheme proposed here addresses
only one part of the problem of shape-based abject recognition,
the variability of object appearance due to changing viewpoint,
The key issue of how to detect and identify image features that
are stable for different Hluminations and viewpoints is outside
the scope of this paper. Notice that the GRBF approach to
recognition does not require the x, y coordinates of image
features as inputs: other parameters of appropriate features
could also be used, such as a corner angles (see Fig. 4a)
ot segment lengths (compare ref. 4 and M. Villalba, thesis
in preparation), or the colour and the texture of the object.
Recognition of noisy and partially occluded objects, using
realistic feature identification schemes, requires an extension of
the scheme, even if the problems of object segmentation and
selection®® are addressed separately. A natural extension of the
scheme could be based, for example, on the use of multiple
lower-dimensional centres, corresponding to different subsets
of detected features, instead of one 2 N-dimensional centre for
each view in the example set. Our initial experiments” support
the notion that a scheme based on low-dimensional centres is
useful for recognition while being robust against occlusions and
noise. Another possible extension of the scheme involves a
hierarchical composition of GRBF modules, in which the out-
puts of lower-Ievel modules assigned to detect objects parts and
their relative disposition in space are combined to allow recogni-
tion of complex-structured objects.

In a sense, the application of the GRBF method to recognition
can be considered as a generalization of the exact approach of
Basri and Ullman®®. They have recently shown that under ortho-
graphic projection, any view of a 3-D object undergoing a linear
group of transformations that includes rigid transformation in
3-D space (that is, translations and rotations) can be obtained
from three fixed views. They used this result to synthesize a
linear operator that, for orthographic projection, maps exactly
each view of a given object into the zero vector and performs
fairly well also for most cases of perspective projection™. By
comparison, the GRBF approach is based on an approximation,
even in the orthographic case, and typically needs more than

*7
/P

thresholding the euclidean distance between the actual output of the model
and the standard view {this step corresponds to the action of a single radial
function with a sharp cut-off centred on the standard view),

three views. But it can {1) use as inputs feature parameters other
than the x, y coordinates (Fig. 4a) and (2) recover parameters,
such as the attitude angles of the input object (Fig. 4d), that
do not depend linearly on the views of the object.

In some respects, the performance of the GRBF-based recog-
nition scheme resembles human performance in a related task.
For example, the number of training views necessary to achieve
an acceptable recognition ratc on novel views, 80-100 for the
full viewing sphere, is broadly compatible with the finding®
that people have trouble recognizing a novel wire-frame object
previously seen from one viewpoint if it is rotated away from
that viewpoint by about 30° (it takes 72 30°x30°-patches to
cover the viewing sphere). Furthermore, a network model
recently shown to capture some of the time-course and learning
characteristics of the recognition process™, seems to be compu-
tationally related to GRBFs". Experiments designed to test
specific predictions of GRBF and several other recognition
schemes®*?” are now under way in our laboratory.

One feature of the GRBF scheme that could guide its interpre-
tation in biological terms is the possibility of decomposing a
multidimensional gaussian radial basis function into a product
of gaussian functions of lower dimensions {Fig. 1b). In our case,
the centre of a basis unit is similar to a prototype and the unit
itself is synthesized as the product of feature detectors with 2-D
gaussian receptive fields (that is, the activity of a detector
depends on the distance r between the stimulus and the centre
of the receptive field as e~"/""). The network's output (see
equation 1} is the sum of products and therefore represents the
logical disjunction of conjunctions ‘v, A, {feature F, at
(x;, ¥,))", where the disjunction ranges over all the protypes of
the given object.

The adjustment of weights ¢, in the GRBF network in Fig.
1 through some pseudo-hebbian mechanism is not biologically
implausible. Alternatively, a plausible biophysical implementa-
tion of the gradient-descent update of the centres (or, as in Fig.
1 b, the location of the receptive fields) is problematic. But notice
that reasonable initial performance can be obtained merely by
setting the centres to a subset of the examples. A subsequent
possibly slow process, much simpler and more plausible than
gradient descent, may then search for optimal positions. Another

FIG. 3 Some examples of the module’s operation.
Standard view of a wire-frame object (top row)
superimposed on its estimate by the GRBF network
(large dots) when its input is a random view of
the same object (sacond row from top). The fit is
muich closer than in the bottom two rows, where
the input view belongs to a different object. The
number of training views M is 40, the number of
RBFs K is 20, and the range of attitudes & ¢ is
0°-90°. Gradient descent was used to obtain the
optimal positions of the GRBF centres. Within a
smalter range of 8, ¢ €10 45°), the performance
was acceptable with only two radial basis units
(M=40, K=2).



FIG. 4 & Performance of a GRBF module trained

[ 3
to recognize a specific object over the full range a % ‘é
of & ¢ {the entire viewing sphere). Views were 3 Pu
encoded as vectors of 2N vertex coordinates (solid " H
curve; error bars show the s.d. of the performance - x s
indices. computed over a set of 10 objects, each g 3
of which served in turn as the target) or as vectors z Z — — —
of N—2 angles formed by pairs of segments = Camera distance
(dashed curve). In these examples, the number of
training views M is chosen to equal the number .
of radial basis functions K. The performance index ¢ g 5™
MINMAX is defined as the ratio of the smallest E :
euclivean distance £ obtained for views of < £
different objects to the largest £ obtained over & 2 X
set of nove! random views of the object on which g
the module has been trained. MIN/MAX>>1 is z . . i

- M [~ 148 L]

required for a perfect separation between ihe
target and other objects using a simple threshold
decigion. For nearly perfect recognition, 80-100
views suffice. b, Performance for two conditions—near and far—
corresponding to relatively high and low perspective distortion, respectively
{full range of 6 ¢ in both cases). c. GRBF shows a slow degradation in
performance with increasing range of the viewpoint coordinates 8, ¢ {the
objects are a cube and an octahedron, M=K =40, and the error bars are

possible solution is to select for each object a set of optimally
located receptive fields out of a large available population®”'*.
Sensory-input driven selection of representation units has been
demonstrated in vivo (for example, see refs 28 and 29).

The GRBF recognition scheme seems reasonable in terms of
the biophysical mechanisms required, is attractive because an
effective computation is simply performed by the combination
of receptive fields, and is surprising because it bases a scheme
involving units somewhat similar to ‘grandmother’ cells (com-
pare refs 30 and 31) on the rigorous approximation methods of
regularization and splines. O
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FIG. 2 The compiicated interaction Detween
iron and the controls and cataiysts of a bacter-
ial call. Many iron enzymes are Fe,/ S, pro-
teins. The question posed by the findings
described in this article is whether in esrly
anaerobic life ferritin, the pressent-day iron
store. was repiaced by 8 mineral iron sulphide.

crystallization, and we would ourseives
dearly like to have this controi over

The discovery of the extensive deposits
of iron in a variety of bacteria leads
to questions about the usefulness of
such deposits, because some of the iron
sulphides are not magnetic and presum-
ably the earliest iron oxides deposited
were not ites but were closely
related to ferrthydrite. The need to store
iron is related of course to the essential
role of the clement in & wide range of
catalytic enzymes (which, in a sense,
paraileis the storage of calcium in bones).
[ron homoeostatic levels also control a
whole range of enzymes essential in bio-
energetics (see Fig. 2). Buffering the iron
levels in aerobic cells is the mineral ferri-
tin; but curiously hidden under this ame

precursors “of the Fe,0, crystals, now
known to be common in soils'.

The occurrence of several forms of iroa
sulphide in sulphur bacteria’leads ooe to
speculate as to whether sulphur bacteria
have a homoeostatic device based on Fe/S
rather than on Fe/O solids, and whether
this was the earlier form of iron store. In
these organismys there is a very basic link
between sulphide and iron metaboliem
and homoeostasis. Both are also neces-
sary to maintain the core grouping of the
cssential primitive electron-transfer pro-
teins, that is Fe /S, clusters where n = 2,
(3), or 4. The carfiest energy-capture
devices leading to ATP formation were
based on these proteins long before the
advent of dioxygen chemistry’. An Fe/S
homoeostatic economy for primitive life
could have many other ramifications.
After all pyrites (FeS,) is half-way from
sulphide to elemental sulphur, which was

one of the early metabolic end-products.
The general idea of early life based on
iron/sulphur chemistry is not new and has
been explored andseviewed by Hartman',
who suggested that we should look further
to see if very primitive redox systems
could have used organic as well as in-
organic sulphur chemistry in an alter-
native programme for chemical-bond
energy capture before the use of ATP.

So could the iron sulphides have been
a direct source of energy for early life?
Electron-rich iron sulphides are not stable
in water but are present in ocean vents and
in some geological formations. The over-
ail reaction of interest would be

H,O + 2(FeS) + CO,—
2FeO + >CHOH + 2§

which could be driven in part by light*. Did
primitive life systems capture colloidal
particles of iron as catalysts, in line with
views of biological catalysis earlier in this
century? The surfaces of iron sulphide
minerals could aiso have been catalysts for
such reactions as those now seen in Fe/S
cluster proteins (for example. hydro-
genases and dehydratases such as aconi-
tase), which could conceivably be the
reason for the appearance of differentiron
sulphides in the organisms described on
pages 256 and 258. A magnetic sensor
could not have been of much use in the

anaerobic early world.

As always in biology. when a new set of
compounds is uncovered — be 1t 3 pig-
ment such as bacteriorhodopsin. a new
coenzyme such as PQQ. or minerals such
as Fe,0,, FeS, and Fe,§, — we must search
for the funcnonal advantage of the
material in the biological niche 1n which it
is synthesized. The discovery of magnetic
iron oxides in soil bacteria’ is n itself
peculiar. because itis hard to see the value
of a navigational aid there. while the find-
ing of iron sulphides deposited n cells
gives us a new line to follow back towards
the origin of life. Energy capture based on
Fe/S compounds, now and perhaps before
there was life, is as important as DNA in
life's history. There could weil be a huge
variety of life in the suiphide-rich zones on
Earth, perhaps hoiding fresh clues to help
answer the question of how lifebegan. =
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ARTIFICIAL INTELLIGENCE

Recognizing three dimensions

H. Christopher Longuet-Higgins

ONE of the human abilities that robot de-
ﬂpcnm_:uldmouhkeloemuhteuthn

plicity of possible lighting conditions. The

sity, and Poggio and Edeiman’s main
concern is with the problem of variable
viewpoint. One spproach, widely used by
robot-vision engineers, is to store in the
robot's memory an explicitly 3-D repre-
sentation of the object, indifferent to
viewpoint. When an image appears on
the robot’s ‘reting’, its features and those

wmpummaehangeofhypoth-
esis — the viewpoint, the identity
of the or both. Not only is this
process horribly expensive in computing
time, it leaves unsolved the problem of
robot is to get to know about the




to be able to recognize another such view
when it sees it. What they actually do is to
train their network to emit a unique ‘stan-
dard’ view of the object in response to the
input of any one of a representative set of
views. In this context the word ‘view' is
something of a euphemism: it signifies
not an optical image but a vector whose
components are the image coordinates of
a few identifiable features of the object.
The hypothetical 3-D objects with which
Poggio and Edelman mainly deal are
"bent wire’ models with two ends and four
comers. so that each 2-D ‘'view' is a
vector with 12 components altogether.
Only if this vector can be approximated
as a linear combination of the representa-
tive views will the network, after training,
emit the standard view in response to it
— a weicome demonstration of its visual
competence.

Poggio and Edeiman admit that the ex-
traction of such view vectors from a set of
retinal images would be a non-trivial
task, involving (among other things) the
solution of a muitiple-correspondence
problem berween different images. It
seems likely., moreover, that formidable
book-keeping problems will arise when
the appearances of a large number of ob-
jects have to be committed to visual
memory. For a number of reasons, how-
ever, their work should be of interest
to both theoretical and experimental
psychologists.

Mathematicians working on neural
nets will be reassured to know that the
recently proposed approximation scheme
that underlies Poggio and Edelman's
system — the so-called generalized
radial basis function (GRBF) scheme —
works so well in such a key applica-
tion. Theoreticians who are not on the
crculation list for unpublished MIT
research reports will be happy to see how
relatively straightforward it is to imple-
ment the GRBF scheme in neural net-
works of a now conventional kind. They
will, furthermore, be interested to learn
of the recent proof by Basri and Ullman®
that any orthogonal projection of a trans-
parent polyhedron (a 3-D object all of
whose vertices are visible from any direc-
tion) can be represented as a linear com-
bination of three orthogonal projections
along arbitrary directions in space — 3
fact that underlies a simple algorithm for
determining whether a given image could
or could not be an orthogonal projection
of that object. Poggic and Edelman
recognize their own scheme a5 a natural
extension of Basri and Ullman's work.

On the experimental side, Poggio and
Edelman make some pertinent observa-
tions sbout the numbers that emerge
from their computational experiments.
They find. for exampie, that the number
of training views needed to achieve an
acceptabie recognition rate for novel
views is 80 to 100 for the full viewing
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sphere. This figure harmonizes aicely
with Rock and DiVita's finding' that
peopie have trouble in recogniring a
wire-frame object if it is rotated more
than about 30° away from any position in
which they saw it before, coupled with
the fact that it takes 72 30° x 30° patches
10 cover the viewing sphere. Finally they
point out that their GRBF recognition
scheme requires the combination of ‘re-
ceptive fields’ by network units somewhat
similar to the ‘grandmother cells’ beloved
by some neurophysiologists. So perhaps

we do, after all, have brain cells that fire
when and only when Grannie makes her

appearance. Z

H. Christopher Longuet-Higgins s m tre
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NOVA EXPLOSIONS

The long hot summer

Sumner Starrfield and R. Mark Wagner

THE explosion of a recurrent, classical or
X-ray nova is one of the most vioient
events that can occur in a galaxy. The dis-
covery of such an event will stimulate
astronomers worldwide to observe it with
many techniques and at various wave-
lengths. This expiains the excitement,
evident at a recent meeting®. generated
last summer when an X-ray nova, a recur-
rent nova, two classical novae and the
bizarre Cygnus X-3 were all found to be in
outburst.

The series of outbursts began on 22 May
1989 when the All Sky Monitor on board
the Japanese Ginga satellite discovered an
X-ray source in the consteliation Cygnus'.
Upon learning of the discovery through
the I[ntenational Astronomical Union
(1IAU) telegram network (1IAU Circ. No.
4782), we immediately set out to identify
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catalogued (sec figure). but interstellar
extinction rendered the [UE spectra blank.
Within a few hours, our optical spectra
confirmed that the X-ray source was
identical with V404 Cyg (IAU Circ. 4783).

Our initial observations were followed
rapidly by multiwaveiength observations
by several astronomers at infrared. radio
and y-ray wavelengths (IAU Circs 4786,
4790, 4794, 4797, 4800, 4816, 4879). For
example, the radio studies of V404 Cyg, as
reported by R. M. Hiellming and X. Xan
(LIAU Circs 4790, 4796, 4879) and at the
meeting showed that the radio behaviour
of this outburst was completely uniike that
of the other X-ray novae. They found very
short-timescale variations and quasi-
periodic oscillations. The data gathered
over the next few months showed that this

m{zmuu.wr.J.mms.a.mummmmanmm‘

the optical counterpart of the source. Thia

task was complicated because the actual
position lay outside the initial X-ray error
box. However, B. Marsden, editor of the
LA U circulars, pointed out to us the close
comrespondence in the X-ray position to
that of a nova, V404 Cygni. last known to
be in outburst in 1938, listed in the Arar of
Galactic Novae by Duerbeck’. An elec-
tronic-mail to A. Camatells at
the International Ultraviolet Explorer
(IUE) satellite observatory in Spain aler-
ted him 10 re-direct the satellite to observe
V404 Cyg (the mid-afternoon Sun in
Arizona left us temporarily heipless).
Indeed, V404 Cyg was brighter than

*11th North Amencen Workshop on CHBCHOM Varabies.
Senta Fe, §- 13 October 1006

the other well-studied long-period X-ray
novae — AQ6200-00 (V616 Mon) and
Cen X4.

The outburst of V404 Cyg was soon
followed by outbursts of Cygnus X-3 in
June and July (IAU Circs 4798, 4817,
4826). Then in August, § recurrent nova,
V745 Scorpii (LAU Circs 4820, 4821, 4822,
4825, 4826, 4844, 4853, 4885), and a classi-
cal nova, Scorpii 1989 (4836, 4838, 4839,
4840), were discovered to be in outburst.
Finally, in September another ciassical
nova, Scuti 1989, was found in outburst
(LAU Circs 4861, 4862, 486S5).

The discovery of V404 Cyg and V745
Sco demonstrate the need 1o study those
outbursts that have been recorded in the

past as having low amplitudes at optical
15






