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I INTRODUCTION

At all levels of the mammalian central somatosensory system there is a
characteristic topographic map that reflects the distribution and density of
receptors on the body surface. While such somatotopic organization is
usually inferred from neurophysiological recording procedures, it can be
directly observed with routine anatomical techniques in the somatosensory
-system of a number of small rodents. This relationship between the periph-
ery and central structure was first noted by Woolsey and Van der Loos
(1970), who correlated the distribution of multicellular cytoarchitectonic
units in layer IV of mouse somatosensory cortex, which they called “bar-
rels,” with the distribution of mystacial vibrissae on the snout. Since the
initial description of this isomorphic relationship between the periphery
and central structure, a number of investigators have studied the develop-
mental events that underlie this relationship and how it can be modified
during the course of development.

The focus of the present review is on morphoiogical events that underlie
the formation of somatotopic patterns within the central nervous system.
An analysis of this problem, like most problems in developmental biology,
involves two complementary approaches. The first is a description of the
normal developmental events related to the system under investigation.
The second is the experimental manipulation of some aspect of the system
under investigation during the course of its development and assaying
the outcome of the manipulation on the system under investigation. The
premise underlying the second approach is that the aberrant organization
resulting from the experimental manipulation will shed some light on nor-
mal developmental mechanisms. The present review will lean heavily to-
ward the first approach, as the second is treated in detail in other chapters
{see Chapters 11 and 12, this volume). However, some overlap is inevitable,
as experimental manipulation provides necessary verification of hypothe-
ses based on the description of normal developmental events.

The evidence reviewed in this chapter leads to several generalizations
about the development of somatotopic patterns within the central nervous
system. First, somatotopic patterns are formed in a sequential order begin-
ning at the periphery and ending in the cerebral cortex. This sequence along
with supporting experimental evidence has led to the view that a pattern at
the periphery provides a primary template that is replicated in sequence at
each level of the somatosensory system and that the process of pattern
formation at a given level of the system is dependent on the previous level.
Second, the formation of somatotopic patterns is a relatively late develop-
mental event and is best regarded as an overlay on a preexisting topo-
graphic order. Together, these generalizations suggest that the periphery
plays a limited but important instructive role in the organization of the
central nervous system.

Finally, it should be pointed out that while the development of the three
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major sensory systems represented in the cerebral neocortex (audition,
vision, and somatosensory) have much in common, there may be differ-
ences between these systems. For example, the distribution of peripheral
somatosensory receptors is clearly punctuate, while the retina, on the other
hand, although possessing some regional variations in receptor density, is
more clearly a continuous receptor surface. Further, at the cortical level, the
mammalian visual system has the added task of combining projections from
both sides of the neural axis to form a coherent map of visual space, while in
the somatosensory system the representation of each half of the body
surface is confined to one-half of the neural axis. Such differences may well
be reflected in the ontogeny of a given sensory system and exploited to
provide a fuller picture of the development of the brain.

II OVERVIEW OF THE LEMNISCAL PATHWAYS

Somatosensory information is processed and represented both within the
brain and the spinal cord. However, the development of patterns of soma-
totopic organization within the cerebral cortex appears to be most closely
coupled with the development of the lemniscal pathways. The evidence for
this statement is the major focus of this review, but before turning to this
evidence, it is necessary to briefly outline the organization of the lemniscal
pathways.

A Peripheral Organization

Tactile sensation is subserved by a diverse group of mechanoreceptors that
are distributed throughout the body surface in a nonrandom fashion. In
small rodents, a particularly important collection of receptors are located on
the snout (Woolsey et al., 1975). These are associated with the mystacial
vibrissae. In the mouse and rat, these large tactile hairs are organized into
five rostral-caudally organized rows of four to seven large tactile hairs
(designated rows A through E from dorsal to ventral). Other species possess
a varying number of rows of vibrissae; for example, there are seven rows of
vibrissae on the face of the gerbil. The mystacial vibrissae are not a passive
organ of touch. Each mystacial vibrissa follicle is encased in a sling of muscle
tissue that allows the vibrissae to be actively moved or whisked in concert at
a species-specific rate (Dorfl, 1982). The ensemble of whiskers and the
accompanying musculature form the vibrissal or whisker pad, a sensitive
tactile organ for the exploration of the environment (Vincent, 1912; Welker,
1964). Each mystacial vibrissa follicle is complexly innervated at two levels
of the hair shaft and contains a rich complement of mechanoreceptor types
including Merkel discs, Golgi-Manzoni, lanceolate, and free nerve endings
(Andres, 1966; Renehan and Munger, 1986). The vibrissa follicles are inner-
vated by the infraorbital nerve. which is the largest peribheral nerve in the
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mouse and rat. In the rat, the infraorbital nerve contains approximately
33,000 nerve fibers (Jacquin et al.,, 1984). It is in turn a branch of the
maxillary nerve, which becomes one of the three major subdivisions of the
trigeminal nerve. Each vibrissa follicle is innervated by both myelinated and
nonmyelinated fibers (Vincent, 1913). The number of myelinated nerve
fibers innervating a given vibrissa follicle is related to the position of that
follicle within a row. For example, the C-1 vibrissa, which is located in the
rostral end of that row, is innervated by an average of 69 myelinated nerve
fibers, while the more caudal C-6 vibrissa is innervated by 162 nerve fibers
on average (Lee and Woolsey, 1975). Physiological studies indicate that
each trigeminal ganglion cell is respansive to stimulation of a single vibrissa
{Zucker and Welker, 1969).

Central patterns suggest that there are also discrete distributions of
peripheral receptors on the glabrous surface of the forepaw and hindpaw as
there are discrete representations of both the pads and digits of the distal
extremities within the central nervous system (Welker, 1976; Belford and
Killackey, 1978; Dawson and Killackey, 1987). The association between
peripheral receptor distributions and central patterns has not been as clearly
established for the limb representations as for the mystacial vibrissae. The
dermal papilla of the glabrous skin of the mouse digital pads contain many
digital or Meissner corpuscles {Ide, 1976). Most likely it is these receptor
complexes that are associated with the primary afferents of the limbs and
the corresponding central patterns. However, this needs to be more thor-
oughly investigated. The forepaw is innervated by the radial, ulnar, and
medial nerve and the hindpaw by the sciatic and saphenous nerve. The cell
bodies associated with these primary afferents are located in dorsal root

ganglia found at cervical and lumbar portions of the spinal cord, respec-
tively.

B Subcortical Organization

The primary afferents conveying tactile information from the body surface
terminate in the brainstem and spinal cord. In the brainstem, afferents
associated with the face terminate in the brainstem trigeminal nuclei and
those associated with the forelimb and hindlimb terminate in the dorsal
column nuclei (see Figure 1). On entering the brainstem, trigeminal affer-
ents bifurcate into ascending and descending branches (Cajal, 1911). The
ascending branches terminate in the principal sensory nucleus and the
descending branches in the spinal trigeminal nucleus, which can be further
subdivided into the subnuclei oralis, interpolaris, and caudalis. A single
trigeminal primary afferent innervates all of these subdivisions of the
brainstem trigeminal complex (Hayashi, 1980). These afferents terminate in
discrete clusters, which form bands running rostral to caudal in the horizon-
tal plane and in the transverse plane replicate the pattern of mystacial
vibrissae and sinus hairs on the face (Belford and Killackey, 1979a,b; Ar-
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FIGURE 1. Diagrammatic representation of the somatosensory pathways in the rodent.

vidson, 1982; Bates and Killackey, 1985). This pattern is partiqularly obvnoqs
in the principal sensory nucleus and the subnuclei_ int.erp(.)lans and caudalis
(Figure 2). This high degree of somatotopic organization is also demonstra-
ble with physiological techniques (Nord, 1967). o
Each of the subdivisions of the brainstem trigeminal complex projectsina
unique fashion to other portions of the central nervous system. The major
projections from the principal sensory nucleus are to the contralateral veln-
tral posterior nucleus of the dorsal thalamus (Smith, ?973; Erzurlumlu etal.,
1980; Peschanski, 1984). The subnucleus interpolaris also pr_o)ects to the
contralateral ventral posterior nucleus as well as to the superior colliculus
and the cerebellum (Smith, 1973; Fukushima and Kerr, 197?; Erzurumllu and
Killackey, 1980; Killackey and Erzurumiu, 1981; Peschanski, ?9?_34; Ste.mdler,
1985; Bruce et al., 1987). The portion of subnucleus caudalis in which the
vibrissae are represented projects to the lateral divisior} of the facial nucle.us,
which in turn innervates the musculature of the vibrissae pgd,.suggestmg
that this is a pathway subserving reflex movements of the vibrissae (Erzu-
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rumlu and Killackey, 1979). The connections of the subnucleus oralis are
largely confined to the brainstem trigeminal complex itself; in particular, the
subnucleus oralis projects heavily to the subnucleus caudalis {(Hockfield
and Gobel, 1982),

Primary afferents associated with the limbs are organized in a similar
fashion. On entering the spinal cord these fibers also bifurcate, and one
branch terminates within the spinal cord. The other branch travels the
length of the spinal cord in the dorsal fasciculus and terminates in the dorsal
column nuclei in the caudal brainstem (Basbaum and Hand, 1973). The
nucleus gracilis, located most medially, is related to the hindpaw and the
maore lateral nucleus cuneatus is related to the forepaw. Both of these nuclei
contain a pattern that can be related to their respective peripheral input
(Belford and Killackey, 1978) and in turn project to the contralateral ventral
posterior nucleus (Lund and Webster, 1967; McAllister and Welis, 1981),
Thus, stretching across the upper part of the lower brainstem is a complete
map of the body surface with the head represented laterally in the
brainstem trigeminal complex and the hindpaw most medially in the nu-
cleus gracilis.

The trigeminal lemniscus and the medial lemniscus are the fiber path-
ways between the brainstem somatosensory nuclei and the dorsal thala-
mus. The trigeminal afferents terminate in the dorsal and medial portions of
the ventral posterior nucleus (ventral posterior medial, VPM), while those

of the medial lemniscus terminate in more lateral and ventral portions of

this nucleus (ventral posterior lateral, VPL). The VPM is the largest portion
of this nucleus, and it is separated from the VPL by a clear fiber plexus. The
entire nucleus is characterized by a high degree of somatotopic order that
can be demonstrated with both physiological (Emmers, 1965; Waite, 1973;
Rhoades et al., 1987b) and anatomical (Van der Loos, 1976; Belford and
Killackey, 1979a,b; Ivy and Killackey, 1982) techniques. In this nucleus, like
in the brainstem, a peripheral structure such as a vibrissa is represented by a
cylinder of neural tissue that runs roughly rostral to caudal through the
nucleus. In the VPM, the receptive field of the vast majority of neurons is
restricted to a single vibrissa, suggesting the system possesses a high degree
of spatial resolution.

One feature of the rat ventral posterior nucleus worthy of note is its
relatively simple organization. In contrast to some thalamic nuclei, the rat
ventral posterior nucleus appears on morphological, immunohistochemi-
cal, and functional grounds to contain no interneurons {Spacek and Lieber-
man, 1974; McAllister and Wells, 1981; Barbaresi et al., 1986; Harris, 1986). It
consists of a relatively pure population of projection neurons. Its synaptic
organization is correspondingly simple, and the three types of synaptic
profiles found in the nucleus can be correlated with inputs from the lem-
nisci, cortex, and thalamic reticular nucleus, The major target of the ventral

posterior nucleus is the primary somatosensory cortex (Killackey, 1973;
Donaldson et al., 1975).
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C Cortical Organization

The primary somatosensory cortex of all mammals is characterized by a map
that reflects both the distribution and density of receptors on _th.e body
surface. Usually, such a somatotopic map results from determining the
cortical loci of low-threshold tactile stimulation of the body surface. In sma!l
rodents, somatotopic organization is a directly observable feature of pri-
mary somatosensory cortex. This was first x.mted by Woolsey_anfi Va'm de;
Loos (1970), who described the relationship between th.e distribution of
large mystacial vibrissae on the face of the mouse a'nd dxscrfte groups od
cells in the fourth layer of cortex, which they termed “barrels.” A combm;
anatomical and physiological study of t.he' rat somatosensory cortex by
Welker (1976) suggested that there was a similar anatomically visible or%am-
zation in other parts of somatosensory cortex as well. 'I‘]'u_s has ref:ently li:en
confirmed by Dawson and Killackey (1987), who provided evidence that
other portions of the body surface, particularly ‘the distal extremities, are
discretely represented in the cortex. Overall, this anatomical map is l(i(on-
gruent with the physiological map obtained by other investigators {Welker,
1971, 1976; Chapin and Lin, 1984). It should also be pqmted out tha_t therc;
are both species and strain differences in the organization of the periphera
pattern that is reflected in the cortical pattern and, presumably,.the sub-
cortical patterns as well. Different species of rocllerlzts possess varying num-
bers of rows of vibrissae. For example, the v1b.nss.ae of both' the mouse
(Figure 2) and rat are arranged in five rows, while in tl‘1e gerbil they fqrm
seven rows, and this peripheral difference is reflected 'm_the organization
and number of cortical barrels {(Woolsey et al., 1975_). S:rmlar]y, some mice
have extra vibrissae and corresponding extra comFal barrels. (Yamakado
and Yohro, 1979), and this trait can be selected for in a breeding program
lker and Van der Loos, 1986). . _
(Wlirimary somatosensory cortex, like most other cortical areas, is com-
posed of six layers. The anatomically discrete map of the t?ody surface is
characteristic of the fourth cortical layer. This cortl?al layer is cqmposed of
stellate cells, and it is the layer in which the majopty c_af thalamic afferents
from the ventral posterior nucleus terminate. Within this layer, thalamocor-
tical afferents form synapses with the dendrites and somata of these stellate
cells and, also, with the layer IV portions of dendrites of neurons whose
somata are found in other layers (White, 1978). The somatotopic map is
reflected in the discrete termination pattern of thalamocortical a.fferents
(Killackey et al., 1976; Killackey and Belford, 1979; Daw§on_and Klllackeﬁr,
1987). Indeed, individual thalamocortical afferent terminations are of the
same size as the barrel in which they termiqate (]ense_n apd Klllac:ce]-)l/,
1987a). Further, there is a variation in both the s‘lz‘e of termma'tlo'n and o the
corresponding barrel that is related to the position of the wtlmssae on the
face. Vibrissae that are caudal on the face are larger and are innervated by
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FIGURE 2. Each pair of photomicrographs shows the representations of the mystacial vibris-
sae at two levels of the somatosensory system of a single mouse. For each pair, the left
micrograph shows the representation in the subnucleus interpolaris of the spinal trigeminal in
coronal section and the right shows layer IV of the contralateral somatosensory cortex in
flattened tangential section. Each animal was sacrified on postnatal day 9, and all sections were
stained for succinic hydrogenase activity. Normal: This pair shows the normal pattern of
vibrissae representation on postnatal day 9. Day 0: The pair in this figure and in the next two
figures shows the vibrissae representation resulting from cautery of the vibrissae follicies in
row C on the day shown in the labei. The arrows point out the abnormal pattern related to the
cauterized row of mystacial vibrissae. Note that (1) the extent of disruption of the vow C
representation decreases with cautery at progressively older ages and (2} for each day of
cautery, the abnormal pattern in layer I'V of somatosensory cortex mimics the abnormat pattern
seen in the brainstem of the same mouse.

Development of Somatosensory System Structures i1

§ -
f
L

.

T

FIGURE 3. Effects of cautery of the vibrissae follicles in row C on postnatal days 1 and 2 (see
Figure 2).

in the cortex by the number of cells that compose a given b_arrel, the velume
of a barrel, and the size and branching density of the associated thalamocor-
tical afferent (Lee and Woolsey, 1975; Welker and Van der Loos, 1986;
Jensen and Killackey, 1987a). The dendrites of the barrel stellate cells are
oriented toward the thalamocortical terminations. For gxample, the den-
drites of a stellate cell on the side of a barrel are alt orlenteFl toward the
center of that barrel and seldom cross the border between adjacent barrels
(1 nrente de N6. 1922: Killackey and Leshin 1975; Steffen and Van der Loos,
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FIGURE 4. Effects of caute
Figure 3). Neural represen
than on previous days.

ry of !he vibrissae follicles in row C on postnatal day 3 and 4 (see
tation is Jess disrupted by surgical intervention on postnatal day 4

1980; Harris and Woolsey, 1981). This highly specific mor hologi i
Zation is also reflected in the fl.mt:tionaig pr({pzrties of ba}:rel ngiﬁ'ac::: g’?‘?\le
receptive field of individual barrel neurons is dominated by a sgigle vi I;rissa
(Simons, 1978). However, the tightness of this functional relafibnship has
recently Peen questioned {(Armstrong-James and Fox, 1987).
'Ithe dpcrete morphological organization of the fourth cortical layer is not
obw'ous in the ofher layers of primary somatosensory cortex. The superficial
cortical layers give rise to corticocortical projections as do portions of the
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deep cortical layers (Akers and Killackey, 1978). Subcortical projections
arise from restricted portions of the deep cortical layers (Wise and Jones,
1977; Killackey and Erzurumlu, 1981; Killackey, 1983; Bates and Killackey,
1984; Killackey et al., 1989). The surrounding cortical areas are major targets
of the primary somatosensory cortex. One area of particular interest is
located lateral and caudal to primary somatosensory cortex. This is the
second somatosensory area. This area is somatotopically organized and
receives major projections from the ipsilateral primary somatosensory cor-
tex and projections from the opposite hemisphere via the corpus callosum
(Koralelek et al., 1990).

A final point with regard to the normal organization of the rat somatosen-
sory cortex is the distribution of interhemispheric projections. These
projections, which arise and terminate in both the supragranular and in-
fragranular layers of the rat, surround and interdigitate the primary somato-
sensory cortex of the rat (Akers and Killackey, 1978). Overall, they form a
pattern that is complementary to the pattern of thalamocortical afferents
(Olavarria et al., 1984). This high degree of organization in these projections
as well as in many other portions of the somatosensory system between the
periphery and cortex raises a number of intriguing questions about the
development of this system.

NI DEVELOPMENT OF THE LEMNISCAL PATHWAYS

A The Periphery

The characteristic patterns of the rodent somatosensory system first de-
velop in the periphery. The sequence in this process has been best detailed
in the trigeminal system. The development of the vibrissa pad is a relatively
early developmental event that begins about embryonic day 10 in the mouse
and a day or two later in the rat. (In general, the developmental sequence in
the rat lags behind that of the mouse by about 2 days; allowing for this time
lag the developmental events in the two species appear to be quite similar.)
On the muzzle, which at this time can be subdivided into a nasal and
maxillary process, the pattern appears first as five longitudinal ridges of
epithelium separated by grooves. Superimposed on the ridges a series of
domes that are the precursors of the vibrissa follicles develop in a caudal-to-
rostral sequence (Yamakado and Yohro, 1979; Van Exan and Hardy, 1980).
The hair follicles are present by embryonic day 12 in the mouse, and the
associated mechanoreceptors (the Merkel discs in particular) develop at a
still later time (English et al., 1980). These events appear to be an extrinsic
property of the epitheliumn. Andres and Van der Loos (1982) have presented
evidence that facial epithelium that is isolated before trigeminal innervation
and raised in tissue culture will express a pattern of vibrissa follicles. There
is also recent evidence that the facial epithelium produces a growth factor
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capable of attracting the outgrowing trigeminal nerve fibers (Lumsden and
Davies, 1986). This growth factor appears to be specific for trigeminal fibers
and to be present for only a short time in the developmental process.

The neurons that compose the trigeminal ganglion are largely produced
on embryonic days 12 and 13 in the rat (Forbes and Welt, 1981). In the
mouse, peak production is on embryonic day 11 (Taber Pierce, 1970). As
early as embryonic day 12 in the rat trigeminal primary neurons can be seen
to be distributed in a polarized fashion with their peripheral and central
processes atranged along the same axis (Erzurumlu and Killackey, 1983).
This axis appears to radiate from the point at which the central processes
contact the brainstem. The peripheral processes are pointed straight at their
epithelial targets. During the next several days, the trigeminal ganglion
differentiates into its three major components (the ophthalmic, maxillary,
and mandibular subdivisions), and there is a straight outgrowth of the
peripheral processes of ganglion cells to their epithelial targets. This occurs
during the same time as epithelial differentiation is taking place. The epithe-
lial events described in the preceding are first detectable in the rat on
embryonic day 14. On this day, fine nerve fibers can be seen to contact
mesenchymal condensations that are the first signs of follicle formation. It

seems likely that the growth factor referred to in the preceding plays some

role as a local signal in the final stages of the growth of the peripheral fiber
toward its epithelial target. The general morphology and innervation of the
vibrissa follicle at the light microscopic level resembles that of the adult
around embryonic day 17.

A major unresolved question is how the epithelial-based pattern is coded
in the trigeminal nerve and passed to the central nervous system. At
present, it is only possible to speculate about the mechanisms involved. The
pattern of fasciculation in the peripheral portion of the trigeminal ganglion
fibers that is present at late prenatal stages may be a reflection of these
mechanisms (Erzurumlu and Killackey, 1983). The spatial distribution of
the peripheral targets of the trigeminal nerve is reflected in the fasciculation
pattern, and this pattern develops after the epithelial pattern. In the mouse,
approximately 50% of the original population of trigeminal ganglion neu-
rons and fibers are eliminated during this period by naturally occurring
neurcnal death {Davies and Lumsden, 1984). There is also evidence that this
occurs in the rat {Renehan and Rhoades, 1984). Lumsden and Davies (1986)

have recently presented evidence that at early ages before an ordered -

pattern of fasciculativn would presumably develop in the mouse some
subpopulation of penpheral fibers shift fasciculi during their course. Per-
haps it is this subpopulation of fibers that is eliminated. It should also be
emphasized that the ordered pattern of fasciculation should be regarded as
arelatively gross reflection of cellular adhesive interactions that may play a
role in the transmittal of the pattern rather than as a causative agent. How
the pattern in the peripheral portion of the trigeminal fibers comes to be

ovnracaad in thoir rantral rrncaccae hae srat bn ha clanehr alicaidatad Ta thins
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i uld be of extreme interest to determine the morphologi.cal
::g:ﬁ'zaltti(::\oof the central portions of primary trigeminal afferents during
of development. o
the’f‘;\()eusesﬁtral procespses of trigeminal primary afferents reach the vicinity :)f
their brainstem target quite early in development. In the rat they appear to
have reached the brainstem by the embryonic day 12. The clustered patter:
of terminations associated with thfse aflf\erer:;:s devetlozztrir(;trllch later, aroun
i irth. This will be dealt with in the next s . ‘
theTtl:?t:i:f’:l‘opment of primary afferents as:sociated with the hm‘bs ha;fle
been studied in less detail. In the rat, genesis of dorsal root g_anghon Cttehs
located at lower cervical and upper thoracic levels that later mner;aée e
forelimb takes place between embryonic days 12and 14 (Altmall) an ar):)e;;
1984). The time course of neurogenesis of dm:sal root ganglion neu ons
located at lower lumbar levels and associated with the hmdpavy is appr :
mately 1 day later. Peripheral processes of dorsal root ganghor; nettxiror; |
reach the epithelium by embryonic day 16 or 17 but do not form l_url\:: tonl
connections with receptors until embryonic da_y 20 or later (Eng‘ns (cle a;t.},l
1980). The central processes of dorsal root ganglion neurons assocl_atf:j w17
the forepaw reach their target, the cuneate nucleus, on embrygmc Azlnty ar.‘
Hindlimb afferents reach the gracile nucleus on the following day ( I‘E "
and Bayer, 1984). Thus, by the time of birth pnrpary'somatosenfsory a te J
ents have established contact with both their epithelial and b-rami,tem ar-
gets. In addition primary afferents have also developed functu;na p!jop:r
ties by this time. Fitzgerald (1987) has recently. reportedbt at -pgm ?(:
afferents at the lumbar level are spontane_zously active by em r}fomfc. | r-aly 6
and can be activated from small, well-defined peripheral receptive fields o

the following day.

B The Brainstem

The neurons that compose the brainstem_tﬁgeminal nuc]gl are ge‘:nera‘tr:e;‘ll
toward the end or after the time period during which thg primary tngem‘; -
afferent neurons are generated. In the rat, neurogenesis a; dete;:;u:sd 11
tritiated thymidine labeling takes pla_ce on embryonic aysfxth nd 1
(Altman and Bayer, 1982). The sequentla'l order of geqerahon_o deP mo;i;
and secondary neurons of the trigeminal system 1s clontu‘me']l mt nore
central stations (see what follows), and overall, the trigeminal syste
in a centripetal fashion. '

ger_}el:: tveictl)rissa—relato:f}(:’:l pattern develops in the brainstem around 1::; txtme: :;
birth. On the day of birth {(embryonic day 2.1) a Pattern can onI:y the ei; o
in the lateral portions of the brainstem trigeminal nuclei w ;e‘re ere ost
caudal vibrissae are represented. It should be noted that these b: he
vibrissae that develop first. Over the next day or two a pattern becom

i i i i iceminal nuclei. Thus, in the
i more medial portions of the trige . hus
YIS‘—bIe m - YR .IE.-I.._.-. alane +tho eame oradient as vibrissae de-
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velop on the face (Erzurumlu and Killackey, 1983). As near as can be
determined, the vibrissa-related pattern develops concurrently in both the
terminations of the primary afferents and in clusters of trigeminothalamic
relays of the principal sensory nucleus. One would assume that the primary
afferents play a causal role in the clustering of the relay neurons, but direct
evidence for this is lacking, as is an understanding of the attractive interac-
tions that would bring about the clustering of relay neurons. The indirect
evidence that supports this notion is the fact that if a row of vibrissae are
cauterized on the day of birth, the associated primary afferents degenerate
(Bates and Killackey, 1985; Killackey, 1987) and the associated neurons in
the principal sensory nucleus fail to cluster normally (Bates et al., 1982; see
Figure 2 on the nucleus interpolaris).

The interaction between primary afferents and their target relay cells in
the principal sensory nucleus have been hypothesized to be the primary
event in pattern formation in central trigeminal structures (Belford and
Killackey, 1980; Bates and Killackey, 1985). If vibrissae are damaged after
the first few days of life when normal clustering has already occurred, more
central patterns in the thalamus and cortex are unaffected (Figures 2-4).
Thus, the system is characterized by a “sensitive” or “critical’” period when
peripheral damage can result in altered centra) organization. This period
most likely coincides with the normal time course of primary afferent in-
duction of clustering of principal sensory nucleus thalamic relay neurons.

There are, however, alternate interpretations of sensitive and critical pe- .

riods (see Woolsey, Chapter 12}. It should also be mentioned that while
vibrissa-related patterns are characteristic of three brainstem trigeminal
nuclei (the principal sensory nucleus and subnuclei interpolaris and cau-
dalis), only the principal sensory nucleus seems to play a role in pattern
formation in more rostral structures. Neonatal lesions of the principal sen-
sory nucleus result in a lack of pattern in the ventral posterior nucleus while
similar lesions of the spinal trigeminal nuclei do not effect pattern formation
in the ventral posterior nucleus (Killackey and Fleming, 1985),

The dorsal column nuclei are generated a day or two later than the
brainstem trigeminal complex (Altman and Bayer, 1984). Forelimb primary
afferents reach the cuneate nucleus on embryonic day 17; hindpaw afferents
reach the gracilis nucleus on the following day. This difference in arrival
time has been exploited to shed light on the role of primary afferents in
specifying their targets. If a rat forelimb is amputated before primary affer-
ent central processes have reached the cuneate nucleus, hindlimb afferents
are capable of expanding their terminal territory to include portions of the
cuneate as well as the gracile nucleus. Such an expansion of gracile afferents
does not oceur if the forelimb is removed after the forepaw afferents have
reached the cuneate nucleus (Dawson and Killackey, 1986; Killackey and
Dawson 1989). This suggests that once a target has been invaded by primary

afferents, itis no longer capable of accepting afferents from a second source,
This observation mav also exvlain the diffarenca habumne sl — - .+
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the hamster and rat trigeminal system to section of the inﬁ:aorbital nerve on
the day of birth (Rhoades et al., 1983). Following infrapranaI nerve section
in the newborn hamster, the mandibular afferent terminations expamfl into
the denervated maxillary territory. Such an expansion does not occur in the
newborn rat. This difference is more likely due to the relative immaturity of
the hamster at birth compared to the rat and, one W_'Ol.lld. assume, _the
incomplete innervation of the hamster’s brairllstt.em . tngemmal nuclei at
birth. Together, these results underscore the similarity in developmental
mechanisms throughout the entire somatosensory system.

C The Thalamus

The neurons that compose the ventral posterior nuFleus of the rat are
generated rather abrupt[l)y on embryonic day 14 (I\_f[cAlhster and Das, 1977).
As at other levels of the somatosensory system, this same eventoccursa few
days earlier in the mouse {Angevine, 1970). Brainstem lemmscal. affexv;nts
grow into the ventral posterior nucleus during the late embr_?omc period.
On embryonic day 20, lemniscal fibers can only be detected in the caudal
and ventral portions of the ventral posterior nucleus. By the time of puth,
they have reached the full extent of the nucleus although the density of
fibers in portions of the nucleus continues to increase until postnatal day 4
(unpublished observations). During the first few postnatal d’ays, these af-
ferents first segregate into bands that can be related to the rat’s five rows v_af
vibrissae and then further segregate into individual discrete clustez.'s within
the bands. During this same period, the distribution 9f thalarnocor:tlcal relay
cells are undergoing a similar shift in their distribution from continuous to
discrete (Ivy and Killackey, 1982a). _ o
The other major afferent to the ventral posterior nucleus arises in the
somatosensgory cortex. Corticothalamic afferents invade the ventral pos-
terior nucleus at a later time than the lemniscal afferents. One day after
birth, these afferents surround rostral and lateral portions of t}}e ventral
posterior nucleus but have yet to invade it in a major way. This process
occurs during the next several days. By postnatal day 4, these afferent§ are
distributed throughout the nucleus in a latticelilfe pattern that is a mirror
image of the vibrissa-related clusters of trigeminal afferen.ts (Akers and
Killackey, 1979). Over the next week, this latticelike patterr_'l is obscufed by
the gradual encroachment of the corticothalamic afferents into the discrete
clusters that are the domain of the trigeminal afferents and are not .de.tect-
able in the adult (Hoogland et al., 1987). Other aspects of the v1bns§a-
related morphological pattern noted above also gradually b.ecome less dis-
tinct during this period. Evidence from Golgi studies (thelbel etal., 1976)
suggest that this gradual obscurement is correlated \»\flth the gradual in-
crease in the complexity and overlap vl afferent terminal arbors of these
fiber systems »< viewed at the liplu siICroScopic level dunng'tl'fls penod.._ It
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crete patterns detectable during the early postnatal period is not in any
sense a breakdown of the high degree of somatotopic organization that
characterizes the ventral posterior nucleus.

Section of the infraorbital nerve on the day of birth results in the absence
of a vibrissa-related pattern within the ventral posterior nucleus (Killackey
and Shinder, 1981). The effects of more subtle peripheral manipulations
such as the removal of a row of vibrissae are also clearly detectable in this
nucleus. The effects of such a manipulation at birth can be detected within
the ventral posterior nucleus with the succinic dehydrogenase (SDH) stain
within 48 h of the time the peripheral damage is inflicted (Belford and
Killackey, 1979b). Indeed, abnormal organization occurs with the same time
course as normal discrete organization. This has been interpreted as evi-
dence of the role of the periphery in guiding the formation of central
somatotopic patterns. Given that the SDH stain is a reflection of the pattern
of lemniscal terminations within the ventral posterior nucleus, it also sug-
gests that it is the pattern of afferent terminations that is most closely
controlled by the periphery. This point will be returned to in more detail
later in the consideration of somatosensory cortex.

It is also important to emphasize the rather obvious point that the ventral
posterior nucleus is further removed from the periphery than the brainstem
somatosensory relay nuclei and that, consequently, the effects of a periph-
era] manipulation are somewhat different than at more peripheral levels. At
the ievel of the primary afferent, peripheral manipulations such as follicle
cautery (Savy et al., 1981; Bates and Killackey, 1985; Killackey, 1987) or
nerve cut (Waite and Cragg, 1982) resuit in explicit degeneration or loss of
fibers during the developmental period. The exact degree of loss, however,
is difficult to determine, as primary afferents are capable of some degree of
regeneration that complicates assessment (Rhoades et al., 1987b). It does
seem reasonable to assume that the brainstem trigeminal targets of these
afferents are relatively completely denervated for at least several days fol-
lowing peripheral manipulation (i.e., during the critical or sensitive period
when the periphery plays its role in central pattern formation). This is
supported by the finding that cortical-evoked potentials that can normally
be elicited by vibrissa stimulation 2 or 3 days after birth are not elicited in

nerve cut animals until at least 7 days after birth (Waite and Cragg, 1982).

At the level of the brainstem targets of the primary afferents there is some
neuronal loss following complete vibrissa follicle destruction. Hamori et al.
(1986) have reported an 18% cell loss and a 33% decrease in volume within
the subnucleus interpolaris following such a manipulation in the mouse.
This same study reported no loss of neurons within the ventral posterior
nucleus in the same animals. On the contrary, they report an increased
number and density of neurons in the ventral posterior nucleus in which
the damaged periphery is represented, which they attribute to the failure of
the normally occurring cell death process. In a previous study using a more

cnnbatmbnd mnsioakhnval snnmlscilabinme im dha manrsen ramecsral Af 4 cimnala sacre AF
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vibrissae, Woolsey et al. (1979) report no changes in cell density betwgen
the affected region of the ventral posterior nucleus and the normal side.
Whatever the basis of this discrepancy, these results do suggest that basic
organizational features of the ventral posterior nucleus, such as the source
and size of its afferent input and its basic cy'tologlcal organization, are
relatively normal in animals with neonatal peripheral trigeminal Qamgge.
The major change in the nucleus is in the pattern of. affgrent terminations
formed in the nucleus, which in turn affects the distribution of the terminal
arbors of its projection to the somatosensory cortex.

D The Neocortex

The neurons that compose the neocortex of the rat are generated overa tlme.
period that extends from embryonic day 16 to 21 (Berry and 'Rogers, 1965;
Hicks and D’Amato, 1968). Further, as first demor.\strated in the mouse
(Angevine and Sidman, 1961), time of origin of cortical cellslls reflected in
their laminar position. Cortical neurons in the deeper cortical layers are

generated before neurons in the more superficial cortical layers, resulting in

an “inside-out” sequence of cortical development. Given that laminar loca-
tion of a cortical neuron is also correlated with its projection target (Wise
and Jones, 1977), the time of origin of cortical neurons may also be cor-
related with its ultimate projection tarEetil]enstehn a}'\d Killackey (1984) have
ided experimental evidence for this hypothesis.
pr?l“fl::eneurgns of the fourth cortical layer that compose the barrels are
generated on embryonic day 18 in the rat. Th(? first signs of the‘barn-els in
layer 1V are detectable on postnatal day 3 in lesl-stan_wd material (Rn:e et
al., 1985). This coincides with the arrival of thalamocortlca! afferents in layelf'
IV (Wise and Jones, 1978) and the first appearance of discrete cl'usters ci
SDH staining in this layer (Killackey and Belford, 1979). At t.he cortl.cal level,
there is no evidence of the pattern developing along a gradient as it does in
the brainstem; rather, the whole pattern appears to develoP at approxi-
mately the same time (see however, Rhoades et al., 19.90). This is p_mbab;y
attributable to the concurrent ingrowth of tha]amocomc'al afferents into the
cortical layers as opposed to the staggered growth qf primary afferents 1nfto
the brainstem. The effects of a peripheral manipulation such as removal of a
row of vibrissae can also be detected at the same time as the normal pattern.
Once again, this suggests that it is normal c_ievelopmental events that are
perturbed by neonatal peripheral manipulatnorvls. Several experiments pro-
vide some insight into these events at the cortical level.

At the time of birth, thalamocortical projections have rgached 'the cortex
but are located in the white matter beneath the still-forming cortical layers
(Wise and Jones, 1978). Recent preliminary evidence, however, suggests
that thalamocortical fibers may penetrate the cortnFal plate. as ea‘riy as
postnatal day 1 (Senft and Woolsey, 1987). At the time of birth, discrete
L Win wolatinne hotween the thalamus and cortex can be demon-
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strated by the retrograde transport of horseradish peroxidase from cortex to
thalamus (Dawson and Killackey, 1985). Thus, topographic relations be-
tween the thalamus and cortex develop well before there are any hints of a
vibrissa-related somatotopic pattern in either structure and even before the
ventral posterior nucleus is fully innervated. This suggests that the overall
topographic relations between these two structures are intrinsically deter-
mined before birth and that peripheral manipulations at birth affect events
in this system that occur between birth and day 3. This is the time period
during which thalamocortical afferents are growing into the fourth cortical
layer and forming their terminal arbors.

It was previously noted that the afferent terminations of individual thala-
mocortical afferents completely fill the discrete cortical cluster with which
they are associated and that cluster size can be correlated both with periph-
eral location and innervation density. This suggests that the major role of
the periphery is in shaping the size of afferent terminations, Presumably,
this process is in some way related to “activity” in the system and has
occurred by between the third and fourth postnatal day when discrete
clusters of SDH activity are apparent. Jensen and Killackey (1987b) have
provided evidence favoring this hypothesis. Neonatal infraorbital nerve
section that abolishes all evidence of a vibrissa-related pattern at the leve] of
the brainstem and thalamus (Killackey and Shinder, 1981; Bates et al., 1982)
also results in very anomalous cortical patterns that are not readily related to
the periphery. Individual thalamocortical afferent terminations in adult rats-
subjected to neonatal nerve cut are also severely perturbed. Such termina-
tions are much larger than normal and have a much reduced branching
density. While this result directly supports the hypothesis that the role of
the periphery in guiding somatotopic organization is exerted at the level of
afferent terminations, two interpretations of the result are possible. First,
the periphery plays a role in forming terminal arbors that are normaily
discrete at all stages including initial outgrowth. Second, the periphery
functions in trimming back terminal arbors that are diffuse in their initial
outgrowth. The short time period in which the terminal arbors are formed
favors the first of these alternatives, but the question deserves further
attention.

The periphery aiso appears to play some role in the sculpting of other
aspects of cortical organization, namely, the distribution of cortical
projection neurons. While this role has yet to be clearly defined, some hints
of it are evident in the distribution of callosal projection neurons. As noted
in the preceding, callosal projection neurons and terminations that in adult
rat somatosensory cortex are located in the supra- and infragranular layers
are distributed in a complementary fashion to the discrete thalamocortical
afferents arising from the ventral posterior nucleus (Akers and Killackey,
1978; Olavarria et al., 1984). At birth the cells of origin of the immature

callosal projection are continuously distributed in the deep layers below the
cortical plate. and callacal affavamin mun aceactoe 300 o0 Lt % :
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white matter (Ivy et al., 1979; lvy and Killackey, 1982b). The disconthuous
adult pattern is established during the next 10 days or so and is 'atc-
companied by the specific ingrowth of callosal .afferenfs into appropriate
regions. The mechanism underlying this chan.ge is the elimination of nElil)l:;-
nal processes (O'Leary et al., 1981; vy and Killackey, 1982b). Double label-
ing has indicated that many neurons in the neonatal rat somatosensory
cortex project both ipsilaterally to motor cortex, and presuma_bly to o:her
ipsilateral targets as well, and across the corpus caliosum. During d‘EVE a(l)lp-
ment neurons located within primary somatosensory co_rtex‘lose their c oi
sal processes, resulting in the discontinuous distribution of callosa
projections characteristic of the adult. This elimination process a‘iso f.ieemi
to be influenced by the periphery. The complementary organization o
thalamic and callosal projections in the normal_ adult may be taken as
indirect evidence for this assertion. More direct evidence is provided by the
distribution of callosal projection neurons after ngonatal mfra.orb_ltal f\erw;
section, the same manipulation that profoundl;_; disrupts the dxstnbutxon-o
thalamocortical afferents. This same manipulapoq bo.th rgduqes the dens;ty
of callosal projection neurons and alters their fhstnbuhon in a wa{( t z:;
reflects the changed distribution of thalamocortical afferent.s (Kora{e 1:1
Killackey, 1990). This manipulation also _produces changes in the distri :
tion of callosal projections outside of primary somatosensory cortex. T e
face region of the second somatosensory area wl:uch no::mal]y recen;es
callosal projections is now devoid of callosgl connections. This sugg;st.s btee at
the train of organizational events that begins at the periphery and As been
traced in some detail up to primary somatosensory cortex may continue in
other cortical areas beyond primary somatosensory cortex. ' o
The foregoing has focused on the trigeminal system as thg unique distri-
bution of peripheral receptors, and their c_entr:_;\l representations have gen-
erated considerable interest and can be experimentally m.ampt_xlated with
relative ease. However, the principles derived from the trigeminal system
apply equally well to other portions of the sematosensory system. Daw?on
and Killackey (1987) have provided evidence that r_leonatal hm'b removal or
section of the afferent innervation to the limbs at birth results in an anoma-
lous organization of the associated cortical pat.tems. Amputation of a fqre-
limb at or before embryonic day 17 results in an even more surprising
cortical change (Dawson and Killackey, 1986; Killaf:key and Dawson, 19?19).
As noted in a previous section, this mampula'mc?n"results in what ;s
been interpreted as a partial invasion of the “virgin” cuneate nuc}eus y
later arriving hindlimb primary afferents at the level of the brainstem.
At the cortical level, the manipulation results in a doubhpg of the size
of the cortical representation of the hindPaw. This expansion appears to
be at the expense of cortical areas outside the_ primary somatoser;so;y
cortex. Such results further emphasize the point that no level o ft e
central nervous system develops in isola'tion of other leve‘ls. The ef ects
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bfu ‘iinterpreted within the larger framework of the entire system under
study.

As a final point, it is obvious from the foregoing that the authors favor the
hypothesis that the periphery plays a key instructive role in the formation of
the central somatosensory system. This view has been challenged (Cooper
and Steindler, 1986 and Cooper et al., 1989). These authors have postulated
that glial associated adhesion molecules intrinsic to the developing neocor-
tex play a primary role in forming borders between functional units such as
‘fbarrels". Further, they postulate that this glial event “results in the forma-
tion of ‘premaps’ which can be further sculped during early postnatal life by
more precise map-conveying afferent systems, . . .”. We regard this view
as a very tenuous one for two reasons. First, the earliest detectable “barrel-
like” patterns in the neocortex are clearly formed by extrinsic afferent
systems and not intrinsic glial elements (Rhoades et al., 1990). Second,
neonatal peripheral manipulations such as those reviewed above alter the
patterns of glial boundaries just as patterns of neural elements are altered
(Cooper and Steindler, 1989). Thus, at present the role of glial boundaries in
pattern formation does not appear to be a primary one, rather their role is
secondary to that of the extrinsic afferent input to a given level of the
somatosensory neural axis.

IV SUMMARY

The studies reviewed in this chapter provide evidence that the overall
‘development of the somatosensory system takes place in a sequential fash-
ion beginning at the periphery and progressing centrally. These studies also
demonstrate that the development of the system is accomplished by a
number of diverse mechanisms, some of which are confined to particular
levels of the system and others that operate at all levels. One of the most
prominent features of the system at each level of the neural axis, somatoto-
pic patterns, develops relatively late and seems to be most closely related to
the formation of afferent terminations. Major unresolved questions involve
the molecular mechanisms that play a role in sculpting of patterns of affer-
ent terminals and their “transmittal”” along the neural axis. Finally, the
gtlfdies also point out that when focusing on a particular level of the system,
it is important to do so within the larger context of the entire system,
keeping in mind that what occurs at one level is the result of interactions
intrinsic to that level as well as events that have occurred at previous levels.
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not that of recapitulation. I am not suggesting that de-
velopment be studied to reveal either ancestral organi-
zation or phyletic history. The approach is based on the
premise that similar developmental mechanisms are op-
erating in all vertebrates and that small changes in these
mechanisms, or in their rate of action, can provide the
basis of evolutionary diversity. This point of view has
been extensively articulated by Gould (1977).

A similar approach has recently been presented by
Ebbesson (1984), in what he terms a “parcellation” the-
ory of vertebrate brain evolution. There are several basic
tenets of his proposition. First, the ancestral vertebrate
brain was characterized by a diffuse organization. Sec-
ond, that diffuse organization is still 2 major characteristic
of the vertebrate brain during ontogeny. Third, that dur-
ing both phylogeny and ontogeny there is a selective loss
of connections within daughter systems and neural ag-
gregates that result in the formation of new neural cir-
cuits and aggregates through processes of segregation,
isolation, and parcellation. The proposal that I will pres-
ent differs from this thesis in several significant ways.
First, its scope is much more limited. It is aimed at
providing insights into the expansion of mammalian neo-
cortex and not at explaining the evolution of the verte-
brate brain as a whole. Second, given neocortical
expansion, it is very difficult to envision how this expan-
sion could occur by essentially subtractive mechanisms.
As a consequence, I will focus on plausible mechanisms
by which cortical areas could be added. Third, I am more
impressed than is Ebbesson by the evidence for the
discrete organization of the vertebrate brain in the ex-
isting forms that have been studied both as adults and
during the course of their ontogeny. The occurrence
during ontogeny of an excess in neurons and neural
processes is not necessarily evidence of diffuse organi-
zation. These phenomena occur within definable con-
straints that will be detailed below. It has been my
experience that the use of the term "diffuse” to charac-
terize a neuronal system more often reflects our state of
knowledge of that system than the organization of that
neuronal system (for example, see the recent review by
Parnevelas & Papadopoulos 1989 regarding this issue in
a different context).

Comparative neurologists, as biologists in general, are
often concerned with the history of a trait or characier.
Is the presence of a character across a group of animals
the result of its presence in a common ancestor or has
the trait evolved independently in several different lines
in response to common functional requirements? More
formally, is a character that is being compared across a
group of animals homologous or homoplastic? This is-
sue, although of obvious import, is not the primary con-
cern here. The issue to be examined is given that the
cortical neural systems that process motor and somato-
sensory information are organized differently in various
mammalian lines, can these differences in organization
be understood in terms of the same developmental
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mechanisms. The primary concern is not what the con-
dition was in the common ancestor, although this is of
course relevant, and assumptions will be made about the
initial state of organization of these systems. It will be
assumed that the simplest organization is composed of
the least number of cortical areas, that is, the least dif-
ferentiated. The determination of homologies berween
portions of these systems in extant mammals is much
more difficult. Clearly, the neocortex as a morphological
structure is homologous across mammals. Similarly, the
somatosensory system considered as a broad structural
and functional entity is most likely homologous across
mammalian forms. However, an amempt to establish
homologies between isolated portions of the system in
extant forms is exceedingly difficult if not impossible. It
is my opinion that at this level of analysis we have gone
beyond the point at which the concept of homology can
be fruitfully applied at the present time,

This conclusion is similar to that reached by Ulinski
(1983) in his discussion of forebrain organization in
reptiles and birds. He points out that two alternate strat-
egies for comparing structures in different organisms
have long been recognized by comparative biologists.
The first is an approach based on homology. However,
for a number of reasons discussed by Ulinski it is difficul,
if not impossible, to apply the concept of homology in a
meaningful sense to neural structures across different
lineages. Difficuliies with the use of the term homology
include the very definition of the term and at what level
the term is applied (e.g, the individual neuron or en-
sembles of neurons), the establishment of ancestral re-
lationships between lineages of extant vertebrates, and
the criteria that are to be met for establishing homolo-
gies. Such criteria usually involve listing the similarities
between the structures being compared, which brings us
back to the difficulty of distinguishing between homol-
ogous and homoplastic traits. The alternative to an ap-
proach based on homology is one based on what Ulinski
terms “design.” That is t0 compare and contrast the or-
ganization of what is assumed to be the same functional
system in different lineages. Although such an approach
is fraught with difficulties of its own, these can be min-
imized, by making clear the assumptions that are made
in the course of the analysis. This is the course thar will
be followed in my analysis of the expansion of mam-
malian neocortex.

PREVIOUS VIEWS OF CORTICAL
EVOLUTION

For most of the twentieth century, the study of neocor-
tical organization was dominated by cytoarchitectonics,
the study of the structural organization of the neocortex
as revealed by the Niss! method. The basic premise of
this approach, which may be regarded as a descendant
of phrenology, is that areal differences in the structure
of neocortex reflect functional differences. To a large
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outline several of the major organizational features of
Neocortex.

GENERAL FEATURES OF NEOCORTICAL
ORGANIZATION

Traditionally, the neocortex is regarded as a six-layered
structure. This nomenclature recognizes a varying num-
ber of sublayers in different cortical areas: for example,
in the primary visual corntex of the monkey layer IV is
subdivided into sublaminae a, b, and ¢, and layer IVc is
subdivided into three zones termed alpha, beta, and
gamma. The motor cortex represents the converse. This
cortical area is generally regarded as lacking a fourth
cortical layer. The cytoarchitectonic heterogeneity of the
neccortex was noted by early neurcanatomists, and, in-
deed, this heterogeneity provided the first basis for re-
gional subdivision of the neocortex. Later functional
studies provided support for the subdivision of the neo-
cortex into morphologically and functicnally distinct
areas along its horizontal dimension. The second major
dimension of the neocortex is the vertical one. Although
laminar differences in cell type and density were noted
by early investigators, the full significance of laminar
organization as a reflection of the segregation of both
afferent inputs and efferent outputs was not fully realized
until the introduction of modern neuroanatomical tech-
niques for pathway tracing.

The increase in number of functional topographically
organized neocortical areas in different mammalian lines
has been previously alluded to. Before proceeding, it is
necessary to document at least one example of this phe-
nomenon, as an increase in the number of cortical areas
seems to be the basic way in which the neocortex has
expanded. This increase has been best documented in
the mammalian visual system (see Van Essen 1985; Kaas
1989), however, I will use the somatosensory system to
illustrate this point as it is the system with which I am
most familiar. I will briefly describe the cortical organi-
zation of the rat, opossum, and rhesus monkey somato-
sensory systems. This comparison will provide an
example of the diversity of organization of these func-
tional systems in mammalian neocortex and of the in-
crease in the number of neocortical areas that compose
these systems in certain mammals. This comparison also
provides the basic context within which neocortical ex-
pansion must be understood. That is, the addition of
functionally and morphologically discrete areas that carry
out particular subfunctions within the framework of a
larger functional system.

The primary somatosensory cortex of the rat occupies
roughly the middle third of the rostrocaudal extent of
the cerebral hemispheres. Morphologically, it can be de-
fined by its primary cytoarchitectonic feature, the distri-
bution of dense granule cells, or stellate cells, found in
the fourth cortical layer (Welker 1976). A second mor-
phological distinguishing characteristic is the distribution
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of thalamocortical afferents that arise from the ventral
posterior nucleus and terminate in dense discrete clus-
ters in the fourth cortical layer and, to a lesser extent, in
the deep portions of the third cortical layer (Killackey
1973; Jensen & Killackey 1987a). In the rat, both elements
can be demonstrated to be distributed so as to form a
discrete but distorted visible map of the rat’s entire body
surface, which reflects the differential innervation of
peripheral surfaces. Thus, in the cortex there are en-
larged discrete representations of those portions of the
body surface that are most densely innervated, and are
presumably of the greatest adaptive significance. Such
morphological maps are congruent with the more
conventional functionally defined maps of the rat primary
somatosensory cortex, which are based on the activation
of cortical neurons by light touch of the body surface.

The morphologically demonstrable primary somato-
sensory cortex of the rat provides a starting point for
defining other areas in which somatosensory information
is processed within the neocortex. Partially embedded
within the primary somatosensory cortex on its rostral
side is the “dysgranular” cortex, which also processes
somatosensory information (Killackey 1983). The tha-
lamic input to this cortical area arises from the posterior
nucleus, which is located dorsal and medial to the ventral
posterior nucleus in the thalamus (Koralek et al. 1988).
Posterior to and abutting the main body of the primary
somatosensory cortex is the second somatosensory cor-
tex, which is functionally defined as that portion of the
neocortex containing a second complete representation
of the body surface (Koralek, Olavarria, & Killackey
1990).

Lying rostral to the primary somatosensory cortex is
the final cortical area 10 be considered, the motor cortex.
Several morphological criteria can be used to define this
cortical area. First, this contex appears to be lacking a
fourth cortical layer composed of stellate cells and is
thus characterized as “agranular” (Donaghue & Wise
1682). The major thalamic input to the motor cortex
arises from the ventral lateral nucleus, which in tum
receives input from the deep nuclei of the cerebelium.
Functionally, motor cortex is defined as the cortex that
elicits the lowest threshold activation of the major skel-
etal muscle groups. The overall topographic organization
of the motor cortex is commonly represented as a map
of the body surface, which represents the underlying
musculature and forms a mirror image to the map in the
primary somatosensory cortex. In the rat, evidence sug-
gests that the functionally defined motor and somatic
maps are not completely independent; rather the two
maps partially overlap in the region of the hindpaw
representation. That is the sensory representation of the
hindpaw is the same cortical region from which the
lowest threshold movements of the hindpaw can be ob-
tained. Morphologically, the cortical hindpaw represen-
tation seems to receive a dual thalamic input from both
the ventral posterior and ventral lateral nucleus (Donag-
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caudal portions of the map to a most rostral position as
suggested by the traditional view of the topographic or-
ganization of these cortical areas.

This brief overview of the organization of the soma-
tosensory and motor cortex in rat, opossum, and monkey
provides clear evidence that each of these species pos-
sesses differing numbers of cortical areas devoted to the
processing of somatosensory information. Further, 1
would interpret this difference as evidence that infor-
mation thar is processed in one cortical arez in the Vir-
ginia opossum, for example, is processed in a distributed
fashion over several cortical areas in other mammalian
species. Before considering developmental mechanisms
that potentially play a role in establishing cortical areas,
the other major dimension of cortex, the vertical one,
should be briefly mentioned.

It was suggested by Lorente de No (1938) thart a vertical
strip of cortex could be regarded as “an elementary unit,
in which, theoretically, the whole process of the trans-
mission of impulses from the afferent fiber to the efferent
axon may be accomplished.” Since that suggestion the
vertical or columnar functional organization of the neo-
cortex has been well documented, most notably by
Mountcastle (1978) within the somatosensory cortex of
the cat and monkey. Indeed, this aspect of cortical or-
ganization has been so thoroughly discussed elsewhere
(see Mountcastle 1978 for review) that there is no need
to detail it further here. However, one morphological
aspect of the vertical organization of neocortex is worth
stressing. Rockel, Hiorns, and Powell (1980) document a
remarkable uniformity in one feature of the basic orga-
nization of the neocortex. These authors report that the
absolute number of neurons in a small volume of neo-
cortex extending from the pial surface to the underlying
white matter is relatively invariant across both cortical
areas and species. It should be emphasized that this
invariance in neuronal number is present in spite of both
the cytoarchitectonic and functional differences that char-
acterize different cortical areas and the approximately 3-
fold difference in cortical thickness across species. 1 will
report the results of this study in some detail as [ believe
it has major implications for our understanding of the
evolution of neocortex.

The approach of these investigators was a very straight-
forward one. They simply counted the number of neu-
rons in a narrow strip (30 pm) of a 25-pm-thick section
throughout the depth of neocortex in mouse, rat, cat,
monkey, and man in Nissl-stained material (a volume of
750 _._.EJ. These counts were made in a number of
diverse cortical areas (motor, primary somatosensory,
primary visual, frontal, parietal, and temporal) in each
species and by independent observers. With the excep-
tion of primary visual cortex in primates, the sampled
strip in all of these cortical areas in all species contains
approximately 110 neurons, The primary visual cortex in
primates was found to contain approximately 2.5 times
the number of neurons in other cortical areas. The rea-
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son for this increase in neuronal number in the primary
visual cortex is unclear, but undoubtedly is related 1o the
processing requirements of the highly specialized pri-
mate visual system. However, overall, the basic constancy
in neuronal number is most striking, and is interpreted
by Rockel et al. (1980) as suggesting that during evolution
it is the area of neocortex that increases while the num-
ber of neurons within its depths at a given point remains
relatively constant.

This study has two major implications for the present
discussion. First, it suggests that the fundamental unit of
cortical processing is composed of roughly the same
number of neurons across both species and cortical
areas. Further, this basic unit is quite conservative and
has remained relatively unchanged in the course of mam-
malian evolution. Second, it suggests that cortical expan-
sion has occurred largely by the addition of the same
basic units. Thus, a larger brain contains many more basic
units than a smaller brain, but the basic organization of
the two is quite similar. This is not to suggest that there
has been no change in the vertical dimension of neo-
cortex. An increase in cortical thickness of a factor or
two or three may be quite significant, as it at least partially
reflects increases in both dendritic length and spines and
the richness of the axonal strata that contact cortical
neurons.

On the basis of the foregoing evidence, I would make
the following assumptions about neocortical organiza-
tion and expansion. First, vertical or columnar organi-
zation is a fundamental feature of cortical organization,
and small groups of cells distributed along this vertical
dimension form a processing unit, or a “column.” Sec-
ond, a “column” has a finite processing capability, and
when these capabilities are reached, there are evolution-
ary pressures for the addition of new processing units.
Third, these new processing units are added in series
with the preexisting units and they can be regarded as
an extension of these units. This allows a greater pro-
cessing capacity and is, perhaps, required by the devel-
opment of more specialized peripheral receptor arrays.
Fourth, this extension is not accomplished by an increase
in the vertical dimension of the neocortex but by an
addition of the new units at the border of the preexisting
cortical area. Fifth, the "columns” of the new cortical area
would be connected with those of the preexisting cortical
area by intrahemispheric connections that are, by neces-
sity, topographically organized. Thus, information that is
processed in a single “column” in one species is distrib-
uted over several columns in different cortical areas in
other species.

These assumptions raise several questions that will be
the focus of the remainder of this essay. First, is there
evidence that the mammalian neocortex expanded by
the simple addition of basic units? Second, if such an
expansion has taken place, can we understand how these
basic units are formed into cortical areas with precise
patterns of interconnections, within the context of mech-
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of the neccortex by thalamic afferents and is the net
result of interactions of thalamic fibers with one ancther
as well as with their target neocortical tissue. For ex-
ample, primary somatosensory cortex is specified as that
portion of neocortex into which a dense thalamic input
from the ventral posterior nucleus grows. At the exper-
imental level, this implies that the boundaries of neo-
cortical areas can be altered by manipulations of either
the thalamus or the periphery during the course of de-
velopment.

Although such a process can be most readily under-
stood in terms of the primary sensory cortical areas, it
may play a role in other cortical areas as well. For ex-
ample, cortical regions that receive either a less dense
thalamic input or one that grows in relatively late in
development may receive organizational guidance from
major inputs that arise in the primary cortical areas. In
this regard, afferent specification may play some role in
the determination of patterns of connectivity of cortical
projection neurons. This point will be discussed in detail
below. However, the evidence that suggests that afferent
input plays a guiding role in the organization of neocor-
tex will be reviewed first.

The imprint of the entire body surface on the primary
somatosensory cortex of the rat provides presumptive
evidence of the role of afferent input in guiding the
organization of target structures. This peripherally re-
lated pattern is reflected in both the cytoarchitectonic
organization of the primary somatosensory cortex and
the thalamic input from the ventral posterior nucleus to
this cortical area. Although it is theoretically possible that
this pattern is an intrinsic property of the primary so-
matosensory cortex, as has recently been suggested by
one group of investigators (Steindler, Cooper, Faissner,
& Schachner 1989), there is strong evidence that this is
not the case and that this partern is formed under pe-
ripheral guidance (see Killackey & Belford 1979; Kil-
lackey 1980; Belford & Killackey 1980; Bates & Killackey
1985 for further details). First, peripheral damage during
the first few days of birth alters both the cytoarchitectonic
organization of the somatosensory cortex and the distri-
bution of thalamic afferents to this cortex. Second, the
same pattern seen in cortex is also characteristic of the
subcortical somatosensory relays in the brainstem and
thalamus, and this partern develops in a sequence that
begins at the periphery and ends in the neocortex. Third,
peripheral damage has an effect on the subcortical pat-
terns that is similar to the effect on the cortical one, and
the altered parterns develop with the same time course
as the normal patterns. This suggests that the peripheral
damage is simply altering the outcome of normal devel-
opmental processes,

My view of these processes at the level of the thalamus
and cortex is based on several experiments performed
in my laboratory. (We have also hypothesized that similar
events occur at the subcortical relays but here I will focus
on the thalamus and cortex.) At the time of birth afferent
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brainstem somatosensory fibers have reached the ventral
posterior nucleus but have not formed their character-
istic pattern of termination in this nucleus. At the same
time, thalamocortical afferents have reached the neocor-
tex but have not yet invaded the neocortical layers. The
growing tips of these fibers are located in the white
matter underneath the cortex (Wise & Jones 1976) and
are organized in the same topographic order character-
istic of the adult (Dawson & Killackey 1985). During the
next few days, the thalamocortical afferents grow into
the neocortex and their terminal arborization pattern
forms on the basis of afferent input to the thalamic cells.
This last statement is based on observations of the mor-
phology of the terminal arbors of individual thalamic
arbors. In the normal adult animal, arbor size can be
related to the innervation density of the peripheral struc-
ture to which it is connected (Jensen & Killackey 1987a).
In adult animals in which peripherally based information
has been altered by neonatal peripheral nerve section,
the terminal arbors of individual thalamocortical affer-
ents are grossly abnormal. They extend over wider cor-
tical areas and have many fewer terminal arborizations
and boutons (Jensen & Killackey 1987b). Based on this
evidence, I conclude that it is the formation of terminal
arbors that influences the cytoarchitectonic organization
of the somatosensory cortex. In the normal mouse, the
size of individual cytoarchitectonic units, or “barrels,”
can be related to the innervation density of their periph-
eral structure (Welker & Van der Loos 1986b). Further,
neonatal peripheral damage alters both overall cytoar-
chitectonic organization in the somatosensory cortex and
the dendritic organization of the individual steilate cells
that compose the “barrels” and are a major target of the
thalamic input (Harris & Woolsey 1979; Steffen & Van
der Loos 1980). The summarized evidence can be taken
to indicate that at least some aspects of cortical organi-
zation are not intrinsically organized (or contain “pro-
tobarrels” as suggested by Steindler, Cooper, Faissner, &
Schachner 1989) and that the periphery acting directly
through the thalamus as well as through other subcortical
relay stations plays 2 role in the organization of neocor-
tex.

Further evidence that the thalamus is an extrinsic
source of cortical organization comes from an experi-
mental paradigm that may be regarded as the converse
of those reported. Ito and Seo (1983) have introduced
small lesions in the presumptive somatosensory cortex
of the rat on the day of birth and shortly thereafter and
at a later date examined the resultant pattern of succinic
dehydrogenase and cytochrome oxidase staining in the
somatosensory cortex. As noted, these stains reflect the
pattern of termination of the thalamocortical afferents in
the primary somatosensory cortex. They found a com-
plete peripherally based pattern that tended to avoid the
site of the lesion in animals that received such lesions
before 10 days of age. In the adult animals assayed the
lesion most frequently located on the border of the
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Graybiel, & Nauta 1980). However, this should not be
interpreted as evidence that thalamic afferents do not
play a role in specifying the neocortex. Rather, it suggests
that such specification can occur in the absence of pe-
ripheral input. This is not particularly surprising in view
of the results in the monkey, and the fact that broad
aspects of cortical specification, cytoarchitectonics, ap-
pear to occur before all aspects of sensory pathways are
in place,

Finally, there are several other relevant experiments
that demonstrate that sensory information from one sen-
sory system (vision) can be processed in a relatively
normal fashion by cortex associated with 2 second sen-
sory system (somatosensory or auditory). Frost has ac-
complished this by ablating the major retinal targets
(dorsal lateral geniculate and superior colliculus) and a
portion of the afferent input into the ventrai posterior
nucleus in the newbomn hamster, a very altricial species.
This results in the formation of stable and ordered con-
nections berween the retina and the ventral posterior
nucleus (Frost 1981, 1986). These projections seem to
result from both the persistence of a transitory projection
that is usually eliminated during the course of normal
development and reactive Sprouting induced by the re-
moval of normal target tissue. Under these conditions,
an orderly projection from the retina to the somatosen-
Sory cortex via the ventral posterior nucleus can be dem-
onstrated with transneuronal anterograde transport
techniques (Frost 1982). This aberrant projection to the
Somatosensory cortex is capable of mediating visual func-
tion. Frost and Metin (1985) have recorded visual recep-
tive fields from the primary somatosensory cortex of such
animals that were at least partially topographically or-
dered. Similarly, Sur and colleagues (Sur, Garraghty, &
Roe 1988) demonstrated that visual projeciions experi-

mentally induced into the medial geniculate of the ferrer,

another extremely altricial species, result in neurons in
auditory cortex that have visual receptive fields. Some of
these neurons are directionally sensitive or have oriented
receptive fields resembling those of complex cells in the
primary visual cortex. These results demonstrate at a
functional level that organizational features of the neo-
cortex are dependent on its afferent input. Further, it
suggests that the organization of cortical circuijtry in dif-
ferent cortical areas has enough in common that circuitry
usually related to one sensory modality can, under the
appropriate (albeit highly artificial) circumstances, pro-
cess information related to another sensory modality.
The evidence presented best favors the hypothesis that
the formation of cortical subdivisions is guided by tha-
lamic afferent input. It is obviously meager in view of
the large body of work that has addressed the question
of the effects of neonatal peripheral damage and sensory
deprivation on the organization of the central nervous
system. I would submit, however, that most of this liter-
ature is not directly relevant to this question. Typically,
the effects of such manipulations are studied relatively
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late in the course of mammalian development, after ini-
tial relations between the thalamus and cortex have been
established.

Cortical Exuberance

The focus of the previous section was on the role of
afferent input in determining the organization and bor-
ders of neocortical areas. The evidence summarized sup-
ports the conclusion that these borders are not
intrinsically fixed but are determined by processes that
involve the thalamic input to the neocortex. I would now
like to review the evidence that the distribution of dif-
ferent classes of ¢ortical projection neurons is also not
completely intrinsically determined. Further, 1 will sug-
gest that cortical projection neurons have some “choice”
in the matter of their ultimate targets and that afferent
specification may play some role in this determination.

A major morphogenetic feature of the development of
most parts of both the peripheral and central nervous
system is the process of cell death, This phenomenon
has been identified in a wide vartety of neuronal struc-
tures in a large number of different vertebrate species
(see Cowan, Fawcett, O'Leary, & Stanfield 1984 for re-
view). In the chick spinal cord about 40% of the motor
neurons die between the fifth and ninth day of incuba-
tion. In other portions of the chick central nervous sys-
tem the number of neurons eliminated during the course
of development varies from approximately 15% of the
neurons that initially compose the auditory relay nucleus
of the brainstem 10 80% of the neurons that initially
compose the mesencephalic trigeminal nucleus. The per-
vasiveness of the phenomenon of cell death has lead to
the generalization thar in nearly all pants of the nervous
System neurons are overproduced and later eliminated.
Cell death is thought to play a role in several different
developmental events, including matching the size of a
population of projection neurons with their arget, re-
moval of erronegus projections, and, at least in inverte-
brates, controlling cell lineages,

Cell death does occur in the neocortex (Finlay & Slat-
tery 1983) but it does not appear to be a particularly
major phenomenon in this structure. Indeed, it seems
intuitively counterproductive for major cell loss to occur
during the development of a structure in which there
appears to be evolutionary pressure to increase the size
and absolute number of units that ‘compose that struc-
ture. There is considerable evidence that a mechanism
that allows the neocortex to soive the same problems
that confront other neuronal structures without major
cell loss has evolved and, at least at presem, this mech-
anism seems to be unique to mammals, This mechanism
can be regarded as a variant of cell death; however, rather
than involving the loss of 2 whole neuron, only a neu-
ronal process is eliminated. This phenomenon has been
termed cortical exuberance and was first described by
Innocenti, Fiore, & Caminiti (1977) in the visual cortex
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extended to the area of potential targets within the ip-
silateral hemisphere, as well as across the corpus cal-
losum. Similarly, neurons of layer Vb send processes to
multiple targets such as the superior colliculus and the
spinal cord.

Given the phenomenon of exuberance of cortical pro-
jection neurons, the question of what guides the ultimate
distribution and connectivity of cortical projection neu-
rons naturally arises. It has been most clearly demon-
strated in the visual system that the adult pattern of
callosal projection neurons is subject to modification.
This was first reported by Shatz (1977) in the Siamese
cat, in which callosal projection neurons are distributed
over an abnormally wide area of visual cortex. Shatz
autributed this to the altered representation of the visual
fields in visual cortex in this strain, which is a conse-
quence of an aberrant retinogeniculate pathway. The re-
sults of experiments that have manipulated visual input
during the early postnatal period support the notion that
callosal projections can be modified during develop-
ment. Dark rearing or eyelid suture in cats has been
reported to decrease both caliosal terminations (Lund &
Mitchell 1979a) and projection neurons (Innocent &
Frost 1980; Innocenti, Frost, & Illes 1985) without alter-
ing the distribution pattern in visual cortex. Studies in
cats that have altered visual alignment have yielded con-
flicting results (Lund, Mitchell, & Henry 1978; Lund &
Mitchell 1979b; Innocenti & Frost 1979; Berman & Payne
1983). In binocularly enucleated cats and rodents callosal
projection neurons are more widely distributed and
fewer in number (Innocenti and Frost 1980; Rhoades
and Fish 1983; Olavarria and Van Sluyters 1984). Similar
effects are detectable in the visual cortex contralateral to
a monocular enucleation in rodents (Cusick and Lund
1982; Rhoades and Dellacroce 1980; Rothblat and Hayes
1982). Overall, these manipulations seem to result in
both the failure of misplaced neurons to retract a process
(widespread distribution) and the loss of other seem-
ingly appropriately placed neurons (drop in number of
labeled neurons). Although most investigators have not
directly assessed the effect of their peripheral manipu-
lations on thalamic projections, they interpret their re-
sults as suggesting that some factor associated with
thalamic afferents, usually “activity,” plays a role in de-
termining the distribution of callosal projections.

We have recently demonstrated that the distribution
of callosal projection neurons in the somatosensory cor-
tex of the rat can be altered by neonatal section of the
infraorbital nerve, the vibrissae afferents (Koralek &
Killackey 1990). This same manipulation alters the
distribution of thalamocortical afferents to primary
somatosensory cortex (Jensen & Killackey 1987b). In
normal primary somatosensory cornex callosal projec-
tions are distributed in a complementary fashion to the
thalamic afferents. After the manipulation, callosal pro-
jections in primary somatosensory cortex seem to be
altered in a way that reflects the changed distribution of
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thalamocortical afferents. This same manipulation also
produces major changes in the distribution of callosal
projections in somatosensory areas outside the primary
somatosensory cortex. The face region of the second
somatosensory area, which usually contzins dense cal-
losal projections, is relatively devoid of such connections
in both hemispheres after the manipulation. We assume
that these changes are secondary to changes in the pro-
jection patntern of ipsilateral corticocortical projections
from primary somatosensory cortex. Further, we have
provided direct evidence that thalamic neonatal removal
results in an extremely aberrant distribution of callosal
projections in the associated neocortex.

A recent experiment on the ultimate projections of
transplanted corticosubcortical projection neurons is
also relevant to the present issue. O'Leary and Stanfield
(1989) provided evidence that the tangential position of
such a neuron in cortex is a critical factor in determining
whether or not an initially extended axonal process will
be eliminated or maintained. Initially, as noted above,
layer Vb neurons throughout all areas of neocortex in-
cluding the occipital cortex project to the spinal cord.
O'Leary and Stanfield (1989) first labeled and then either
transplanted embryonic day 17 occipital cortex tissue to
a rostral cortical region, or, conversely, rostral cortex
tissue to occipital cortex as well as the appropriate con-
rol transplants. They then assayed the transient and
permanent connections of these transplants. Most
importantly, they found that occipital subcortical projec-
tion neurons transplanted rostrally were maintained
while such projection neurons transplanted to visual cor-
tex from either the rostral cortex or occipital cortex did
not maintain spinal cord projections. Their interpretation
of these results suggests that any ventricular zone “pro-
tomap” is relatively unfixed and the early cortical mantle
can be regarded as composed of equivalent proliferative
units that are fixed by later occurring events. This inter-
pretation is similar to the point of view taken in the
current essay. However, it should be noted that in a
recent review of these issues O’Leary (1989) has added
yet another “proto™-term to the forementioned “proto-
map” and “protobarrel”, namely, “protocortex”. Given
that this term simply refers to the less differentiated
developing neocortex and nothing else, I would submit
that this term like the other “proto™-terms is superfluous.

In total, the above experiments provide evidence that
the distribution of cortical projection neurons is not
fixed, but, similar 10 other aspects of cortical organiza-
tion, is at least partially determined by ontogenetic events
involving afferent thalamic input to the neocortex.

TENTATIVE CONCLUSIONS

I would now like to consider how afferent specification
and cortical exuberance contribute to the organization
of neocortex during ontogeny and how they could play
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as indicating that complete segregation of separate la-
beled line systems occurs at the subcortical level first.

This same generat notion can be applied to species
with multiple cortical representations of the same sen-
sory surface such as the rhesus monkey. This is probably,
at least, a two-part process. First, there may be a tendency
for separation within a given sensory system along such
lines as submeodality processing, for example, cutaneous
versus deep peripheral somatic receptors, which tend o
produce separate processing centers along the length of
the neural axis including separate areas within the neo-
cortex, Second, and coupled with this, is increased pro-
cessing requirements within and across a sensory
modality. Such requirements can be most effectively met
by an increase in the number of basic cortical units. At
the ontogenetic level, differing systems and subsystems
are perhaps segregated by differing patterns of activity
between systems or subsystems, and increases in the
density of thalamic projection within a given system, With
such increases, additional cortical units could be re-
cruited into new cortical areas organized on the basis of
ipsilateral corticocortical projections from already estab-
lished areas. Further, such a process could potentially be
repeated in serial fashion several times.

I would close by noting that in my opinion the evi-
dence reviewed forms a reasonable case for the propo-
sition that neocortex is initially relatively unspecified and
that afferent input plays an important role in the speci-
fication process. Further, these ontogenetic events bear
on the phylogenetic consideration of the expansion of
the neocortex. However, much remains to be done and
the present interpretation is provisional in the sense that
it must be tested by what is to come. Future research
aimed at elucidating panerns of connectivity early in
ontogeny utilizing newly available tracing techniques
coupled with classical embryological experimental ma-
nipulations will undoubtedly clarify these events. The
powerful techniques of molecular biology are also just
being brought 10 bear on the question of cortical spec-
ification. Both of these approaches will hopefully add a
wealth of exciting and novel data to the ontogenetic side
of these issues.
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Expansion of the Central Hindpaw Representation
Following Fetal Forelimb Removal in the Rat

Herbert P. Killackey and Douglas R. Dawson
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Abstract

We provide evidence that prenatal removal of a rat forelimb results in both a disruption of the anatomicai
representation which would normally correspond to the forepaw and in an enlargement of the adjacent
hindpaw representation in the brainstem and cortex. This enlargement, which in some cases is as much as
100%, only occurs following complete forelimb amputation on embryonic day 17 (E17) or earlier. This
coincides with the age at which forepaw afferents first arrive in the brainstemn, suggesting to us that the
expansion is permitted in part because ingrowing hindpaw afferents are in the presence of cuneate cells
which have never been previously innervated; in animals older than E17, the expansion is prohibited by
either an intrinsic age-dependent change in the cuneate cells, or a change imposed upon them by forelimb

afferents.

The number of cells in dorsal root ganglia subserving the expanded hindpaw areas does not differ from
normal suggesting that the expansion of hindpaw territory within the brainstem reflects an increased terminal
arborization by a normal complement of primary hindpaw afferents.

Woe interpret the cortical enlargement to be an upstream reflection of the brainstem events. In cortex, the
enlargement seems to result from an invasion of the dysgranular cortex by thatamic afferents arising from

the ventral posterior nucleus.

Introguction

The rodent somatosensory system possesses a discrete topographical
organization which is demonstrable with standard electrophysiological
mapping techniques (Nord, 1967; Waite, 1973; Welker, 1971,1976;
Chapin and Lin, 1984; Nussbaumer and Van Der Loos, 1985; Rhoades
etal.,, 1987), as well as a stercotype morphological pattern of
parcellation which can be visualized with routine anatomical procedures
(Woolsey and Van Der Loos, 1970; Belford and Killackey, 1979,1980;
Dawson and Killackey, 1987). Both the physiological and the
anatomical data support the notion that tactile representations of the
various body surfaces are topographically organized and sequestered
in discrete regions of the brain at each level of the neural axis from
the brainstem to the somatosensory cortex.

Furthermore, the developing somatosensory system is labile, in the
sense that early peripheral damage results in an alteration of the
associated central morphological patterns. This feature of the system,
first demonstrated by Van Der Loos and Woolsey (1973), has been
most extensively exploited in studies of the representation of the
mystacial vibrissae. For example, in the rat cauterization of a specific
row of vibrissae on the day of birth (PNDQ) results in a fused band
of succinic dehydrogenase (SDH) activity centrally which corresponds
to the damaged row of vibrissae; normally, a row of vibrissae is

represented in the brain by a line of discrete SDH clusters. This change
in the SDH pattern is visible in somatosensory representations at the
level of the brainstem, thalamus, and cortex, but only if the damage
occurs during a specific developmental period. Damage later than PNDS
does not affect the thalamic or cortical pattern, although the brainstem
pattern is affected because the primary afferents are directly damaged
(Belford and Killackey, 1980; Bates and Killackey, 1985). Similarly,
we have recently demonstrated that amputation or nerve transection
of a limb on the day of birth disrupts the SDH paitern within the cortical
representation of that limb (Dawson and Killackey, 1987). Furher,
this manipulation is ineffective in altering the cortical pattern if the
surgery occurs after PND6. This suggests that the entire rat
somatosensory cortex requires normal peripheral inputs during the early
postnatal period in order to develop the normal pattern of SDH activity
which we hypothesize to be a direct reflection of the distribution of
afferent inputs (see Discussion).

A substantial portion of the rat somatosensory system develops
prenatally. Afferents from the limbs invade the brainstem as early as
Ei17 and E18 (Altman and Bayer, 1984), and there is a pattern of SDH
activity in their brainstem targets, the dorsal column nuclei, on the
day of birth. We therefore decided to investigate the effects of prenatal
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Fic. 2. {A) Photomicrograph of the normal pattern of SDH activity in layer IV of the aa:ggggﬁa.dsgnﬂgggﬁnigg&
tangentially. This is the right cerebral cortex of this animal. To facilitate comparison, all cortical photomicrographs are oriented in this fashion regardiess of
which forelimb was amputated. The representations of the vibrissae (V), buccal pad (U), lower jaw (L), forcpaw (F), hindpaw (H), and trunk (T). The dysgranular

corex between the forepaw and hindpaw representations is labelled dys.
(B} Similar pattern of SDH activity in an animal which underwent removal of the contralateral forelimb on E16 of gestation. Note the increase in the size

of the hindpaw region at the lower right. The white arrow indicates the normal location of the dysgranular cortex. A=Anterior, M =Medial.
Calibration bar is 1 mm.
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214 Peripheral regulation of somatotopic maps

Fi. 4. The relative areas of specific subregions of the SDH pawtern are depicted for animals under a varicty of experimental conditions. The number within
each region corresponds to the percentage of the total SDH map that the region occupies. In B—H, the normal hemisphere of the animal is depicted on the left,
and the hemisphere contralateral te the peripheral manipulation is on the right. Dashed lines represent the forepaw region in denervated hemispheres.

(A) Normal animal.-
(B) Forepaw amputation at the level of the wrist on E16.
(C and D} Complete forelimb amputation on E16.

figure was doubled. It has been demonstrated that a number of cells
in the dorsal root ganglia possess multiple nucieoti, To correct for this
factor within a section, all cells observed to possess more than one
nucleolus were counted only once. To correct for multiple nucleoli
across sections, representative adjacent sections from the dorsal root
ganglia of several normal and operated animals were traced at high
magnification (350 x) and 150—200 cells containing nucleoli were
delineated in each case. The tracings of adjacent sections were then
positioned atop one another, and precisely aligned with the aid of a
light box, in order to determine how many cell profiles possessed
nucleoli in both sections. A similar method has been put forth previously
by Coggeshall et al. (1984). In the present sudy, it was observed that
3% of the cells counted in adjacent sections had nucleoli in both
sections. Thus, the cell counts we made were multiplied by a correction
factor of 0.97 to arrive at estimates of actual cell numbers.

Both the relative and absolute areas of specific regions of SDH
activity in the cortical patterns within intact hemispheres and
hemispheres related to a removed forelimb were calculated. The relative
areas of subfields within the somatotopic map were assayed by the *cut
and weigh’ procedure. Sections reacted for SDH were viewed under
a light microscope, and the outlines of the SDH fields were traced onto
paper of uniforn thickness with the aid of a drawing tube attachment,
enlarged 32 times. Individual fields were cut out and weighed on an
analytical balance. These figures were then converted to percentages
of the total SDH area for a given map. The absolute areas were
calculated in a similar fashion. After individual regions had been
weighed, a Bausch and Lomb microscope slide containing a 1| mm scale

{E and F) Complete forelimb amputation on E17.
{G) Complete forelimb amputation cn E13.
(H) Complete forelimb amputation on PNDO.

inm.nz_w_.mon_ to the same magnification as the tracings of the SDH
fields. This scale was then utilized to generate a square with an arca
of | mm? at the appropriate magnification. The square was
reproduced onto paper of uniform thickness, cut out, and weighed as
before. The weights of the SDH tracings were then divided by the
weight of the square, to give an estimate of absolute area.

Results

The major findings of the present study are that damage to the forelimb
on E16 and E17 results not only in an anomalous cortical pattern
associated with the damaged forelimb, but also in an expansion of the
cortical hindlimb pattern. The expansion appears to occur in a specific
cortical area, and seems to depend upon both the severity of the damage
to the forelimb and the age at which the damage is inflicted. Further,
there are corresponding changes in the dorsal column nuclei of the
brainstem.

Figure 2A depicts the pattern of SDH activity in the primary
somatosensory cortex of a normal rat. The large clusters in the posterior
and medial region of the pattern represent the large mystacial vibrissae
of the face (V), while the smaller clusters anterior and lateral represent
hairs on the upper lip and furry buccal pad (U). More medially, a paisley
shaped region of clusters represents hairs on the lower lip (L). Further
medial to this region is an area containing several thick bands of SDH
activity, which correspond to the digits and palm pads of the forepaw
(F). Posterio-medial to the forepaw region is a small group of SDH
clusters which is a representation of the hindpaw (H). Finally, a hazy
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FiG. 5. Photomicrograplis of the pattern of SDH activity in the cortical hindpaw
representations of an animal which underwent forelimb removal on E17. The
normal hemisphere is illustrated in (A) and the hemisphere contralateral to the
forepaw removal is illustrated in (B). (Note: in reality the patterns in the two
hemispheres would be oriented as mimmow images of each other. these
photographs have been printed so that both have the same orientation.)
A=Anterior, M=Medical.

Calibration bar is | mm.

is a statistically significant difference in the size of the hindpaw
representation in the rats amputated on or before E17 compared to those
amputated later (Mann—Whitney Test, N1=6, N2=7, U=0, P=_.001).
It should also be noted that only a complete amputation (transection
of the arm above the elbow joint) on E17 or earlier resulted in an
enlargement in the hindpaw pattern. Animals which underwent
amputation at the wrist, or amputation of the digits only, did not possess
larger than normal hindpaw representations (Fig. 4B).

The internal structure of the enlarged hindpaw representation was
examined, to determine whether the increase in size was a result of
greater numbers of SDH clusters, or expansions in the size of existing
ones. Figure 5 depicts normal and enlarged hindpaw rrepresentations
for oppesite hemispheres of the same animal (age E17 at the time of
surgery}. The hindpaw represeatation of the hemisphere opposite to
the amputated forepaw (Fig. 5B) possesses an internal organization
that is similar to the unoperated side (Fig. 5A), and to the normal pattern
which has been described previously (Dawson and Killackey, 1987).
The pattern consists of four elongated clusters at the anterior extent
of the hindpaw field, bordered posteriorly by a number of smaller
clusters. :

The enlargemnent of the region of cortex devoted to the hindpaw is
a specific effect, in the sense that the hindpaw representation is the
only cortical SDH field which expands following forelimb removal.
The small vibrissae of the lower lip are represented by a region of
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SDH clusters adjacent to the anterior border of the forepaw cortical
field (refer to Fig. 2A). The lip representation and the hindpaw
representation are at roughly equal distances for the forepaw
Tepresentation, but only the hindpaw region expands following the
prenatal amputations (refer to Fig. 4C —F and Table 1). Thus, we would
infer that the observed expansion is a result of specific interactions
between the forepaw and hindpaw afferents, rather than a generalized
response to forepaw deafferentation by all surrounding cortical areas
within a given radius. Similarly, we measured the absolute distance
from a common landmark (the SDH cluster representing vibrissa E3
which is the third cluster from the right in the lowest row of virissae
related clusters illustrated in Figs. 2 and 3) to the lateral and medial
borders of the cortical hindpaw representation in normal and operated
animals. In those animals denervated at E17 or earlier, the lateral border
of the hindpaw area was closer to E3 (ranging from 1.8 to 2.3 mm)
than in animals operated on at fater ages (2.4 and 2.6 mm) or normal
animals (2.6 mm). In all animals, the distance from E3 to the medial
border of the hindpaw region was similar (3.3 or 3.4 mm). This would
suggest to us that the ourer border of the hindpaw representation has
retained its normal relationship to other parts of the primary
somatosensory cortex body representation, but that the inner border
of the hindpaw representation has reorganized at the expense of
dysgranular cortex.

In order to determine if the expansion was unique to the cortex, or
was instead a reflection of events at a lower level of the nervous system,
coronal sections were taken through the brainstem at the level of the
dorsal column nuclei (the synaptic targets of many primary limb
afferents). Figure 6 depicts SDH and nissl stained sections from two
animals which underwent prenatal amputation of an entire forelimb.
The animal depicted in Figure 6A and B underwent amputation of the
right forelimb on E17. On the left side of the brainstemn, the cuneate
nucleus is seen to contain the normal, characteristic pattern of SDH
segmentation, and is clearly separated from the gracile nucleus by a
band of low SDH activity (arrow in Fig. 6a). This band of low activity
is absent on the operated right side, and instead, there is a continuous
pattern of SDH activity encompassing both nuclei. The adjacent section
(Fig. 6B) was stained for nissl substance. On the right side of the
brainstem. the entire region from the medial border of the gracile
nucleus through the altered cuneate nucleus is densely and continuously
populated with cells. This contrasts with the normal side of the animal,
in which the cuneate and gracile nuclei are visible as two distinct nuclei
separated by a region containing fewer, smaller cells.

Figure 6C depicts the SDH pattern in the brainstern of an animal
which underwent forelimb removal on EI8. The most striking
difference between this animal and the one depicted in Figure 6A is
the presence of a zone of low SDH activity intruding between the
cuneate and gracile nuclei on the operated side (arrow). This is similar
to the pale band which is observed between the cuneate and gracile
nuclei on the normal side of each brainstem in Figure 6A and C.
Furthermore, the adjacent nissl section (Fig. 6D) reveals that although
the denervated cuneate nucleus is smaller than its counterpart on the
normal contralateral side, it is nevertheless clearly discernable as a
nucleus, and is separated from the gracile nucleus by a region containing
fewer cells. This contrast with Figure 6B, in which a continuous band
of cells is apparent between the midline and the cuneate nucleus.

Finally, cells were counted in the dorsal root ganglia at the level
of L5 in animals which had undergone forelimb amputation on E17.
These results are summarized in Table 2, and representative sections
from ganglia on the operated and the normal side of one rat are
presented in Figure 7. Briefly, there was not significant difference
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218 Peripheral regulation of somatotopic maps

TasLE 2. Number of cells in L5 dorsal root -
ganglia subserving normal and expanded
hindpaw representations.

Normal side Amputated side
8226 8034
8057 BE10
8045 7244
9048 8538
X= 8344 8156

FiG. 7. Top: Dissection of the dorsal root ganglia in an animal which underwent
amputation of a forelimb on E17. Arrow indicates LS of the amputated side.
Bottom: Representative sections through L5 dorsal root ganglia from the
operated (A) and normal (B) sides of an animal which was forelimb deafferented
on EI17.
Calibration bars are 1 mm.

between the number of cells within L5 DRGs subserving expanded
hindpaw representations and those innervating normal-sized hindpaw
regions.

Discussion

The major finding of the present study is that one portion of primary
somatosensory cortex (the hindlimb representation) expands into an

‘."‘Lv.b e ‘.v;l!wb

FiG. 8, Summary of the sequence of events in the development of normal limb
innervation: forelimb dorsal root ganglion cells differentiate on E12—-14 (A)
(Aliman and Bayer, 1984), primary afferents invade the brainstem (B) and reach
the periphery (C) on E17 (Altman and Bayer, 1984; English et al. (1980),
hindlimb primary afferents invade the brainstem one day later (D) on E18
(Altman and Bayer, 1984), forelimb primary afferents are spontaneously active
on E16 and can be activated from the periphery (E) on E17 (Fitzgerald, 1987}
and SDH patterns become apparent in the brainsiem (F) on PDNG or earlier,
in the thalamus (G} on PND2 -3 (Belford and Killackey, 1979,1980) and in
the cortex (H) on PND3 —4 (Killackey and Belford. 1979).

adjacent cortical field (dysgranular cortex) afier damage to the periphery
(forelimb removal). The expansion only occurs when peripheral damage
is inflicted prior to E18. This result raises two major topics for
discussion. The first is the nature of the subcortical events which
underlie this phenomenon. The second is why a second cortical area
is invaded rather than the anomalously organized portion of the primary
somatosensory cortex (forepaw representation).

Development of the lemniscal pathway

The time course of events in the development of the lemniscal system
is summarized in Figure 8 and provides the context within which our
experimental manipulations are to be interpreted. Cells of the dorsal
root ganglia at cervical levels 7 and 8 and thoracic level 1 which
innervate the forelimb differentiate on E12 through £14 (A), peaking
on E14 (Altman and Bayer, 1984). Projections from these cells grow
in two directions; centrally, to enter the spinal cord and peripherally
to innervate the forelimb. Central processes growing into the cuneate
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220 Peripheral regulation of somatotopic maps.

The expanded cortical hindpaw representation

A second question raised by our results is whether the expansion of
the hindpaw region of cortex occurs at the expense of other portions
of primary somatosensory cortex or at the expense of other cortical
areas. The data given in Table 1 and Figure 4 suggest to us that there
is no systematic change in the absolute or relative size of primary
somatosensory regions surrounding the hindpaw region which could
account for the expansion. In the case of the absolute area
measurements, the total size of the somatosensory region in E16 and
E17 amputees was greater than the contralateral side in some cases,
and smaller in others. Comparisons of normal and expanded cortical
areas within the same animal, as well as comparisons of the mean areas
of forepaw, hindpaw, and torso from normal and expanded hindpaw
animals suggests that the expansion cannot be entirely accounted for
by reductions of adjacent somatosensory regions. Although in some
cases the forepaw region is slightly decreased in size following
denervation, it is similar in relative size. (Admittedly, it is more difficult
to define the exact borders of the forelimb representation on the
manipulated side.) While the unchanged relative size of the anomalous
forepaw representation may seem at first glance odd, it is in agreernemt
with the finding that thalamocortical fibres in rats which had undergone
early infraorbital nerve transection still project to the appropriate portion
of somatosensory cortex, albeit anomalously (Jensen and Killackey,
1987b). We would suggest that the same is probably true of
thalamocortical afferents which would have been associated with the
forepaw in the preseat case. It should aiso be noted that the expansion
of the hindpaw representation following early amputation differs
considerably from the expansion reported in other studies of the rodent
somatosensory system. Several previous studies (Woolsey and Wann,
1976; Jjeanmonod et al., 1981) have reported that the central
representation of rows of vibrissac flanking a damaged row can expand
into the central territory usually associated with that row following
neonatal peripheral damage. In this case, both the peripheral receptors
and their central representations are in close proximity both at the
periphery and at each level of the neuraxis. In the present case, neither
the peripheral receptor surfaces (forelimb and hindlimb), nor their
cortical representations are directly adjacent. Adjoining central
representations of these peripheral surfaces only occur at brainstem
and thalamic levels. Further, the previously reported expansions of
the vibrissae representation occurred within the cenfines of primary
somatosensory while the present expansion of the hindpaw
representation appears to occur at the border between primary
somatosensory cortex and another cortical area.

One facet of the data which supports the hypothesis that the hindlimb
representation expands at the expense of another cortical area and not
the primary somatosensory cortex is the close abutment of the expanded
hindpaw representation and the anomalous forepaw representation in
the early manipulation cases. Normally, there is an intervening cortical
arca between the forepaw and hindpaw representations. In preparations
reacted for SDH, this area is very lightly stained. In nissl stained
materiat, layer IV in this area is not particularly well developed.
Consequently, this area has been termed the dysgranular area, in
contrast with the granular primary somatosensory cortex (Killackey,
1983). Functionally, it was first suggested that this area could not be
activated by stimulation of the body surface (C. Welker, 1976). More
recently, it has been determined that the dysgranuilar region can be
activated by tactile and deep cutaneous stimulation although receptive
fields tend to be larger, and require stimuli of greater intensity than
those capable of activating primary somatosensory cortex {(W. Welker
et al., 1984). The dysgranular area does not receive inputs from the

vental posterior nucleus. It is innervated by the medial portion of the
posterior nucleus of the thalamus (Koralek et al., 1988) and has dense
reciprocal connections with the oppostite hemisphere via the corpus
callosumn {Akers and Killackey, 1978; Olavarria et al., 1984).

While the development of the dysgranular area has not been well
characterized, it has been determined that callosal projections develop
later than thalamocortical projections in the somatosensory system
{Wise and Jones, 1978) and that the mature pattern of callesal projection
neurons develop after the formation of the SDH pattern which
characterizes primary somatosensory cortex (Ivy and Killackey, 1981).
On this basis, we would tentatively hypothesize that thalamic afferents
arising from the portion of the ventral posterior nucleus associated with
the hindpaw representation can expand into the dysgranuiar zone afier
early limb removal because of the relative immaturity of the dysgranular
cortex. This'interpretation implies that thalamic afferents of the major
relay nuclei play some developmental role in specifying cortical areas
and that the boundaries beteen cortical areas are not completely
predetermined by genetic factors. A similar suggestion has recently
been made by both Rakic (1988) and Dehay et al. (1989) in interpreting
the effects of early binocular enucleation in the thesus monkey on the
organization of areas 17 and 18 and on the boundary between them.
Together, these experiments expand the potential role of the periphery
in the regulation of cortical organization and provide a tentative opening
to understanding the factors which contribute to the cytoarchitectonic
subdivisions of the neocortex.
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Abbreviations

DRG ° dorsal root ganglia

El embryonic day |
PNDO postnatal day 0

SDH  succinic dehydrogenase
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Callosal projections in rat somatosensory cortex are altered by

early removal of afferent input
(development /corpus callosum /thalamic abiation /nerve section)

KATHERINE-ANN KORALEK AND HERBERT P. KILLACKEY*

Department of Psychobiology, University of California, Irvine, Irvine, CA 92717

Communicated by Ricardo Miledi, November 27, 1989 (received for review September 14, 1989)

ABSTRACT During the first postnatal week, the distribu-
tion of callosal projection neurons in the rat somatosensory
cortex changes from a uniform to a discontinuous pattern. To
determine if this change is influenced by afferent inputs to the
somatosensory cortex, the effect of both early unilateral in-
fraorbital nerve section and unilateral removal of the dorsal
thalamus on the distribution of callosal projections in rat
somatosensory cortex was examined. One month after either of
the above manipulations at birth, the tangential distribution of
callosal projections in the somatosensory cortex was examined
using the combined retrograde and anterograde transport of
horseradish peroxidase. Both manipulations alter the distri-
bution of catlosal projection neurons and terminations in the
somatosensory cortex. After infraorbital nerve section, the
distribution of callosal projections is altered in the contralateral
primary somatosensory cortex. The abnormalities observed
are consistent with the altered distribution of thalamocortical
projections. In addition, consistent abnormalities were ob-
served in the pattern of callosal projections of the second
somatosensory area of both hemispheres. Most notably, they
are absent in a portion of the region that contains the repre-
sentation of the mystacial vibrissae and sinus hairs in this area.
Thalamic ablation resulted in highly aberrant patterns of
callosal projections in the somatosensory cortex on the operated
side, where abnormal bands and clusters of callosal projections
were observed in apparently random locations. These results
gre interpreted as evidence that both peripheral and central
inputs influence the maturational changes in the distribution of
callosal projection neurons.

In the rat somatosensory system, earty peripheral and more
central damage has a profound effect on neuronal organiza-
tion at succeeding levels of the neural axis up to and including
primary somatosensory cortex (1-5). Similar effects have
also been reported in the visual system (for review, see refs.
6 and 7) but in this case an additional effect of early damage
on the distribution of interhemispheric projections that in-
terconnect cortical visual areas by way of the corpus callo-
sum has also been reported (8~12). The one study (13) that
examined the effect of neonatal damage to afferent cortical
input in the rat somatosensory system reported that direct
thalamic damage in the neonatal rat has no effect on the
distribution of callosal projections in somatosensory cortex.
This result is somewhat surprising for two reasons. ({) In most
other respects the central effects of peripheral injury in the
somatosensory system are very similar to those in the visual
system. (if) The early distribution of callosal projection
neurons is very widespread throughout ail of the somatosen-
sory cortex, and during the first postnatal week or so they are
largely eliminated from regions of primary somatosensory
cortex that receive dense thalamic input from the ventral
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posterior nucleus (14, 15). In light of this, we decided to
further assess the effect of early peripheral injury and tha-
lamic damage on the distribution of callosal projections in rat
somatosensory cortex.

MATERIALS AND METHODS

Thirteen litters of Sprague-Dawley or of Long-Evans rats
were used in this study. All neonatal surgery was performed
under cryogenic anesthesia, after which rats were revived on
a heating pad and returned to their dams. Rats from 4 litters
were subjected to unilateral section of the infraorbital nerve
on the day of birth. Rats from 7 litters had their dorsal thalami
removed unilaterally by aspiration through a small-diameter
glass pipette that was inserted into the cranium from a
posterior approach. Rats from 2 additional litters were used
as age-matched controls. The pattern of callosal projections
as determined by the combined retrograde and anterograde
transport of horseradish peroxidase and patterns of staining
for succinic dehydrogenase of all rats were examined when
they were 1 month old. In addition, the distribution of
horseradish peroxidase label in the thalamus ipsilateral to the
cortical injections was examined to verify the uniformity of
tracer uptake in the cortex (see Fig. 2D). In this context, both
the absence of the ipsilateral thalamus for verifying cortical
injections and the difficulty of combining complete thalamic
ablations with large horseradish peroxidase injections for
labeling the entire callosal pathway precluded study of the
effects of thalamic ablation in the hemisphere contralateral 1o
thalamic removal. -

Under ketamine/xylazine anesthesia, rats received multi-
ple injections of horseradish peroxidase [50% (wt/vol);
Sigma, type VI] evenly distributed over the surface of the
cortex. After a 24- to 36-hr survival period, rats were deeply
anesthetized and perfused transcardially with saline followed
by a 1.25% (vol/vol} glutaraldehyde/1% paraformaldehyde
buffered fixative solution. The brains were removed, the
cortices were detached, and the noninjected cortex was held
flattened between glass slides during post-fixation and su-
crose infiltration. The thalami were sectioned in the coronal
plane and the cortices were sectioned in the tangential plane
on a freezing microtome. Sections were processed for horse-
radish peroxidase histochemistry according to the protocol of
Mesulam (16), mounted on gelatin-coated slides, and air-
dried before being covered with a coverslip. Sections through
the thalami were counterstained with neuiral red.

One rat from each litter was used to determine cortical
patterns of succinic dehydrogenase staining. These rats were
deeply anesthetized and perfused transcardially with 10%
(vol/vol) glycerol. The brains were removed and the cortices
were detached and held flattened between glass slides as they
were immersed in isopentane cooled to —40°C. Tangential
sections were then cut in 2 cryostat, collected on gelatin-
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Fic. 1. Photomicrographs of tangential sections through the flattened somatosensory cortex. {4) Pattern of succinic dehydrogenase staining
in a normal rat. The representation of various portions of the body surface (F, forepaw; H, hindpaw; L, lower jaw; T, trunk; U, upper jaw; V,
vibrissae) in the primary somatosensory cortex and the location of the second somatosensory area (SII) are indicated. (B) Patiern of succinic
dehydrogenase staining in somatosensory cortex contralateral to the side on which the infraorbital nerve was sectioned at birth. Note the
anomalous pattern of staining in the portions of S1 in which the vibrissae and upper jaw are represented but not in the area of the representation
of the lower jaw or limbs. (C) Dark-field photomicrograph illustrating the distribution of horseradish peroxidase-labeled callosal neurons and
terminations in the somatosensory cortex of a normal rat. The pattern of callosal projections in the somatosensory cortex contralateral (D and
F} and ipsilateral (E) 1o the neonatal infraorbital nerve section. The arrows in € and D point out the normal pattern of callosal projections in
a portion of the face region at the SI/SII border and the altered pattern after infraorbital nerve section, respectively. (Bars = 1 mm.)
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cell death in the visual cortex. This effect, however, seems to
be largely focused on cortical layers IV and VI, which
directly receive thalamic input, and not on the layers in which
callosal projection neurons and their terminations are lo-
cated. Similarly, although the present thalamic ablations also
severed the subcortical projections emanating from the neo-
cortex, there is evidence that the response of callosal pro-
jections and subcortical projections to peripheral manipula-
tions are independent and not interactive. Rhoades and Fish
{30) have reported that whereas bilateral enucleation alters
the distribution of callosal projection neurons, this same
manipulation does not alter the distribution of either corti-
cotectal or corticogeniculate projections.

In SII, the pattern of callosal projections is also altered by
neonatal infraorbital nerve section. The major effect of this
manipulation is a lack of callosal projections in the somato-
topically appropriate part of SII, portions of which are
normally heavily interconnected by the corpus callosum.
Further, this effect is also detectable in SII in the hemisphere
ipsilateral to the nerve section. In relation to the hypothe-
sized role of the periphery in establishing central patterns of
neural organization, the result suggests that this role extends
beyond primary sensory areas of cortex into cortical areas
less directly associated with receptor surfaces, perhaps even
into the other hemisphere. A second aspect of the result is
that the nerve section resulted in an absence of normally
occurring callosal projections suggesting that either abnormal
process elimination or cell death has occurred. Most studies
in the rodent visual cortex (9-11) generally report a more
widespread distribution of callosal projections after periph-
eral manipulation. This difference may be attributable to the
fact that these studies focused on primary visual cortex,
which may be considered to be more closely related to its
respective receptor surface than is SII, and the fact that
primary visual cortex receives a bilateral retinal input. In any
case, the present results establish that a peripheral manipu-
lation can result in both abnormal distributions of callosal
projection neurons in SI and a failure to maintain callosal
projections in SII. The presence of an effect in the hemi-
sphere ipsilateral to the lesion that receives normal peripheral

input from the contralateral body surface suggests that pe-

ripheral input per se is not sufficient to maintain callosal
projections in SII. In this area, the failure to maintain callosal
projection neurons is most likely attributable to anomalies in
the contralateral SII. Is this failure due to callosal processes
from this hemisphere finding an abnormal target contralat-
erally or, conversely, is it due to the inappropriate with-
drawal of callosal processes originating in the anomalous
hemisphere, their failure to provide the appropriate signal for
maintenance, or both? This conundrum illustrates the basic
problem in understanding the maturational changes in the
distribution of callosal projection neurons. At present, it is
unclear whether the mechanism(s) that underlies process
elimination operates by maintaining projections in **appro-
priate”” locations, by eliminating them from “‘inappropriate™
locations, or by both.

In summary, the present experiments provide evidence
that the mature distribution of callosal projections is shaped
by multiple influences. One such influence is the periphery
acting by way of thalamic afferents to the cortex. In addition,
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reciprocal interactions between the hemispheres appear to
play some role in these maturational events. The role of such
reciprocal interactions is more obvious in cortical areas
further removed from the periphery.
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