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INTRODUCTION

Plasticity, activity-dependent competition, and Hebbian synapes are terms
frequently associated with a set of cellular interactions that causally link
early neural activity to the final stages of neural circuit differentiation.
Similar terms and, in fact, similar interactions are used in discussions of
learning and memory. This use of a common vocabulary reflects the hope
of neurobiologists that the developmental mechanisms of plasticity will
prove similar to those underlying learning and memory in the mature
brain. The visual pathway has been the focus of continuous and intense
experimental work in developmental plasticity for over three decades, and
quite recent work in this arca has suggested a molecular mechanism also
found in hippocampal long-term potentiation (LTP). Extensive reviews
are available in both fields (Movshon & Van Sluyters 1981, Sherman &
Spear 1982, Fregnac & Imbert 1984, Shatz & Sretavan 1986, Stryker 1986,
Collingridge & Bliss 1987, Teyler & DiSenna 1987, Nicoll 1988, Udin &
Fawcett 1988, Brown et al 1990). Consequently, this treatment focuses
only on the developing visual pathway and only on those visual system
experiments that conceptually link plasticity in the differentuiating and
mature brain. [t presents the arguments and evidence suggesting that
temporal correlations in the action potential patterns of young visual
synapses determine their relative positions within local regions of neuropil
and their convergence onto the same sets of post-synaptic cells. 1t also
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130 CONSTANTINE-PATON ET AL

considers the issue of whether functionally detected developmental changes
in synaptic effectiveness are isomorphic with activity-dependent changes
detected anatomically. Finally, it reviews recent data on the involvement
of the N-methyl D-aspartate (NMDA) subclass of excitatory amino acid
receptor in use-dependent modifications of the developing visual pathway.

ACTIVITY AND SYNAPTIC CONVERGENCE IN
MAMMALS

In the mammalian geniculocortical visual pathway, inputs from the two
retinas are segregated in the dorsal lateral geniculate nucleus (dALGN) and
in the afferent layers of visual cortex, primarily layer [V. In the nonafferent
layers of cortex, synapses from layer IV cells finally converge upon cortical
neurons so that left and right retinal pathways are no longer segregated.
The segregation of retinally driven inputs as well as their ability to converge
on single cortical cells has been shown to be affected by the patterns of
activity they convey. As outlined below, this activity dependence was first
detected in experiments that perturbed binocular convergence as well as
experiments that altered the balance of activity between the two eyes.

Artificially Induced Strabismus: Experimental Deprivation
of Binocular Convergence

Animals raised with one eye muscle cut so that their retinas cannot con-
verge on the same point in visual space lose significant numbers of bin-
ocular cortical neurons. The changes occur in the apparent absence of
sluggish or dying neurons, thus suggesting that the normal convergence
of retinally driven inputs rather than cortical cell survival is the parameter
that has been affected by the treatment (Hubel & Wiesel 1965). There have
been many permutations of experiments in which animals are prevented
from seeing the same stimuli through both eyes. All demonstrate the same
eye-specific segregation phenomenon and share one principle in common:
When visual stimulation does not allow near simultaneous delivery of
similar patterns of action potential activity to the same cortical cells
through the left and right eye visual pathways, the two pathways fail to
maintain the ability to drive those cells. Instead the inputs from the two
eyes functionally segregate onto itwo mutually exclusive sets of cortical
neurons (Hirsch & Spinelli 1970, Leventhal & Hirsch 1977, Bruce et al
1981; see Fregnac & Imbert 1984 for review).

Monocular Deprivation Experiments

In monocular deprivation studies one eye of a neonate kitlen or monkey
is sutured closed for pericds ranging from weeks to months. After this
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period the animal is prepared for physiological recordings, the sutured eye
is opened, and the ability of isolated cortical units to respond to either eye
is tested. The consistent physiological result is that the previously sutured,
deprived eye loses its ability to drive cortical units and all cortical neurons
develop pronounced responses to the open eye (Wiesel & Hubel 1963,
Hubel et al 1977). The degree of domination is related to the duration of
the treatment, but even short exposures during a brief, most sensitive
pertod can produce pronounced changes in eye dominance (Olson & Free-
man 1975). If monocular deprivation is begun very early in the postnatal
period, this “take-over™ occurs in all cortical layers, including layers TV,
which normally, in binocular regions of cortex, contains approximately
equal numbers of monocular cells driven by either the right or left retina.

The Issue of Structural Versus Functional Changes

It is frequently assumed that activity-dependent developmental changes
involve structural “rewiring,” whereas changes in the mature brain reflect
alterations in the efficacy of existing synapses. In fact there is relatively
fittle evidence to justify generalization for either case. The same issue of
assigning an observed change to a structural versus functional cause also
arises in the visual development literature. Specifically, structural rewiring
in the dLGN and afferent cortical layers is detectable with physiological
techniques at the affected level and higher. However, functionally detected
changes in the relative efficacy of retinal inputs to cortical neurons do not
necessarily imply actual losses or gains in the numbers of synapses to those
cells.

In afferent layer IV of visual cortex the functionally detected takeover
of a large proportion of neurons by the nondeprived eye has a firm
structural correlate in the relative amount of termination space occupied
by the geniculate inputs corresponding to the two eyes. Layer IV ocular
dominance columns of the nondeprived eye fail to retract at the expense
of those from the deprived eye (Hubel et al 1977, Shatz & Stryker 1978,
LeVay et al 1980). Furthermore, the dLGN neurons receiving input from
the deprived eye show reduced somal size relative to the corresponding
cells receiving input from the nondeprived cye. These reductions are found
ounly in binocular regions of the dI.GN and they do not occur when animals
are binocularly deprived of pattern vision (a procedure that does not
unbalance the distribution of terminals in layer 1V). Consequently, the
somal shrinkage is not due to a loss of activity but probably reflects a loss
of ocular dominance termination space in cortex (Guillery & Stelzner 1970,
Guillery 1972; see for review Movshon & Van Sluyters 1981, Sherman &
Spear 1982).



132 CONSTANTINE-PATGN ET AL

More recently there have been a number of investigations of_ depri_valion
treatment effects on the morphology of single neurons and their geniculate
and cortical terminal arbors. The work has generally documentc_d some
changes in the structure of single cell arbors consistent witt} deprivation-
induced alterations in function or frequencics of encountering units with
particular responses (see Sherman & Spear 1982, Shatz & Sretavan 1986,
Sur 1988 for reviews}. .

Despite this evidence of anatomical change at lower levels in the
geniculocortical pathway, however, there is no evidence fo_r acl_ual struc-
tural changes in afferent convergence as a result of perturbations in norn“lal
activity patterns in nonafferent cortical layers. Thus, some of the physio-
logical observations of developmental plasticity in cortex may reﬂ!:ct actual
structural changes in the numbers or positions of synapses while ot_hcrs
reflect functional changes in synaptic efficacy. For example rearing a kitten
in the dark prolongs the period in which the nondeprived eye can func-
tionaily dominate cortical neurons when physiologically assayed. It does
not prolong the period during which the ocular dominance columns of the
nondeprived eye can show anatomical expansion in layer [V (MO“_ICF et al
1985). In addition, when, during a brief period of early life, the initially
deprived eye of kittens or monkeys is opened and the open eye sutureq shut,
there is a rapid recovery of a population of cortical neurons responding to
the initially deprived eye (Blakemore & Van Sluyters 1974, Kratz et al
1976, Blakemore et al 1978). The speed of this recovery suggests that some
of the effects of monocular deprivation result from increased inhibitory
suppression of the initially deprived eye’s inputs by the open eye rather than
competitive displacement of its terminals from post-synaptic membranes.
However, the actual mechanisms involved remain controversial (Duffy et
al 1976, Movshon & Van Sluyters 1981).

The Hebbian Synapse Hypothesis

The correlated activity requirement for the developmental maintenance of
binocular neurons and the activity-dependent interaction that allows the
open eye to take over cortical cells under conditions of monocular depri-
vation are linked by the theoretical framework provided initially by D. O.
Hebb (1949). Hebb’s postulate for associative learning (1949) and its
modern articulation by Stent (1973) and Changeaux & Danchin (1976)
suggests a two-part rule for the use-dependent modification of young labile
synapses:

1. Synaptic contacts between synchronously active pre- and post-synaptic
neurons are selectively reinforced.
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2. Synaptic contacts between asynchronously active pre- and post-syn-
aptic neurons are selectively depressed or eliminated.

The ability of the post-synaptic membrane to temporally summate the
synaptic potentials from converging synapses that are synchronously, or
near synchronously, active means that inputs with correlated action poten-
tial patterns are more likely than asynchronous inputs to have their activity
covary with activation of the post-synaptic cell. Hebb’s rule, therefore,
extended to an array of synapses converging on a single cell, predicts
that synchronous inputs are likely to be reinforced whereas asynchronous
inputs will be functionally eliminated even though they may carry the same
average amount of activity (Stent 1973). In the monocular deprivation
paradigm, greater activity in one eye compared to the other provides
the opportunity for more frequent correlations of activity among the
converging synapses from the active eye, and, consequently, more effective
driving of cortical neurons by that eye. The deprived eye not only has a
lower probability of driving synaptic events that will sum to activate
cortical neurons, but, in addition, its synapses will frequently be silent
while the cortical neurons are driven by the open eye. In short, Hebbian
ideas explain the results of monocular deprivation as a functional dis-
connection of the deprived eye from all cortical cells because cortical cell
activity is not correlated with synaptic activity from that eye.

In contrast to monocular deprivation, strabismus does not depress either
retina’s ability to drive cortical neurons, but it does eliminate interocularly
correlated synaptic activity when inputs from the two pathways converge
on the same cortical cells. Functional segregation of each retina’s inputs
to separate sets of these post-synaptic cells ensues, according to the Hebb
postulate, because that situation allows synapses driven by each eye to
maximize their association with synchronously active cells and minimize
their association with cells “asynchronousty” activated by the other eye.

A key element in the application of Hebbian ideas to normal visual
system development as well as monocular domination or binocular seg-
regation within cortex was the demonstration that highly correlated pat-
terns of activity do, in fact, exist within a retina. Physiological recordings
in goldfish, cats, and rabbits have revealed that action potential patterns
of neighboring ganglion cells of the same response type are nearly identical,
and this similarity decreases between increasingly distant pairs of neurons.
Action potential patterns of neighboring ganglion cells of opposite
response lype are negatively correlated. Moreover, the correlations remain
in the absence of pattern stimulation and even in the spontaneous activity
of the cells under conditions of complete dark adaptation (Arnett 1978,
Arnett & Spraker 1981, Mastronarde 1983a,b).
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The presence of these spatially organized high correlations of activity
within a single eye’s projection allow a Hebbian explanation for the fact
that ocular dominance columns still develop relatively normally under
conditions of dark-rearing in cats (LeVay et al 1978, Mower ct al 1985,
Swindale 1988) or during intrauterine development in monkeys (Rakic
1976, 1977, Hubel et al 1977). High intraretinal correlations in activity
and synapses that follow Hebbian rules also provide an explanation for
the fact that left and right retinal pathways converge in nonaflerent cortical
layers and yet segregate in afferent layers. In layer IV, synapses from the
left and right eye geniculate laminae constitute virtually all of the inputs
to the cortical cells and these synapses begin to sort out before visual
experiences and binocular convergence of the eyes are possible. Conse-
quently, intraeye correlations of activity have an opportunity to dominale
over the later onset and less frequent correlations of synaptic input between
the two eyes. Compared to layer IV, synapses on neurons in nonafferent
cortical layers are capable of sorting relatively later in development during
periods when the two eyes become capable of good binocular alignment.
These neurons have converging inputs from many layer IV cells, resulting
in larger visual receptive fields and less tightly correlated intraretinal
activity, and they also receive many intracortical and nongeniculate extra-
cortical inputs only indirectly associated with retinal activity (Gilbert
1983). Thus intraretinal correlations in activity are a much smaller pro-
portion of the total number of possible synchronous events on nonlayer
IV cortical neurons, whereas events triggered through the retinas of both
eyes simultaneously have the better chance of producing simultaneously
active synaptic inputs, temporal summation, and effective post-synaptic
activation. Several diverse experimental paradigms have been used to
manipulate nonretinal activity converging on cortical cells during mon-
ocular deprivation. They have all supported the idea that nondeprived eye
activity must be correlated with activation of some nonretinal inputs in
order to functionally “take-over” cells in nonaflerent cortical layers (Free-
man & Bonds 1979, Raushecker & Singer 1981, Bienenstock et al 1982,
Singer & Raushecker 1982, Singer et al 1982, Fregnac & Imbert 1984).

TTX Blockade in Mammals

A large number of experiments have employed the voltage-dependent Na ¢
channel blocker, tetrodotoxin (TTX) to eliminate “spontaneous” activity
and demonstrate its importance in utero or before the eye is capable of
pattern vision. The anatomical results of these studies are all consistent
with Hebb’s postulate. Left and right eye inputs do not segregate from
each other in the dLGN (Shatz & Stryker 1988) or into cortical layer IV
ocular dominance columns (Stryker & Harris 1986). Blocking of all
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activity, however, has many effects that could be interpreted as a simple
retardation of normal development (Edwards & Grafstein 1984, Kalil et
al 1986, Cohan & Kater 1986, Casagrande & Condo 1988), and only two
laboratories have actually generated evidence specifically implicating the
temporal pattern of synaptic activation as the important missing parameter
under TTX blockade.

Recordings in the kitten geniculate after blockade of retinal activity
have documented a pronounced disruption of functional segregation in
the retinogeniculate pathway that would never have been predicted on the
basis of structural data alone (Archer et al 1982, Dubin et al 1986). Neurons
within the geniculate laminae of normal kittens generally have well-defined
“on-center, off-surround™ or “off-center, on-surround” receptive field
structure. TTX-treated kittens, recorded from shortly after removal of the
retinal blockade, have many geniculate cells that are unusual in that they
can be driven by both eyes (Dubin el al 1986). The most significant
observation in these experiments, however, is that a large proportion of
neurons respond to both “light on” and “light off”* throughout their
receptive field. The concentric field organization of ganglion cells is not
perturbed by TTX treatment (Archer et al 1982). In addition, Dubin et al
{1986) were occasionally able to record simultaneously from three cells, a
geniculate neuron, an “‘on-center”” ganglion cell that drove it, and an *off-
center”” ganglion cell that drove it. Thus it appears quite clear from this
study that disruption of geniculate neuron functional organization occurs
at the level of retinal axon convergence onto geniculate dendrites.

.Disruplion of a mechanism that stabilizes ganglion cell synapses by
virtue of their temporal synchrony and ability to drive geniculate neurons
would produce exactly this result. Thus, during normal development, a
particular geniculate neuron would by chance receive a majority of its
inputs from *“‘on-center” ganglion cells driven by stimuli in the same small
region of the visual field. Once this bias is established, synapses from
functionally different ganglion cells, responding to cessation of illumi-
nation in the same small region, cannot be stabilized on the same
neuron: “Off-center™ retinal input would never fire in synchrony with the
majority of ““on-center” inputs to that cell. The “off-center™ ganglion cells
would, instead, functionally segregate onto closely adjacent geniculate
neurons that initially received a slightly larger complement of synapses
frogn. the “off-center” ganglion cell type. Elimination of these patterned
activily cues through TTX retinal blockade allows both “on-center” and
~off-center” ganglion cells to maintain roughly equal ability to drive the
same post-synaptic neurons.

In kitten primary visual cortex, TTX retinal treatments in the neonatal
period have demonstrated that monocular takeover of cortical cells can
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be accomplished by a vision-deprived eye in competition with an eye
lacking spontaneous activity (Chapman et al 1986). Binocular treatment
of retinas (Stryker & Harris 1986) or direct treatment of cortex with TTX
(Reiter et al 1986) will eliminate monocular takeover. .

Most significantly, however, fixed temporal patterns of activation in the
pathways of the two eyes have been applied Lo kittens with binpcular
retinal blockades that would, by themselves, prevent ocular dominance
segregation in layer IV. This was accomplished with chronically implanted
stimulating electrodes that delivered either simultaneous or out-of-phase
volleys of activity to the central visual pathways of both eyes for -2 hr
per day. The majority of cortical neurons were driven through bgth eyes
in the synchronously stimulated group. Very few neurons were binocular
in the asynchronously treated group (Stryker & Strickland 1984, Stryker
1986). Anatomically, in kittens experiencing asynchronous pathw_a_y
volleys, the TTX effects on blocking segregation were considerably miti-
gated, whereas synchronously stimulated animals showed no signs of ocu-
lar dominance segregation (M. P. Stryker, personal communication).

ACTIVITY AND SYNAPTIC CONVERGENCE IN
NONMAMMALIAN VERTEBRATES

Most evidence that temporal parameters in afferent activity patterns have
structural effects on visual projections comes from work on the retinotectal
systems of goldfish and frogs. These species show retinal ganglion f:e!l
response properties that are similar to those of mammals. They exhibit
equally refined maps of visual space within their brains, and some tectal
neurons receive converging projections from the binocular region of the
visual field through both eyes. Nevertheless, the retinal ganglion cells
of cold-blooded vertebrates are more resistant than mammalian cells to
perturbations of their normal target contacts, and their synapses in
tectum are continually broken and remade throughout the larval period
and well into adult life (Gaze et al 1979, Reh & Constantine-Paton 1983,
Easter & Stuermer 1984). The latter properties permit explorations of
dynamic synaptic interactions that are difficult in the internally developing
mammals. The three aspects of these cold-blooded vertebrate visual pro-
jections that have been used effectively to explore the role played by activity
are summarized briefly below.

Synapse Segregation Based On Presynaptic Cell Body
Proximity

The first hints of neural activity’s role in sculpting the visual pathways of
lower vertebrates arose in optic nerve regeneration experiments on goldfish
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(Levine & Jacobson 1975, Cronlly-Dillon & Glaizner 1974). In both fish
and frogs the retinotectal projection is normally completely crossed. How-
ever, when axons from two retinas are normally caused to converge on a
single tectal lobe, the inputs from the two eyes do not mix but rather
remain segregated into eye-specific “clumps” of retinal terminals.

The similarity between eye-specific clumping in tectum and eye-specific
segregation in mammals was first recognized when the tectal terminations
of supernumerary amphibian eyes were examined anatomically. In
embryonically created three-eyed frogs, two complete visual projections
converge on the same tectum from the earliest developmental stages, and
anterograde labeling experiments invariably reveal that the continuous
retinal projections of both the host and third eye are disrupted into an
alternating, periodic pattern highly reminiscent of mammalian ocular
dominance stripes (Constantine-Paton & Law 1978). Using the amphibian
preparations and embryonic microsurgery, a series of experiments rapidly
ruled out right and left eye labels (Law & Constantine-Paton 1981), geno-
typic differences between the eyes (Ide et al 1983), differences in time of
arrival of the two projections {Law & Constantine-Paton 1980), and selec-
tive fasciculation within the optic tract (Constantine-Paton et al 1983)
as parameters that could provide for recognition and “aggregation” of
synapses arising from the same retina. In fact, the only parameter that is
invariably correlated with segregation is convergence of terminals from
nonneighboring regions of retina within a small region of the target zone
(Fawcett & Willshaw 1982). Consequently, given the evidence that retinal
neighbors share action potential patterns, it seemed likely that a Hebb-
like interaction was causing convergence of each eye’s projection into
retina-specific zones where nearest presynaptic neighbors have the
maximum probability of driving or depolarizing the same tectal neurons.
A recent study combining intracellular Lucifer Yellow filling of tectal
neurons and simultaneous visualization of eye-specific stripes provided
anatomical support for this idea. The majority of tectal neurons restrict
either their entire dendritic tree or an entire primary dendritic branch to
the terminal zones of only one eye (Katz & Constantine-Paton 1988).

That retinal activity is necessary for eye-specific segregation in fish and
frogs has now been confirmed with bilateral TTX-blocking experiments in
several different laboratories (Meyer 1982, Boss & Schmidt 1984, Reh &
Constantine-Paton 1985). Monocular blockade is not sufficient to elim-
inate this eye-specific segregation in goldfish (Meyer 1982), although the
borders of the terminal “clumps” seem to become more diffuse (Schmidt
& Tieman 1985). In addition, in frog larvae with supernumerary eyes it
has been possible to rule out the possibility that TTX treatment (i.e. lack
of activity) merely delays normal development of the scgregated pattern.
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In three-eyed tadpoles, because of the normal turnover of retinotectal
synapses (Reh & Constantine-Paton 1983), if an activity-dependent mech-
anism is crucial to the maintenance of segregation, it must remain con-
tinually active. In these animals it is possible to observe ocular-dominance
stripes in various stages of desegregation as animals are examined after
increasingly long durations of TTX retinal blockade (Reh & Constantine-
Paton 1985).

Normal Topographic Map Refinement

There is now general agreement that activity-independent differences, in
cell surface properties and ability to “‘read” axon guidance cues, bring
visual axons to the vicinity of their topographically appropriate target
cells. It is the fine-tuning of these projections through the local ordering of
synapses that is established through activity-dependent nearest-neighbor
sorting (see Udin & Fawcett 1988 for review).

The prediction from this two-stage mapping hypothesis is that pro-
jections lacking retinal activity or lacking correlations in activity that are
related to the retinal proximity of ganglion cells should show less refined
representations of the retinal surface within the tectal lobe. Conversely,
ganglion cells from a larger region of retina should maintain synapses in
any given region of the tectal neuropil. Both of these predictions have been
borne out by experiments using TTX blockade of retinal activity (Meyer
1983, Schmidt & Edwards 1983) or stroboscopic stimulation of regen-
erating retinal projections in goldfish (Schmidt & Eisele 1985, Cook &
Rankin 1986, Cook 1988).

Binocular Projections of Xenopus Frogs

Binocular maps within amphibian tecta arise through the nucleus isthmi
(the homologue of the mammalian parabigeminal nucleus), which relays
binocular visual field information from the contralateral tectum to the
locations tepresenting the same visual field positions in the ipsilateral
tectum (Gruberg & Udin 1978). Numerous experiments over the past
decade have shown that the development of binocular neurons in these
tectal positions depends critically on similar patterns of action potential
activity arriving from the contralateral eye and from the ipsilateral cye
through the nucleus isthmi. For example, surgical rotation qf one _retma
during tadpole stages so that the location of visual field positions in the
contralateral tectum is correspondingly rotated, causes a physiologically
detectable shift in the projection of the nucleus isthmi projection to that
tectum. The ipsilateral eye projection through the isthmotectal rclay thf:re-
fore reattains registration with the perturbed contralateral eye projection,
and inputs carrying information about the same point in the visual field
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are still able to converge on a small locus in the tectum (Keating 1974,
Udin & Keating 1981). Patterned visual stimulation is crucial to the
development of this convergence. Animals maintained in complete dark-
ness during the critical metamorphic period attain diffuse, relatively weak,
isthmotecta! projections driven by the ipsilateral eye, and the ipsilateral
map fails to come into register with the contralateral map (Keating 1975,
Keating & Feldman 1975).

Significantly, these physiological observations have striking anatomical
correlates. When the nucleus isthmi projection is filled with HRP, the
axons carrying ipsilateral eye information can be followed to their ter-
mination sites in the tectal lobe. In animals with one eye rotated by 90
degrees, these axons approach the tectum normally and arrive at their
normal arborization site. However, they then grow in apparently random
fashion until encountering the displaced sites with functionally correlated
contralateral eye activity (Udin 1983). They form morphologically normal
arbors in these novel positions, leaving little more than a vestigial branch
at the tectal position where dense arborization would normally occur
(Udin 1985).

CELLULAR MECHANISMS UNDERLYING THE
CORRELATED ACTIVITY RULE

Modulation of Synaptic Effectiveness Through
Post-Synaptic Cell Excitability
A number of studies have investigated the relationship between action
potential activity in single cortical neurons and the efficacy of particular
inputs. The results suggest that post-synaptic action potentials produce an
increase in the effectiveness of the correlated input (Barany & Feher 1981;
see Fregnac & Imbert 1984 for review) and support the idea that near
synchrony of pre- and post-synaptic activity is an important factor in
modulating cortical synaptic strength. In the visual cortex, pairing of
visual stimulation through one eye with post-synaptic cell firing by applied
current causes an increase in the effectiveness of the paired eye’s input
more frequently in kittens than in adult cats. The changes can last from
15 minutes to several hours (Fregnac et al 1988). Similar results have been
obtained in experiments in which iontophoresis of excitatory transmitters
was paired with activation of one eye’s inputs (Greuel et al 1988).
Decreased post-synaptic excitability or reduced sensory signal compared
10 background “noise” has also been implicated in cat visual cortical
plasticity in an extensive literature of studies in which chronic drug treat-
ments of cortex (Kasamatsu et al 1979, Daw et al 1983, 1985, Bear et al
1983, Paradiso et al 1983; see Gordon et al 1987 for review) or lesions of
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noncortical regions projecting to cortex (Adrien et al 1985, Daw et al 1984,
Singer 1982, Bear & Singer 1986) have eliminated the domination of visual
cortical cells by a nondeprived eye. The observations support the notion
that a level of post-synaptic activation reflecting both retinal and non-
retinal inputs must be reached during sensory stimulation, in order to
trigger selective increases in synaptic efficacy (Bienenstock et al 1982,
Singer et al 1982, Singer & Raushecker 1982, Bear et al 1987).

One very recent experiment, however, suggests that many of these obser-
vations may have to be reexamined for the potentially complicating effects
of a competitive disadvantage inflicted upon active inputs that fail to fire
post-synaptic cells. Reiter & Stryker {1988) depressed cortical excitability
with chronic infusion of the GABA, receptor agonist muscimol. This
treatment suppressed spontaneous activity and inhibited visually elicited
responses in kitten cortical neurons. Under these conditions, in which
cortical neurons were prevented from firing, the deprived (less active)
eye came to dominate over the active eye in the monocular deprivation
paradigm. This is the first experimental evidence in the visual development
literature for a synaptic interaction in which less active inputs appear to
have an advantage over more active neighbors (Cooper et al 1979, Levy
& Desmond 1985). Synaptic activity seems to be detrimental to an eye’s
functional dominance of a cortical neuron if that cortical neuron cannot
be driven (Reiter & Stryker 1988).

NMDA-Mediated Plasticity in Visual Cortex

Many developmental studies of cortical plasticity have now focused on
the properties of the N-methyl D-aspartate subclass of excitatory amino
receptors as the long sought detectors for correlated synaptic events. This
would be equivalent to the documented triggering function of this receptor
system in LTP of hippocampal CA1 synapses. The essential idea is that
temporal summation of EPSPs results in Ca?* influx through the NMDA
receptor channel because the first, non-NMDA channel-mediated
responses depolarize the post-synaptic membrane (Wigstrom & Gustafs-
son 1985). These initial EPSPs relieve the Mg?* block of the NMDA
channel so that subsequent excitatory amino acid (EAA)-mediated syn-
aptic events open the channel and let Ca?* into the post-synaptic cell
(Mayer et al 1984, Nowak et al 1984).

There is general agreement that the LGN inputs to the visual cortex are
predominantly glutaminergic (Hagihara et al 1988). Many of the inter-
laminar and intracortical projections may also use EAAs (Hicks 1987).
However, the particular role of the NMDA receptor in developmental use-
dependent plasticity or in visual synaptic transmission is controversial.

EFFECTS OF MANIPULATION OF EAAs The earliest study to demonstrate an
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effect on plasticity of maniputating EA As used cortical glutamate infusions
in monocularly deprived kittens to demonstrate failure of the nondeprived
eye functionally to dominate cortical neurons (Shaw & Cynader 1984), This
result was interpreted as demonstrating that any nonspecific imbalances of
cortical activity could disrupt plasticity.

The study that actually focused developmental cortical work specifically
on the NMDA receptor used chronic infusion of 2-amino-5-phosphono-
valeric acid (APV), a specific antagonist of NMDA receptors (Harris et
al 1984), into the cortex of neonate, monocularly deprived kittens. The
treatment blocks the monocular takeover of cortical neurons by the non-
deprived eye, prevents the acquisition or the maintenance of stimulus orien-
tation selectivity, and produces sluggish cells with relatively large receptive
fields (Kleinschmidt et al 1987). Singer and his colleagues suggested that
the effects arise specifically from blocking the ability of cortical NMDA
receptors to detect correlated cvents rather than a general effect of
depression of cortical neuron excitability.

The problem with this interpretation is that there are no definitive
experiments tying the level of post-synaptic excitability necessary to induce
use-dependent modification of synapses to the threshold for NMDA recep-
tor, or other high threshold Ca®* channel, activation. For example, in the
studies such as those of Fregnac et al (1988) and Greuel et al (1988), in
which stimulation through one eye is paired with electrical or transmitter
stimulation of a binocular cortical cell, it would be extremely interesting
to know whether low, NMDA-selective, doses of simultaneously applied
APV selectively blocked the increase in the paired eye’s effectiveness.

Data from several laboratories suggest that treatments that block corti-
cal NMDA channels also depress neuronal excitability in kitten cortex at
least temporarily. Tsumoto and his colleagues (Tsumoto et al 1987, Hagi-
hara et al 1988) tested visually and electrically stimulated cortical responses
to application of APV and kynurenate, an antagonist that blocks all EAA
receptor types. They found that 70% of visual responses are APV-sensitive
in kittens. This dropped to 30% in adult cats. Similar depressions in
responsivencss have been observed by Fox et al (1989) and are described
in more detail below, Thus, the question has become whether NMDA
receptor activation has a unique function as a detector of correlated activity
as opposed to having a more general role as one of several transmitter
systems that modulate cortical cell excitability. The issue is difficult to
address definitively in cortex. Inin vivo studies, the absolute concentrations
of applied APV at the post-synaptic membrane are never known. At
high concentrations, APV loses its selectivity for NMDA receptors and
suppresses activation of kainate and quisqualate receptors as well (Col-
lingridge & Bliss 1987). Miller et al (1989) have tried to overcome this
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difficulty by infusing APV into cortex with an asmotic pump beginning
one day before physiological recording in order to obtain stable con-
centrations of the drug at fixed distances from the cannulac. They have
found a close correlation between sluggishness of cell responses Lo visual
stimulation and selective elevation of responsiveness to applied NMDA
_ but not to similarly applied quisqualate or kainate. They conclude that
in normally reared adult cats, NMDA receptor activation is a normal
component of the excitatory response of cortical neurons to visual stimu-
. lation. Equivalent studies are not yet available for kittens.

This controversy over the function of NMDA receptors in the visual
cortex in developmental use-dependent changes will not be easily resolved.
The NMDA receptor could still be a unique detector of correlated activity
in cortex, even though APV infusions may be acting to decrease cortical
excitability. Detection of correlated events via a specific ability to trigger
post-synaptic Ca’* influx and participation in visual transmission as an
excitatory post-synaptic receptor are not necessarily mutually exclusive
functions. In addition, all of the perturbations that depress post-synaptic
excitability in cortex and thus block cortical plasticity in the monocular
deprivation paradigm would simultaneously decrease the probability of
NMDA receptor activation.

. SYNAPTIC WEIGHT CHANGES VERSUS ANATOMICAL REDISTRIBUTION OF
SYNAPSES Assuming that at least some of the experience dependent plas-
ticity in developing visual cortex is attributable to blocking a specific cor-
related activity detector function of NMDA receptors, there remains one
other major, unresolved, issue in the cortical studies dealing with this issue.
Specifically, are the plastic propertics attributable to NMDA receptors
reflections of structural changes in synaptic convergence, or do they simply
reflect long-term changes in synaptic efficacy? Changes in synaplic weight
- via increased EAA release (Errington et al 1987) or increased EAA recep-
tors (Lynch & Baudry 1984) have been suggested as mechanisms under-
lying hippocampal LTP. Similarities between the developing cortex and
hippocampus are supported by studies in cortical tissue slices that demon-
strate an APV sensitive component of a potentiation of cortical synaplic
transmission that can be induced with frequent stimulation of cortical
white matter (Artola & Singer 1987). Several laboratories have also gen-
erated evidence suggesting that visual cortical potentiation may have a
~ sensitive period that corresponds closely to the period of maximal cortical
plasticity (Komatsu et al 1981, 1988). Structural changes in the sizes of
synaptic contacts or in the number or shape of post-synaptic spines have
been, to varying degrees (Coss & Perkel 1985), associated with both cortical
(Perkins & Teyler 1988) and hippocampal LTP (Desmond & levy
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1986a,b). Nevertheless, the rapid onset of LTP is generally taken as evi-
dence that most of the functional change results from alterations in the
efficacy of existing synapses rather than from the actual loss or reposi-
tioning of contacts.

To date only two pieces of evidence even hint that structural rewiring
may result from cortical NMDA receptor activation. Rauschecker & Hahn
(1987) have detected retrograde inhibition of ocular dominance shifts
produced in alert kittens by monocular occlusion. This inhibition was
accomplished by intramuscular injections with ketamine-xylazine after
cach of 15 20-minute exposures to monocular visual experience during the
height of the sensitive period for nondeprived eye domination of the cortex.
Ketamine, a sigma opiod receptor agonist, is also an activity-dependent
blocker of the NMDA channel. Neither saline injections nor xylazine
injections alone produced this effect. The authors suggest that an ongoing
process that may involve a structural change is implicated by the fact that
ketamine treatment is effective afler the experience has ceased (Rau-
schecker & Hahn 1987). If NMDA receptors are involved in a con-
solidation process necessary for an ocular dominance shift to occur, it is
not clear that they are functioning as specific correlated activity detectors,
or that the engoing process involves structural changes.

The final evidence suggesting a structuring role for NMDA channel
aclivation has been generated by physiological studies of cortical neuronal
responsiveness Lo iontophoretically applied b-APV (Tsumoto et al 1987,
Fox et al 1989). The reasoning here is that if NMDA receptor function is
important as a normal excitatory receptor component of cortical neuron
activation, p-APV at low doses should be able ta suppress some component
of the visual response and the effect should be relatively constant at all
ages. However, if absence of NMDA receptor function is a critical factor
in limiting plasticity, then changes in NMDA receptor sensitivity should
correlate with independent measures of changes in plasticity. D-APV will
suppress spontancous aclivity and visually elicited activity in all visual
cortical layers of young kittens. However, the ability of low doses of the
drug to block visual activity in layers TV, V, and VI is gradually lost in
successively older animals. In adults, visual driving of cells in these layers
is insensitive o APV at relatively low doses that are, nevertheless, still
successful at significantly suppressing spontaneous activity (Fox et al 1989).
The potentially important point is that only in layer 1V was the dropoff in
APV sensitivity correlated with a sensitive period for plasticity, and this
parallel was with the structural segregation of geniculocortical aflerents
(LeVay et al 1978). Significantly, in layers 11 and III, APV is able to
suppress retinal activation of cortical neurons at all ages (Fox et al
1989).
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NMDA-Mediated Plasticity-in the Retinotectal System

Evidence that excitatory amino acids are¢ the predominant transmitter in
the retinotectal pathway has been obtained, over the past several years, in
quantitative autoradiographic and physiological studies of both the gold-
fish (Langdon & Freeman 1986, 1987, Henley & Oswald 1988) and the
frog (Debski et al 1987, Debski & Constantine-Paton 1988, Fox & Fraser
1987, McDonald et al 1989). This information has motivated investigations
that capitalize on the ability, in these systems, directly to manipulate,
record from, and visualize the cell processes (retinal ganglion cell terminals)
believed to be the initiators of plastic synaptic interactions mediated by
excitatory amino acids.

APV EXPERIMENTS Chronic application of pL-APV to the doubly inner-
vated tecta of tadpoles or frogs with a supernumerary eye causes complete,
anatomically assayed desegregation of the two retinal inputs. This gradual
breakdown of ocular dominance stripes is not observed when the biologi-
cally inactive isomer L-APYV is similarly applied. Furthermore, the effects
of the active isomer are fully reversible (Cline et al 1987),

Pharmacological and physiological investigations of EAA transmission
in the retinotectal system have been undertaken in normal tadpoles by
using an intact, unanesthetized, brain preparation in which all nociceptive
inputs have been severed. In this preparation the animals are maintained
via vascular perfusion on oxygenated, glucose-supplemented saline solu-
tion to which drugs of known concentration can be added and carefully
controlled (Debski et al 1987). These studies indicate that the con-
centrations of APV used in the chronic experiments do not depress action
potential activity in retinal ganglion cell axons (Cline et al 1987) or the level
of excitability of tectal neurons assessed as the post-synaptic component
of the tectal field potential in response to electrical stimulation of the
contralateral optic nerve (Debski & Constantine-Paton 1988). In addition,
in a completely independent series of experiments, chronic application of
APV to the tectum of juvenile Xenopus, in concentrations sufficient to block
convergence of binocular maps (see below), does not depress retinotectal
transmission of visual activity through a tectal relay to the nucleus isthmi
(Scherer & Udin 1988). Thus, it appears that in the retinotectal pathway,
application of APV at concentrations at which it is selective for the NMDA
receptor subtype and at which it has minor, if any effects, on depressing
retinal terminal or tectal cell excitability, can effectively block the selective
stabilization of synapses from retinal neighbors on tectal dendrites.

In goldfish, chronic treatment of tecta with DL-APV during the final
stages of optic nerve regeneration increases the size of multiunit receptive
fields recorded in the tectal neuropil (Schmidt 1988). In addition, normal
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frog tadpoles chronically treated with APV for six to eight weeks have
much larger areas of retina projecting to the same defined point in the
tectal lobe as compared to sham-operated or normal tadpoles (Cline &
Constantine-Paton 1989). Both of these observations are fully consistent
with the idea that the Hebbian synaptic interaction underlying segregation
is identical to that which normally increases the fidelity of continuous
topographic maps and that the NMDA receptor is similarly critical to
both processes.

Finally, Udin and her colleagues have shown that the matching of
binocular tectal maps in Xenopus laevis with 90 degree rotations of the
contralateral eye is completely blocked by chronic treatment of these tecta
with bL-APV during the critical period for this plasticity (Scherer & Udin
1988). Thus, NMDA receptors appear to be mediators of binocular con-
vergence in this lower vertebrate preparation as well. This finding is
broadly significant. Convergence in the Xenopus binocular assay is depen-
dent on the same type of binocular visual experience required for binocular
convergence in mammalian cortex, and the system has a limited develop-
mental critical period (Keating 1975). In Xenopus, binocular visual experi-
ence produces plastic changes by a pronounced structural relocation of
synapses (Udin & Keating 1981, Udin 1985).

The most parsimonious explanation for all of the observations in lower
vertebrates following APV application is that a functional or selectively
activated NMDA channel is a critical trigger in whatever cascade of events
ultimately increases the lifetime of visual synapses on the same post-
synaptic membrane in response to covariance of pre- and post-synaptic
activity. Moreover, in each of these preparations, there is a clear indication,
if not direct evidence, that the plastic changes are structural relocations of
synaptic contacts and not simply functional alterations in existing
synapses.,

The idea that a common mechanism underlies developmental and
mature plasticity could be strengthened by the demonstration that func-
tional changes in synaptic efficacy similar to hippocampal CAl1 LTP
accompany structural changes in visual pathways attributable to Hebbian
synaptic interactions. Data on this point is only available for the goldfish
visual projection. As mentioned above, topographic map refinement in the
tectum, during the final stages of goldfish optic nerve regeneration, is
blocked by chronic treatment with APV. During the time that this refine-
ment is taking place, visual responses are capable of a potentiation resem-
bling that found in the hippocampus. Schmidt (1987, 1988) has demon-
strated that following a short train of low-frequency stimuli, the tectal
response to optic nerve stimulation potentiates more quickly and to a
greater extent than had been found previously in the mature goldfish optic
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nerve projection (Lewis & Teyler. 1986). This potentiation can be blocked
by APV and is, therefore, presumably, NMDA-mediated (Schmidt 1988).

SINGLE-CELL STRUCTURAL CHANGES UNDERLYING ACTIVITY-DEPENDENT
pLASTICITY In our own laboratory we have examined retinal and tectal
cell responses to chronic application of NMDA itself. The results suggest
a specific relationship between NMDA receptor activation and at least
one of the processes that sculpt the morphology and connectivity of single

retinal ganglion cell terminal arbors.

Chronic application of nontoxic doses of NMDA to doubly innervated
frog tecta produce a pronounced increase in eye-specific segregation (Cline
et al 1987, Cline & Constantine-Paton 1987). Stripe boundaries become
sharper, and there are fewer fusions and forks in the striped pattern. Thus
it appears that the continuous presence of exogenous excitatory ligand for
the NMDA receptor improves the ability of the system to discriminate
correlated from noncorrelated synaptic events. Although the responses of
the stripe pattern to chronic exposure of NMDA or APV seem comple-
mentary, closer examination of the morphological and electrophysiological
effects of the treatments suggest that the response to NMDA is not the
simple opposite of the response of APY. Reconstructions of retinal gan-
glion cell terminat arbors from NMDA-treated three-eyed animals reveal
a dramatic, 50% reduction in the number of terminal branches in the
treated arbors compared to the untreated arbors (Cline & Constantine-
Paton 1989). Electrophysiological studies in the cannulated tadpole brain
preparation were carried out on animals chronicaily treated for 4 weeks
with NMDA in the same concentrations used to produce the anatomical
increase in segregation. We found that the response of the retinotectal
pathway to applied NMDA is significantly decreased in chronically
NMDA-treated tadpoles (E. A. Debski and H. T. Cline, unpublished). We
do not yet know whether the decreased sensitivity is due to a down-
regulation of receptor number, to a decrease in agonist binding affinity,
or to a change in the tectal circuits in which NMDA receptors are involved.
Receptor desensitization, however, scems unlikely because NMDA from
the implant is washed out of the animal before NMDA sensitivity is
assayed. (The receptor would be expected to recover from desensitization
during this wash.)

It seems reasonable to suggest that a decreased sensitivity of the receptor
system may increase the amount or degree of correlated activily necessary
to activate NMDA-gated channels and ultimately stabilize individual reti-
nal ganglion cell synapses. However, it is important to point out that
NMDA treatment at any concentration tested does not cause stripe de-
segregation. Therefore, chronic NMDA treatment does not appear to
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Inactivate the ability of the system to discriminate inputs from the two
eyes (Cline & Constantine-Paton 1989).

Stripe boundaries are regions of relatively low correlations in synaptic
activity because they are regions of neuropil in which noncorrelated inputs
from the two eyes intermix. Quantitative EM analyses of single retinal
terminals indicates that most retinotectal synapses are located on the
highest order branches of the arbor (Yen & Constantine-Paton 1988). A
mechanism in which the survival of these branches is dependent on the
formation of some critical number of synapses stabilized via NMDA
receptor activation would explain stripe sharpening with decreased
NMDA sensitivity. The number of stabilized synapses in boundary regions
would be the first to drop below the critical value necessary to sustain a
branch. Furthermore, because in the tadpole and young frog the arbors
of ganglion cells are constantly withdrawing branches in some regions
and tnitiating new branches in others (Reh & Constantine-Paton 1983),
this same reasoning explains the chronic NMDA-induced decreases in
branches of individual arbors even within the stripes of one eye. Specifi-
cally, with chronic NMDA treatment and decreased NMDA receptor
sensitivity, many of the new branches in ganglion cell arbors simply do
not establish enough stabilized synapses to survive. The new branches are
uniquely vulnerable to decreased NMDA receplor sensitivity because they
have the fewest numbers of stabilized synapses to begin with: Initial contact
with a post-synaptic process is likely to be by trial and error and only a
few of a new branch’s synapses can be expected to converge on post-
synaptic processes alrcady receiving inputs that are active simultaneously
with them. In addition, for each synapse on a distal branch that succeeds
in converging along with some nearly synchronized “other” input, the
degree of correlation has a high probability of being low.

Over the past ten years it has become clear that the terminal arbors of
projection neurons in the developing visual pathways of both cold- and
warm-blooded vertebrates are dynamic structures capable of relatively
extensive remodeling in response to perturbations of activity. Thus, chick
retinal ganglion cells, like those of fish and frogs, appear to make their
initial synapses in a region of tectum quite separate from their terminal
sites in the mature brain (McLoon 19835). Geniculocortical terminals from
the nondeprived eye of young macaque monkeys show some sprouting
into the deprived eye's ocular dominance stripes even when monocular
occlusion is begun relatively late in development, after segregation is
established (LeVay et al 1980). In the kitten geniculocortical pathway,
neconatal monocular deprivation or retinal TTX block has been shown to
affect selectively and differently the morphology of X and Y ganglion cell
arbors in a patiern that is consistent with the type or degree of activity
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deprivation to which the system was exposed (Sherman & Spear 1982,
Friedlander et al 1982, Sur 1988). Finally, in fetal kittens, as had previously
been observed for frog larvae (Reh & Constantine-Paton 1985), TTX
blockade results in individual retinal ganglion cells that have greatly
expanded central arborizations (Sretavan et al 1988). It is very likely that,
in both these studies, the activity blocks suppress post-synaptic as well as
presynaptic activity. Is this enlargement simply due to increased growth
rates in silent ganglion cells as has been suggested for isolated mollusc
neurons in culture (Cohan & Kater 1986)? Is it due 10 an increased sprout-
ing stimulus from inactive post-synaptic neurons, as has been suggested
for the neuromuscular system (Brown et al 1981)? Is it the result of
inactivation of a Hebbian selective stabilization system in which no ter-
minal branches are stabilized and none are trimmed because both pre-
and post-synaptic processes are silent? Clearly, some of the phenomena
described on a system level will soon be addressed at the level of cell
biology. However, we know little about morphological changes in post-
synaptic neurons and little about structural plasticity in nonprojection
neurons. It is also clear that much more information has to be collected
on the biochemistry of the changes produced by activity perturbations
before the numerous newly raised questions can be answered.

CONCLUSION

It has historically been the case in both the fields of developmental and
mature brain plasticity that each new set of observations opens up a new
host of questions without necessarily promising that a complete explana-
tion lies immediately around the corner. An association between high
sensitivity of NMDA -mediated synaptic transmission and viable “‘explor-
atory” contacts of young neurons could be a critical cellular difference
between the pronounced structural plasticity of the developing brain and
the profoundly less plastic properties of many regions in the mature brain.
Only the correlation cited above between the timing of cortical layer IV
ocular dominance column plasticity and high NMDA receptor sensitivity
of layer TV neurons is currently available to support this hypothesis for
the mammalian brain.

From a developmental biologist’s point of view, the major unanswered
question in all areas of neural plasticity is whether functionally detected
changes in synaptic weight represent one end of the same spectrum of
interactions that produce structural relocation of synapses at its other
extreme. Even in those visual pathways for which data support a specific
correlated activity detector function for the NMDA receptor, there is
essentially no unambiguous information on the biochemical events sub-
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sequent to NMDA receptor activation. Apparently also little agreement
has been attained about these events in the more intensively studied hippo-
campus (Collingridge 1987). Without documentation of biochemical simi-
larity, the argument that brain evolution had adapted exactly the same
activity-dependent mechanisms used during development to the mature
functions of learning and memory is speculative at best. Nevertheless, for
a few, but maybe not all developing visual projections, as for some, but
not all hippocampal model systems for learning and memory {(Brown
1990), it can now be said that activation of the NMDA subclass of gluta-
mate receptors plays a critical role in modulating the long-term inter-

actions between pre- and post-synaptic neurons.
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NMDA Receptor Antagonists Disrupt the
Retinotectal Topographic Map

Hollis T. Cline* and Martha Constantine-Paton
Biology Department

Yale University

New Haven, Connecticut 06511

Summary

We tested the effect of two NMDA receptor antago-
nists, APV or MK801 (with NMDA), and the receptor
agonist NMDA on the maintenance of retinal topogra-
phy in frogs. Topography was assayed by measuring the
dispersion of retrogradely labeled ganglion cells fol-
lowing a local HRP injection into the tectum. In un-
treated tadpoles, labeled cells covered about 5% of the
retinal area. In APV- or MK801/NMDA-treated tadpoles,
labeled ganglion cells covered 17% and 10% of the reti-
nal area, respectively. Neither treatment with L-APV
nor with NMDA disrupts the fidelity of the retinotectal
projection. Neither APV- nor NMDA-treated ganglion
cell terminals differed from untreated terminals with
respect to tangential area, branch number, or branch
density. These data support a role for the NDMA recep-
tor in visual system development.

Introduction

In visual projections, afferents that register information
from adjacent receptive fields terminate in neighboring
regions of the central target zone and form a topo-
graphic map. The cellular interactions that govern the
development of the topographic maps have been exten-
sively studied in the projection from the retina to the op-
tic tectum of amphibians and fish {see Lidin and Fawcett,
1988, for review). It is thought that the amphibian ret-
inotectal topographic map forms as a combined result
of interactions based on both cell surface and activity-
dependent properties in the retinal afferents and tectal
neurons. Activity-independent properties, probabily cell
surface cues, provide a crude topography to the projec-
tion, which is then refined by an activity-dependent
process such that the neighbor relations of the retinal
ganglion cell bodies are maintained in their tectal pro-
jections. Neighboring retinal ganglion celis (RGCs) ex-
hibit a high degree of temporally correlated activity
compared with non-neighboring RGCs (Arnett, 1978;
Arnett and Spraker, 1981; Mastronarde, 1983a, 1983b;
Ginsberg et al., 1984). Therefore, a possible means of
communicating retinal neighbor relations from the pe-
ripheral sensory cell bodies to the terminals in the optic
tectum is through their patterns of electrical activity.
Specifically, highly correlated patterns of activity in af-
ferent terminals convey a selective survival advantage to
coactive terminals that converge on the same postsynap-

* Present address: Department of Molecular and Cellular Physiol-
ogy, Beckman Center, Room B101, Stanford University Medical
Center, Stanford, California 94303-5425.

tic neurons (Constantine-Paton et al., 1990; O'Leary et
al., 1986).

The NMDA receptor/channel, a type of excitatory
amino acid (EAA) receptor, has the unique property of
conducting calcium in response to ligand binding only
when the postsynaptic membrane is simultaneously
depolarized (MacDermott et al., 1986). For this reason,
it is a favored candidate for the detection of correlated
afferent activity. In other systems, it has been shown that
the NMDA receptor is blocked by Mg?* in a voltage-
dependent manner (Mayer et al., 1984; Nowak et al.,
1984). Initial synaptic events depolarize the postsynaptic
membrane by activating colocalized non-NMDA-type
EAA receptors (Mayer and Westbrook, 1984; Dale and
Grillner, 1985). Sufficient postsynaptic depolarization
relieves the voltage-dependent Mg?* block of the
NMDA channel so that subsequent synaptic events re-
sult in Ca?* influx through the NMDA channel into the
postsynaptic cell (reviewed by Mayer and Westbrook,
1987). Numerous studies indicate that the neurotrans-
mitter at the retinotectal synapse is an EAA (Langdon and
Freeman, 1986; Cline et al., 1987; McDonald et al,
1989; Debski et al., 1987, 1988, Soc. Neurosci., abstract;
Fox and Fraser, 1987, Soc. Neurosci., abstract). it is hypo-
thesized that coordinated activity patterns in overlapping
afferent terminals could create the conditions of post-
synaptic membrane depolarization and ligand binding
necessary for calcium conductance through the NMDA
channel. The calcium influx would then trigger events
culminating in the stabilization of coactive synapses.
Several investigators have suggested a role for the NMDA
receptor in the refinement of visual topography, for
example, during optic nerve regeneration in goldfish
(Schmidt, 1988, Soc. Neurosci., abstract), during segre-
gation of kitten geniculocortical afferents inta ocular
dominance columns (Kleinschmidt et al., 1987; Tsumoto
et al., 1987; Hagihara et al., 1988; Fox et al., 1989}, and
in the realignment of ipsilateral and contralateral eye
maps in Xenopus following experimental rotation of the
direct retinotectal projection (Scherrer and Udin, 1988,
Soc. Neurosci., abstract).

Our previous work has demonstrated an involvement
of the NMDA receptor in the maintenance of eye-spe-
cific termination zones or stripes that form in the tecta
of frog tadpoles following embryonic implantation of a
supernumerary eye primordium (Cline et al., 1987). Treat-
ment with the competitive NMDA receptor antagonist,
2-amino 5-phosphonovaleric acid (APV), causes deseg-
regation of the striped termination zones of the host and
supernumerary eye. In this paper we test the hypothesis
that the NMDA receptor plays a role in the refinement
of the normal retinotectal projection. We examine the
effect of chronic treatment with DL-APV, the pharmaco-
logically inactive isomer L-APV, the noncompetitive NMDA
receptor antagonist MK801 (Wong et al., 1986}, and the
receptor agonist NMDA on retinotopy of two-eyed tad-
poles using HRP retrograde labeling from the tectum to
the retina.
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Figure 2. Retinal Topography Is Distorted Following APY Treatment of the Optic Tectum

RGCs were labeled retrogradely with a local HRP injection into the contralateral rostromediai tectal neuropil. Camera lucida drawings of
the corresponding retinal and tectal flat mounts show the positions of the HRP-labeled RGCs projecting to the rostromedial tectum and the
size and position of the injection site in the tectum (inset). {A) and (B} are two examples of the labeling pattern seen in untreated tadpoles.
(C)-{E) are examples of the labeling pattern in APV-treated tadpoles. The animals whose retinae are shown in the left column (A, C, and £}
are from stage XIV tadpoles, all of which were injected with the sanie HRP pipette and processed for HRP histochemistry together. Similarly,
the animals whose retinae are shown in the right column (B, D, and F) are from stage X|l tadpoles that were injected with the same HRP
pipette and processed together. The percent total retinal area occupied by labeled RGCs is 5% in (A}, 2.5% in (B), 19.8% in (), 20.3% in
{D), 12.7% in (E), and 14.9% in (F). Straight arrows in (E} and (F) point to ectopic RGCs. There is no consistent difference in the density of
labeled ganglion ceils between the control and experimental retinae. All retinae and tecta are oriented similarly according to the orientation
shown in (A). Drawings of some retinae were flipped along the dorsoventral axis. The scale bar = 0.8 mm for the retinas and 2 mm for the
tecta. The labeled RGCs in (F) are in the dorsotemporal retina because the tectal injection site was shifted more toward the lateral margin
of the lobe than the other injection sites.
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Table 1. The Percent Retinal Area Occupied by Labeled RGCs in Untreated and Drug-Treated Tadpoles

Control DL-APV MKB01 L-APV NMDA
% Retinal Area 5.2+ 05 17.6 £+ 3.8 10.4 ¢+ 2,12 47 + 1.1 6.0 + 0.8
Occupied by
Labeled RGCs (n = 31) n =100 {n = 8) n = 5) n =12
AP <005

RGCs in well-defined local regions of the retina. Even in
the APV-treated animals, where the labeled RGCs are
dispersed over a larger area, they are, for the most part,
confined to the topographically correct quadrant of the
retina. However, in 4 out of 10 retinae examined from
the APV-treated animals and in 1 out of 12 retinae exam-
ined from NMDA-treated animals, between 1 and 4
HRP-tabeled RGCs were located autside the temporal-
ventral quadrant of the retina that projects to the dor-
somedial tectum (Figure 2). The ectopically positioned
HRP-labeled cells are found across the nasotemporal
midline of the retina. All the ectopically positioned HRP-
labeled RGCs have similar morphological characteris-
tics: they have the largest cell bodies (20-30 pm diam-
eter) and an extensive planar dendritic arbor (250-400
um) (Figure 7). The axon within the retina is larger cali-
ber than most other retrogradely labeled axons. Figure
7 shows the normal labeling density in a retina project-
ing to an APV-treated tectum (A) and an isolated HRP-
labeled RGC typical of the ectopically positioned RGCs
(B). We examined the tecta corresponding to the retinae
with the ectopicaily positioned RGCs to see if the cells
were labeled as axons of passage. in the NMDA-treated
tectum, the arbor was in fact located in the central tec-
tum, and the trajectory of the axon passed through the
injection site, which indicates that the RGC labeled as
an axon of passage. However, in the APV-treated tecta,
all HRP-labeled arbors were confined to the local ros-
tromedial injection site. No ectopically positioned RGCs
were observed in untreated or LAPV treated animals.
MK801 Treatment
We tested the effect of MK801, a noncompetitive use-
dependent NMDA channel blocker on the maintenance
of the retinotopic map. The drug blocks from within the
NMDA channel and can only gain access to the binding
site when the channel is open. We had previousiy noted
that MK801 did not cause the desegregation of eye-
specific stripes in three-eyed tadpoles. However, the
failure of MKB0! to desegregate eye-specific stripes
might be due to the infrequency of channel opening and
the resultant poor access of the drug to the interior of
the channel (Huettner and Bean, 1988). Therefore, we
treated the tecta of six tadpoles with Elvax prepared with
a mixture of MK801, to black the NMDA channel, and
NMDA, to increase the frequency of channel opening.
We found that the retinae of tadpoles whose optic
tecta were treated chronically with MKBO1-NMDA for 12
weeks exhibit a wider distribution of retrogradely la-
beled RGCs than the retinae from stage-matched con-
trols (Figure 4, Table 1). The percent of retinal area oc-

cupied by the retrogradely labeled RGCs was 10.4 3
2.1% (range = 5.4%-24.1%, n = 8tecta from 5 animals),
significantly greater than untreated tadpoles {p < .005).
The number of HRP-labeled RGCs was 264 + 30 in reti-
nae from animals treated with MKB01 + NMDA. The
density of labeled RGCs was 25.4 RGCs/percent retinal
area, twice the density of labeled cells from other treat-
ments. However, the density of labeled RGCs from the
control animals injected with the same pipette was 26.8
+ 3.1, also twice the density seen in the remainder of
the controls.

NMDA Treatment

We have reported that exposure of the tecta of surgically
produced three-eyed tadpoles to the receptor agonist
NMDA results in eye-specific stripes with sharper bor-
ders (Cline et al., 1987). This observation suggested
that NMDA treatment might enhance the point-to-point
specificity of the retinotopic projection. Exposure of the
tectal lobes to NMDA for periods of 6 to 10 weeks did
not alter the percent retinal area occupied by labeled
RGCs (6.0% + 0.8%, range = 1.6%-9.8%, n = 12 tecta
from 6 animals; Figure 5, Table 1). NMDA treatment did
not alter the number or the density of HRP-labeled
RGCs, compared with controls. The number of labeled
cells was 76+ 9.1 RGCs per retina and the density was
12.8 RGCs/percent retinal area. Exposure of the tectum
to ten times greater concentration of NMDA did not al-
ter retinal topography (data not shown).

RGC Arbor Morphology

The distortion of the retinal projection seen in tecta
treated with NMDA receptor antagonists could result
from the enlargement of individual RGC terminal arbors
or from less precise targeting of normal sized arbors. To
distinguish these possibilities, we reconstructed indi-
vidual HRP-labeled RGC terminal arbors in the rostro-
medial tectum of untreated, APV-treated, and NMDA-
treated tadpoles of similar stages (Figure 6). Terminal
arbors from untreated tadpoles are elongated in the ros-
trocaudal direction and most major branches of arbors
from the rostromedial tectum are directed caudally.
The branches are uniform in diameter between branch
points, and decrease in diameter after branching. The
branches do not have iocal thickenings along the length,
as seen in arbors from adult frogs (Constantine-Paton et
al., 1983; Stirling and Merrill, 1987). In the main part of
the arbor, branches often end in forks and efaborate
growth cones. Several short, blunt-ended branches leave
the primary axon proximal to the major terminal arbor.
These are probably remnants of an arborization from a
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Figure 5. NMDA Treatment of the Optic Tectum Does Not Alter Retinal Topography

(A) and {B} show retinal and tectai flat mounts from untreated control tadpoles and (C)-{E) are from NMDA-treated tadpoles. The left column
(A, C, and E) are from stage XI} tadpoles injected with the same HRP pipette and processed together for HRP histochemistry. The right column
(B, D, and F) are from stage XIV tadpoles that were injected with the same HRP pipette and processed together, The percent total retinal
area occupied by labeled RGCs is 5.5% in (A), 6.1% in (B), 7.0% in {C}, 6.3% in (D), 4.5% in {E), and 7.1% in {F). Conventions and scales

are as in Figure 2,

former, more rostrally situated, termination site which
are retracting during the growth process (Reh and Con-
stantine-Paton, 1984). We determined the length, width,
tangential area, and number of branch endings per ar-
bor (Table 2). Tadpole RGC terminal arbors cover ap-

proximately 27 x 10° um? in tangential area (27.6 x
103 um? + 7.3 x 103 pm?, n = 7, range = 10.! x 103
um? =51 x 10% pm?). These values are uniformly larger
than values reported in earlier studies because previous
fixing and clearing regimes caused more severe shrink-
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Table 2. Descriptive Parameters of Arbor Morphology in Untreated and Drug-Treated Terminal Arbors

Branch #/Area

Treatment Length (pm) Width (um) Area {10% um?} Branch # (/163 um?)
Untreated (n = 5) 340 + 44 170 + 40 276+ 73 8% + 20 33+ 086
DL-APV (n = 7} 438 + 50° 162 + 28 274+ 78 95 + 26 39+ 06
NMDA in = 8) 400 + 43 273 + 36 320 + B.O 122 + 32 41 1+ 0.6
P < 001

age of tissue. The mean rostrocaudal length was 340 +
44 um {range = 200-450 um}, and the mean width was
170 + 40 um (range = 90-230 um). The arbors have 89
+ 20 branch endings per arbor (range = 45-146). The
branch density, or branch endings per unit area, is 3.3
+ 0.6 branches/10? pum? (range = 1.8-4.5 branches/103
um?) (Table 2).

RGC terminal arbors from APV.treated tecta did not
differ from arbors from untreated tecta with respect to
their tangential area, their width, the number of branch
endings per arbor, or branch density (Table 2). However,
APV-treated arbors are significantly longer than un-
treated arbors (438 + 50 um for APV-treated arbors vs.
340 1 44 pm for untreated arbors, p < .001). NMDA-
treated arbors did not differ from untreated arbors with
respect to their tangential area, length, branch number,
or branch density. However the NMDA-treated arbors
are significantly wider than either untreated or APV-
treated arbors (273 + 36 pm for NMDA treated arbors,
compared with 170 + 40 um for untreated arbors, p <
.001). in addition, we observed a unique branching
pattern in the NMDA-treated arbors. Often the finer

branches grow parallel to one another for considerable
distances, to the extent that the two branches appear su-
perimposed. In the NMDA arbor to the left in Figure 6,
several examples of the terminal branchlets growing in
close association can be seen within the area marked by
arrowheads.

Toxicity Controls

We did not detect any toxic effects of drug treatment in
any of our experimental groups. Chronic exposure of
tecta to DLAPY, LAPV, or NMDA did not alter the den-
sity of retinal ganglion cell bodies from that observed in
control groups (Table 3). Tectal cell density in layer 6, the
cellular layer containing the majority of retinorecipient
tectal neurons, also showed no change between drug-
treated and control animals (Table 3).

Discussion

Effects of Drug Treatments on Topography

The current experiments, like those conducted earlier
on the developing retinotectal projection, rely on the
constant mobitity of the RGC terminal arbor in the rap-

Figure 7. Ectopic RGCs Label in Retinae Projecting to APV-Treated Tecta

(A) Typical density of HRP-labeled cell bodies in the ventrotemporal retina of an APV-treated animal. Many RGC types are labeled and cell

bodies are close together.

(B} An "ectopically labeled” RGC in the dorsonasal quadrant of the same retina as in (A), The RGC is well isolated from other labeled cell
bodies. The RGC has a distinctive morphology. characterized by the large cell body and the extensive planar dendritic arbor. This morphologi-
cal subtype is also seen in the field in (A), atthough the dendritic arbor is obscured by other labeled cell bodies. The blurred dark spots are

bits of pigment epithelium. Scale bar = 50 pm for (A} and (B}
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treated animals, compared with controls. An increase in
the number of labeled RGCs may resuit from an in-
creased efficiency of labeling of the same number of ter-
minals in the injection site, or an increase in the number
of arbors, a portion of which overlaps with the injection
site. An increased efficiency of labeling would increase
the density of labeled cells, because number of labeled
cells would increase, but the percent retinal area labeled
would not. An increase in the number of arbors with
branches penetrating the injection site would be seen as
an increase in the number of labeled RGCs, but not
necessarily as an increase in the density of labeled cells.
The increased number of labeled RGCs we observe in
animals treated with NMDA receptor antagonists proba-
bly reflects an increase in the number of arbors that
aberrently branch into the injection site. We suggest that
the increased convergence results from the inability of
the tectal neurons to coordinate the direction of termi-
nal migration, based on activity patterns in the afferent
terminats when the NMDA receptor/channel is blocked.

The density of iabeled RGCs in retinae from APV-
treated treated animals is the same as the density of la-
beled RGCs in control retinae, although the density of
labeled RGCs from MK801-treated animals is about
twice that density. However, the control animals in-
fected with the same pipette as the MK801-treated
animals also had twice the density of labeled cells com-
pared with the remainder of the controls. Therefore, it
is likely that the injections made in the MK801 series
were more effective at damaging terminals than the
other injections. This might be expected if the broken pi-
pette tip had more jagged edges than other tips. It is im-
portant to note, however, that although the controls
from the MK801 series had more labeled RGCs, they
were confined to a limited retinal area, comparable to
other controis. This indicates that the efficiency of label-
ing was not a determinant in the percent retinal area la-
beled and that the increase in retinal area labeled in the
animals treated with MK801 was not an artifact of the in-
creased labeling efficiency.

Two alternative resuilts may have been expected from
the animals exposed to NMDA., Based on our observa-
tion that NMDA treatment of the tecta of three-eyed tad-
poles sharpens the borders of the eye-specific stripes, we
anticipated that NMDA treatment of the two-eyed tad-
poles might increase the refinement of the retinal projec-
tion. However, we did not observe a decrease in the per-
cent retinal area with labeled RGCs. It is possible that we
could not detect such a difference with our anatomicai
assay. A second possible result was that the NMDA
receptor would desensitize with chronic exposure to the
receptor agonist, resuiting in a ioss of retinal topography,
comparable to that seen with NMDA receptor antago-
nists. Although electrophysiological studies demonstrate
a decreased sensitivity to NMDA following chronic ex-
posure to NMDA in Elvax {Debski et al., 1989, Soc. Neu-
rosci., abstract), the maintenance of both eye-specific
stripes and retinal topography despite chronic exposure
to NMDA indicates that the receptor system is not

‘.wkws. ‘,..\Lw...

desensitized to the extent that retinal terminals can no
longer sort out based on patterns of correlated activity.
It is possible that the desensitization is counterbalanced
by the constant presence of the NMDA,

Although NMDA-treatment does not change retinal
topography, we are confident that the NMDA is diffusing
cut of the Elvax and exerting an effect on the tectal cells
for several reasons. NMDA-treated RGC terminal arbors
exhibit a slightly different morphology than arbors from
either untreated or sham-operated (i.e., implanted with
fast green-Elvax). In addition, our experiments with
three-eyed tadpoles exposed to either MKBO1 alone or
MKBO1 + NMDA indicate that NMDA is required for
MK801 to cause stripe desegregation, presumably by in-
creasing the frequency of NMDA channel openings.
Finally, recent electrophysiological experiments per-
formed on tadpoles treated with NMDA in the same
manner as the animals used for these experiments pro-
vide convincing evidence that the drug is reaching the
tectum in a biologically active form (Debski et al., 1989,
Soc. Neurosci., abstract). The observation that higher
concentrations of NMDA do not alter retinal topogra-
phy is consistent with the observation that eye-specific
stripes are present in three-eyed tadpoles even at toxic
concentrations of NMDA (Cline and Constantine-Paton,
submitted).

Detailed morphological analysis of drug-treated and
untreated RGC terminal arbors indicate that APV-in-
duced disruption of retinotectal topography is not due
to an enlargement of individual RGC terminal arbors,
These data are consistent with our earlier observation
that chronic treatment of doubly innervated tadpole
tecta with APV produced desegregation without enlarg-
ing the RGC terminal arbors (Cline et al., 1987). Itis also
unlikely that the 30% increase in length of APV-treated
arbors can account for the decrement in retinotopic pre-
cision, The increase in HRP-labeled RGCdistribution is
too large to be accounted for by the increase in arbor
length alone. Furthermore, increasing rostrocaudal ar-
bor length would only increase labeling in the retina
along one axis, rather than the dramatic concentric ex-
pansion observed. Thus, the pronounced distortion of
the highly refined retinal topography in tecta treated
with APV is not due to the disruption of the mecha-
nism(s) that controls arbor size.

It is important to point out that even though NMDA
receptor antagonists impair the coordinated migration
of terminals arising from neighbaring RGCs, none of the
drugs tested appeared to alter the overali caudally
directed migration of RGC terminals. The drugs neither
increased nor decreased the area of the tectum inner-
vated, determined by comparing the caudal extent of
HRP labeling in treated and untreated tectal lobes (H.
Cline, unpublished data). These data support previ-
ous suggestions that the mechanisms underlying the
growth shifting toward uninnervated tecta involves dif-
ferent mechanisms than those involved in the activity-
dependent sorting {Constantine-Paton and Reh, 1985;
Meyer and Wolcott, 1988). However, APV-treated termi-
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were reacted in whole mount with DAB as described previously
{Reh and Constantine-Paton, 1984). The retinal epithelium was dis-
sected free from the retina, taking care to place a radial cut at the
ventral, dorsal, nasal, and temporal poles to aid in subsequent
alignment. Tecta were dissected free from the brain and major cuts
were made at the rostral and caudal poles of the lobe. The retinae
and tecta were flattened between cover slips, and fixed in 2%
paraformaidebyde and 2% glutaradehyde in 0.1 M phosphate
buftfer for 3-4 days at 4°C. They were subsequently rinsed in 0.1 M
phosphate buffer, dehydrated through graded alcohols, cleared in
xylene, and mounted in Permount. The positions of labeled RGCs
were verified at 400x magnification and drawn with a camera luc-
ida at 112> magnification. The axons of labeled RGCs converge on
the optic nerve head as a small fan of fibers originating from cells
in the labeled region of the retina. Examination of the optic nerve
head easily revealed any labeled axons of RGCs outside the densely
labeled region.

HRP Labeling of RGC Terminals

To label RGC terminal arbors, tungsten needles tipped with HRP
crystals were introduced into the ventrotemporal retina. Afier 2
days survival, the brains were processed for HRP histochemistry in
wholernount as described previcusly. The tecta were dissected free
irom the brain, flattened between cover slips, and fixed for 3-4 days
in 2% paraformaldebyde and 2% glutaradehyde. After rinsing in
0.1 M phosphate buffer, the tissue was debydrated through graded
alcohals, cleared in xylene, and mounted in Permount. Individual
HRP-labeled retinat ganglion cell terminal arbors were drawn with
a camera lucida using a 63x oil immersion lens. Arbors were
selected for recanstruction from the rostromedial quadrant of the
tectum where it was possible to verify that the Elvax had remained
in contact with the tectum throughout the exposure period. To con-
trok for variation in arbor morphology with the stage of the animal,
we have drawn arbors from stage-matched untreated control
animals.

Arbor Morphology Analysis

Tangential area was determined using a Terak computer equipped
with a bitpad. The perimeter of the arbor was traced so that the cur-
sor outlined the highest order branches of the arbor rather than the
overali envelope of the arbor, The area of each arbor was measured
three times and the average taken as the most accurate estimate of
tangential area covered. The area measurements are not particu-
larly sensitive to the shape or branching patterns of arbors. For ex-
ample, an extremely sparce arbor could extend across a large por-
tion of a tectum, yet have the same area mesurement as a densely
branched arbor having half the linear dimensions. Consequently,
we determined three other measures of arbor morphology: length,
width, and branch number per unit area. Length of an arbor along
the rostrocaudal axis was measured as the length of a straight line
extending from the first branch off the major axon to the caudal-
most tip. Arbor width was taken as the widest part of the arbor per-
pendicular to the straight line established as the rostrocaudal length.
Branch density of the arbors were calculated by counting the num-
ber of branch endings in the arbor and dividing this value by arbor
area measured as described above.

Tectal celt density in layer 6 was determined in toluidine biue or
hematoxylin stained histological sections by counting the number
of cell bodies in a 625 um? x 10 um volume under 400x magnifi-
cation (Constantine-Paton and Ferrari-Eastman, 1987). Retinal gan-
glion cell density was determined in hematoxylin stained sections
by counting the number of retinal ganglion cell bodies in four alter-
nating 10 pm sections through the optic nerve head. The length of
the RGC layer was measured with a Terak computer and the cell
number/unit length was determined.

Statistical analyses were performed using a two-tailed Student’s
ttest {Snedecor and Cochran, 1967) and the Bonferroni correction.
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Summary

We investigated retinal axon morphology and eye-spe-
cific afferent termination zones in the optic tectum of
three-eyed tadpoles that were chronically treated with
protein kinase inhibitors. The kinase inhibitors sphingo-
sine, H-7, and phorbol ester, which down-regulates pro-
tein kinase C with chronic exposure, were applied to the
tecta in a slow release plastic, Elvax. In vivo protein
phosphorylation assays in drug-treated tadpoles indi-
cated that the treatments decreased 32P incorporation
into some protein bands by as much as 60%. Although
the drugs did not cause a desegregation of the eye-spe-
cific stripes, treated retinal axon arbors covered about
hali the area covered by untreated arbors or arbors
treated with inactive analogs of the drugs. We conclude
that eye-specific segregation can be maintained under
conditions that markedly alter retinal ganglion cell axon
arbor size and that significantly perturb protein phos-
phorylation. Furthermore, we conclude that the protein
kinase(s) that we blocked with these treatments is in-
volved in the growth of axon arbors,

Introduction

Recent interest has been spurred by the findings that
both the plasticity of developing connections in the
visual system and long-term potentiation in the hip-
pocampus, a cellular model of learning and memory,
can be blocked by NMDA receptor antagonists (Col-
lingridge et al., 1983; Harris et al., 1984; Cline et al.,
1987; Kleinschmidt et al., 1987: Scherer and Udin, 1989;
Cline and Constantine-Paton, 1989; Schmidt, 1990).
These findings suggest that common mechanisms
may underlie synaptic plasticity in developing and
mature nervous systems. Roles for protein kinases in
many forms of synaptic plasticity have been suggested
(reviewed by Nairn et al., 1985; Routtenberg, 1986;
Schwartz and Greenberg, 1987). In the hippocampus,
tetanic stimulation of glutamatergic afferents activates
postsynaptic glutamate-sensitive NMDA receptors (Col-
lingridge et al., 1983). The resulting calcium influx
through the NMDA channels {(MacDermott et al., 1986)
is thought to stimulate calcium-sensitive protein ki-
nases such as protein kinase C (PKC} and/or calcium

*Present address: Department of Physiology and Biophysics,
University of lowa Medical School, lowa City, lowa 52242.

calmodulin-dependent protein kinase type 11 (CaM-
KIl) and thereby to increase synaptic efficacy. Simi-
larly, in the retinotectal system, it is thought that NMDA
receptor activation by coactive retinal inputs initiates
a series of events culminating in the stabilization of
the coactive retinal ganglion cell (RGC) synapses and
the refinement of point-to-point order in the projec-
tion (Cline et al., 1987; Cline and Constantine-Paton,
1989). One possible scenario is that a calcium tran-
sient through either pre- or postsynaptic NMDA chan-
nels {Cline and Constantine-Paton, 1990) modulates a
calcium-sensitive protein kinase(s), which in turn in-
creases or prolongs the stability of the coactive syn-
apses. Therefore, it would be the kinase activity that
is ultimately responsible for synapse stabilization.

PKC is a particularly attractive candidate for involve-
ment in the formation of retinotectal topographic
maps. This process involves both continual axon sprout-
ing and stabilization of coactive synapses in grow-
ing axons (Reh and Constantine-Paton, 1984; Easter
and Stuermer, 1984; Sakagushi and Murphey, 1985;
ORourke and Fraser, 1989, Soc. Neurosci., abstract;
Nakamura and O'Leary, 1989). PKC is one of the major
protein kinases in growth cones (Katz et al., 1985; Van
Hooff et al., 1988). In addition, several growth-asso-
ciated proteins (reviewed by Skene, 198%) are PKC
substrates {Patel and Kligman, 1987; Hyman and Pfen-
ninger, 1987; Nelson et al., 1989), and their phosphor-
ylation, in addition to their synthesis, is develop-
mentally regulated (Jacobson et al., 1986; Neve et al.,
1987). Spatial and temporal variations in the presence
of growth-associated proteins, which correlate with
the regeneration of topographic projections, have been
used to implicate PKC in axon cutgrowth and develop-
mental synaptic plasticity (Benowitz and Lewis, 1983;
Benowitz and Schmidt, 1987; McGuire et al., 1988;
Skene, 1989; Nelson et al., 1989).

CaMKlI is also thought to have a role in the devel-
oping nervous system. CaMKI! activity is present in
growth cones of cultured neurons (Scholz et al., 1988),
in preparations of isolated growth cones {Katz et al.,
1985), and in preparations of isolated nerve terminals
(Katz et al., 1985; Wang et al., 1988). CaMKII consti-
tutes one of the major developmentally regulated pro-
teins in postsynaptic densities (Kennedy et al., 1983;
Goldenring et al., 1984; Kelly et al., 1984; Ouimet et
al., 1984). However, in contrast to PKC activity, CaMKIlI
activity has been more closely correlated with periods
of synaptogenesis (Newman-Gage and Graybiel, 1988;
Sahyoun et al., 1985) and synapse maturation (Wein-
berger and Rostas, 1988), rather than axon growth.

In the developing retinotectal system in which syn-
aptogenesis, synapse withdrawal, and axon growth
are concurrent, activation of either PKC or CaMKII
could be part of the cellular mechanisms that tead to
the increased stability of local synapses subsequent
to N-methyl-p-aspartate (NMDA) receptor activation
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Figure 1. Inhibitors of Protein Kinase Activity Do Not Cause Eye-Specific Stripe Desegregation

The supernumerary retinal projections, visualized by HRP labeling the optic nerve, show a striped pattern of RGC arbors within the
tecta treated with saline (A), PDB (107 M in Elvax} (B), SPH (10~ M in Elvax} (C), or H-7 (10~ M in Elvax) (D). The photographs of the
flattened tecta were all taken and processed identically, Bar, 100 um.

and XV, a few RGCs in the ventrotemporal or dorso-
temporal quadrants of the supernumerary retina were
labeled with HRP-tipped tungsten needles. The HRP-
labeled RCG axon arbors from the drug-treated tad-
poles were drawn with a camera lucida and compared
with arbors drawn from comparable tectal regions of
sham-operated, stage-matched control tadpoles. Ar-
bors drawn from the dorsomedial tectum of PDB- and
SPH-treated tadpoles, which had been overlaid with
Elvax, had aberrant morphologies compared with con-
trols {Figure 2, the six arbors on the right), whereas ar-
bors drawn from the |ateral tectum, which was not in

direct contact with the Elvax, fell into the normal
range of arbor morphologies (Figure 2, the two arbors
on the left). The treated arbors from the dorsomedial
tectum were smaller than untreated arbors drawn from
dorsomedial tectum, which have been described pre-
viously (Cline and Constantine-Paton, 1990). The mean
area of the dorsomedial PDB-treated arbors (n = 10 ar-
bors drawn from 5 animals) was only 99 + 1.7 x 103
pm?, significantly less than the 31.3 + 4.3 x 10° ym?
or 293 + 22 x 10° pm? covered by untreated and
4aPDD-treated arbors, respectively (Table 2). The PDB-
treated arbors were significantly shorter (350 + 20 pm

Table 1. Number of HRP-Labeled Axons Crossing from a Stripe Border through 50% of the Interstripe Zone

Untreated PDB

4aPDD SPH NAS H-7

Axons crossing per 500 pm 125 £ 0.7 6.1+ 038

128 + 09

4.1 ¢ 0.6* 12.0 + 0.9 4.0 1 0.3

HRP-labeled axons were counted at 160x magnification at 9 stripe borders in 3 tecta for each drug treatment and at 12 stripe borders

in 4 tecta for the untreated tadpoies.
ip < 0.001
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Table 2. Features of Untreated and Drug-Treated RGC Arbars
Treatment Length Width Area Number of Branches/Area
{(pm) {um) (10* pm? Branch (N0 pm?}
Untreated (n = 12) 540 + 43 230 + 28 313 + 43 169 + 24 56 + 0.6
PDB (n = 10) 350 + 207 130 + 21* 9.9 1+ 1.72 738 62+ 09
4aPDD (n = 5) 529 + 33 242 + 37 293 + 2.2 151 + 36 5.1+ 09
SPH (n = 10) 438 1 39 201 + 16 16.4 + 1.4° 121 + 140 6.1 + 0.6
NAS (n = 5) 510 + 45 210 + 36 29.0 + 31 161 + 10 55+ 05
ip < 0.001.
b P <001

compared with 540 + 43 um for untreated arbors) and
narrower (130 + 21 um compared with 230 + 28 pm
for untreated arbors) than untreated or 4aPDD-
treated arbors. The branchtip number (72.8 + 83
branchtips per arbor) was also significantly less than
the untreated or 4aPDD-treated arbors. SPH treat-
ment (n = 10 arbors drawn from 4 animals) also re-
duced arbor area to about 50% of the control value (to
164 + 14 x 10° um?) and reduced branchtip number
by about 30%, to 1213 + 146 branches per arbor).
SPH-treated arbors were significantly shorter than
control arbors (438 + 39 pm compared with 540 + 43
um for untreated arbors). Aithough these results sug-
gest that the treatments may have slowed neurite out-
growth, both PDB- and SPH-treated axon branches of-
ten ended in growth cones, indicating that the HRP
fabels the entire extent of the arbor and that the
treated arbors are capable of growth.

Protein Phosphorylation

We assayed protein phosphorylation in vivo in tad-
pole tecta treated with Elvax containing PDB, 4aPDD,
SPH, NAS, H-7, and Elvax alone. We found that 32P in-
corporation into some proteins, but not others, was
decreased by treatments with PDB, SPH, and H-7 rela-
tive to the incorporation seen in animals treated with
either 4aPDD, NAS, or Elvax alone (Figures 3 and 4).

PDB

4aPDD

m-AQwUG

Individual animals incorporated different amounts of
3P, according to the radioactivity recovered in the
TCA soluble fraction. To compare the densitometric
readings of 3P incorporation into protein bands from
different animals, we normalized the readings of 2P
incorporation in individual bands against the incor-
poration in a protein band (band B whose level of 2P
incorporation was insensitive to drug treatments and
correlated with the radioactivity in the trichloroacetic
acid (TCA)-sotuble fraction. One protein band (band
3 in Figure 3), with approximate molecular mass of 43
kd, showed a consistent decrease in *P incorpora-
tion, ranging from 246% of control in PDB-treated
animats to 67 % of control in SPH-treated animals; H-7-
treated animals had an intermediate value of 62.5%
(Figure 4). A second band (band 4 in Figure 3), with ap-
proximate molecular mass of 85-90 kd, also exhibited
a decreased 3P incorporation ranging from 56% of
control in PDB-treated animals to 69% of control in
H-7-treated animals (Figure 4). In contrast, band 2
(about 30 kd) of Figure 3 is an example of a band
whose 3P incorporation did not vary with any of the
treatments. Since many proteins comigrated in these
gels, the values for each band may represent the de-
creased phosphorylation of several unresolved pro-
teins.

We believe that these values are an underestimate

PDB

Figure 3. Coomassie Blue-Stained Gel and Fluorograph from PDB- and 4aPDD-Treated Tadpoles

Each lane represents one animal. Oniy one of the 4aPDD-treated contrals is shown on the left of each panel. Standard molecular weight
markers (S) are 23, 43, and 68 kd. Bands analyzed by densitometry are labeled 1 through 4 and are marked with smal! arrows.
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Protein Kinases in the Frog Visual System
905

afferents is poorly correlated. At the same time, the
continuous presence of agonist enhances the efficacy
of NMDA receptor activation and synapse stabiliza-
tion within the stripe, where inputs are well corre-
lated, and this in turn inhibits local sprouting.

However, the effects of phorbol esters or SPH treat-
ments on arbor morphology differ significantly from
the effects of NMDA treatment. Chronic NMDA treat-
ment does not affect arbor area, although the number
of branchtips supported by each arbor is decreased.
This results in a 50% reduction in the branch density,
or number of branchtips per unit area. As outlined
above, we suggest that the decreased axon arbor branch
density reflects changes in synapse stabilization and
an associated regulation of axon branch sprouting. In
contrast, the treatments used in this study decrease
both the total arbor area and the branchtip number
50 that the branch density within the smaller arbor is
not significantly different from that of untreated con-
trols. Therefore, exposure to protein kinase inhibitors
results in RGC arbors that are smalier than normalt,
but otherwise have normal branch density. We think
that the stripe sharpening effect of the protein kinase
inhibitors is only superficially similar to that seen with
NMDA treatment. Specifically, we suggest that the ki-
nase blockers decrease the number of axons crossing
into the interstripe zone because they decrease the
total branch number without selectively aitering syn-
apse stabilization or branch density.

QOur data on arbor morphotogy are consistent with
a well-documented role for protein kinases in neurite
outgrowth (Ishii, 1978; Hsu et al., 1984) and support
earlier reports that PKC, in particular, is involved in
the regulation of axon branching (Hall et al., 1988;
Hsu et al., 1988, Soc. Neurosci., abstract; Bixby, 1989).
in concurrence with Bixby (1989), our observation
that treatments with protein kinase blockers decrease
arbor size suggests that protein kinase activity in
growing axons is elevated and that reducing the ki-
nase activity decreases the arbor extent. This could be
accomplished by either decreasing branch initiation
or increasing branch retraction. A kinase-linked de-
crease in branch initiation would be consistent with
the idea that the NMDA receptor-mediated down
regulation of RGC axon branch initiation near stabi-
lized synapses may occur through a highly localized
decrease in protein kinase activity that is triggered by
the active receptor.

It is important to point out that treatments with pro-
tein kinase inhibitors do not arrest the caudally di-
rected growth of the retinal afferents. In two-eyed
tadpoles, in which one tectal lobe was treated with ki-
nase blocker and the other tectal lobe was treated
with the Elvax zlone, the caudal extent of the retinal
innervation, assayed by labeling the projection with
HRP, was not retarded in the drug-treated tectal lobe
compared with the control lobe (H. Cline, unpub-
lished data). This, along with the frequent occurrence
of growth cones in treated arbors, indicates that the
stripe sharpening effect of the drugs is not simply be-

JEPREN - . ——

cause all growth of the arbors has been arrested. It
also indicates that the effect of the drugs is not simply
due to the retraction of previously existing branches,
since this would be observed as a decrease in the cau-
dal extent of the tectal innervation in the drug-treated
tectum,

The ability of NMDA receptor antagonists to block
synaptic plasticity in the visual system and in the hip-
pocampus has led to the suggestion that the same cel-
lular processes underlie the modification of synaptic
connections in developing and mature nervous sys-
tems. Consistent with this idea, Schmidt (1990) and
Artola and Singer (1987) have described activity-depen-
dent potentiation of synaptic transmission in regions
of the visual pathway that also display NMDA recep-
tor-dependent synaptic rearrangements during re-
generation or development. In addition, axon sprout-
ing (Sutula et al., 1988) and modifications of synaptic
terminal morphologies (Desmond and Levy, 1986a,
1986b) seen in the potentiated hippocampus may be
similar to structural changes occurring during devel-
opment,

A further similarity is suggested by our data and
some recent work in the hippocampal slice prepara-
tion. The hippocampal slice exhibits a transient de-
caying potentiation of synaptic transmission that lasts
for 30-60 min (Kauer et al., 1988; Malinow et al., 1988,
1989; Malenka et al., 1989). Notably, both the siowly
decaying potentiation and the eye-specific segrega-
tion are sensitive to 2-amino-5-phosphonovaleric acid
and insensitive to either SPH or H-7. Focal NMDA ap-
plication to the hippocampus mimics the transient
potentiation (Collingridge et al., 1983), and the NMDA-
induced potentiation is also insensitive to SPH treat-
ment (Kauer et al., 1988). Perhaps eye-specific segre-
gation in the retinotectal system is dependent on an
NMDA receptor-mediated, protein kinase-indepen-
dent mechanism that increases synapse lifetime for a
limited period of time, Therefore, the degree of coac-
tivity of that synapse with the neighboring synapses
would be continually assessed by the magnitude of
the NMDA receptor-mediated calcium influx. If the
coactivity is sufficient to elevate intracellular calcium
levels above a threshold value, then the cellular ma-
chinery would be activated to prolong the lifetime of
the synapse for a limited period of time. Additional
coactive events would further prolong synapse life-
time. If the degree of coactivity of the synapses is too
low to allow spatiotemporal summation of the excita-
tory postsynaptic potentials, and thereby relieve the
woltage-dependent magnesium block of the NMDA
channel, then intracellular calcium levels would not
rise, the life of the synapse would not be prolonged,
and the synapse would retract.

The attractive feature of this transient signal hy-
pothesis is the degree of mobility that a short-term
stabilization would offer the retinal axon branches. In-
dividual RGC arbors migrate over the surface of the
tectum during development (Reh and Constantine-
Paton, 1984) and make retinotectal synapses at differ-
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soaked in M5222. The skin, cartilaginous skull, and dura were
folded back from the tectal lobes. The position of the Elvax over
the dorsal tectum was verified, and the plastic was removed. A
piece of Whatman #1 filter paper {2 x 3 mm? scaked with ¥P
{0.1 mCi in physiological saline containing 100 mM NaCl, 2 mM
KC, 2.5 mM CaCl,, 3 mM MgCl,, 2.5 mM HEPES, and 5 mM glu-
cose) was positioned over the tectal lobes. After a 1 hr 15 min
incubation, blood flow in the brain was verified, and the brain
was removed and rinsed in a large volume of saline. The dorsal
tectal lobes were dissected free from the brain and frozen in a
dry icefisopropanol bath until all samples were collected. The
tissue was prepared for electrophoresis as described previously
{Jacobson et al., 1986). Briefly, the tecta were homogenized in 0.5
ml of homogenization buffer (10 mM Tris [pH 7.5], 5 mM dithio-
threitol, 5 mM EDTA) and centrifuged at 100000 x g for 30 min
to separate the soluble and particulate fractions. TCA (100%) was
added to the supernatant to a final concentration of 10%, and
the precipitate was separated by centrifugation at-8000 x g for
15 min. An aliquot of the trichloroacetic acid supernatant was
taken to determine the radioactivity in each sample by liquid
scintillation counting. The pellet was solubilized in 1% SDS, and
duplicate aliquots were taken for protein determination (Brad-
ford, 1976). Tris buffer (10 mM [pH 7.5)) was added to the re-
mainder of the sample followed by incubation at 95°C for 2 min.
Samples were run on 12% polyacrylamide gels and stained with
Coomassie (brilliant} blue. The gels were dried and exposed to
Kodak XAR X-ray film at ~70°C for 1-5 days to obtain comparable
grain densities in the different lanes.
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in dendrites®. Both spine-bearing
and aspinous dendrites have ribo-
somes. In spine-bearing dendrites
they are usually located at the base
of the spines, but may also be
present in the spine head and thus
close to the postsynaptic density of
the synapse. In a more recent
study, Steward and Reeves® ana-
lysed the ribosomes in dendritic
spines of neurones in the dentate
gyrus and hippocampus by serial
section reconstruction and stereo-
imaging of thick sections in the
electron microscope. They found
that about half of the poiy-
ribosomes at the base of the spine
were associated with membrane
cisterns. However, in most cases
the ribosomes were not directly
attached to the membrane as they
are in rough endoplasmic reticu-
lum. Nonetheless, the association
may have functional implications
and Steward and Reeves sug-
gested that plasma membrane pro-
teins may be synthesized on these
ribosomes and inserted into the
synapse. Since all transmembrane
proteins are believed to be gly-
cosylated, this idea begs the ques-
tion of where such proteins would
acquire their sugars. Many dendri-
tic spines in the cerebral cortex

- [ ]
ViIieWDOINE [ -5 mrer mtestgr s o et
T . AT SRS S P, . . -_

have a spine apparatus. This enig-
matic organelle, first described by
George Gray’ nearly 30 years ago,
has still not been ascribed a
function. It is conceivable that the
spine apparatus is invoived in the
post-translational modification of
membrane proteins though other
functions for it have been pro-
posed, for instance Ca®* seques-
tration®. Consistent with the
former idea is Steward and
Reeves' observation that the poly-
ribosomes in the spine base were
more likely to be associated with a
membrane cistern when a spine
apparatus was present than when
it was not.

Is it necessary to have ribc-
somes at all post-synaptic sites in
the neurone? If so, what about
axo-axonic synapses? Most of
these are on the axon hillock, and
therefore near to the ribosomes in
the cell body. Synapses on axonal
presynaptic terminals are in fact
relatively rare®. .

These observations on ribo-
somes and RNA transport in den-
drites lead to a variety of interest-
ing questions, of which the most
pressing is: what proteins are
being synthesized? Are they the
proteins that form part of the

postsynaptic membrane such as
neurotransmitter receptors and ion
channels or are they, for example,
cytoskeletal proteins of the post-
synaptic density? Whatever pro-
teins are being synthesized in the
dendrite, it is clear that the local
presence of the machinery for
protein synthesis may allow a more
precise and rapid control of the
production and turnover of proteins
at the synapse. Such control may be
essential in the changes resulting
from experience and its storage in
memory.
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What, if anything, is a neurotrophic factor?

Y-A. Barde

The phenomenon of naturally occurming neuronal death and the
protein nerve growth factor (NGF) are often referred to when
new, putative neurotrophic factors make their débuts in the
literature. Afthough these factors are shown to support the
survival of embryonic neurons in vitro, i is doubtful if many of
them are true neurotrophic factors in the sense that, fike NGF,
they participate directly in the regulation of naturally occuming
neuronal deatlyin vivo.

it is a well-established feature of the vertebrate
nervous system that many (apparently redundant)
neurons are eliminated during the course of normal
development. This happens soon after the axons of
these neurons reach their targets, and there is very
good evidence that the target plays a major role in
regulating the number of neurons it needs to be
adequately innervated’. One of the reasons why
nerve growth factor (NGF) is a protein of consider-
able interest is that it fits perfectly into this biclogical
framework. First, NGF has the spectacular property
of keeping alive vertebrate neurons that would
simply not exist in its absence, as demonstrated in
vivo by the administration of NGF-antibodies®>.

Second, it is known to be present in its biologically
active form* and synthesized in the target tissues of
the very neurons that need it for survival®$. Third,
the amounts of NGF in the target are very small®,
and there is convincing evidence that these amounts
are limiting: the administration of exogenous NGF
to developing embryos prevents neuronal death in
ganglia whose neurons are known to depend on
NGF for survival’. One characteristic of NGF is its
neuronal specificity, in that it acts on sympathetic
and most neural crest-derived sensory neurons in
the PNS, and on some cholinergic neurons in the
CNS. Since naturally occurring neuronal death also
affects many neurons that are not dependent on
NGF, it is probable that other proteins with
properties analogous to those of NGF exist.
However, although many recent publications de-
scribe putative neurotrophic factors that at first sight
seem to fulfil such a role (see examples below),
further consideration of their characteristics makes it
unlikely that they regulate neuronal survival during
development. One of these features is quantitative
in nature: only very small amounts of such factors

Y-A, Barde is at the
Department of
Neurochemistry,
Max-Planck Institut
for Psychiatry, 8033-
Martinsned, FRG.
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survival during development. Indeed, the extreme
consequence of such a mechanism would be the
survival of those neurons whose target cells have
disappeared! Finally, FGF is not a rare protein: up to
0.5 ug g~ " wet weight of basic FGF can be isolated
from the _u_E_ﬁQum. Indeed, FGF has been de-
scribed as ‘the most abundant growth factor found
in mammalian tissue'?#, and its temporal and spatial
distribution is very broad: basic FGF in particular can
be found in most tissues, starting with the oocyte,
where large amounts of FGF mRNA have been
found, it being as easy to detect as fibronectin
mRNA in the Xenopus blastula'”.

Ciliary neurotrophic factor (CNTF)

CNTF is a 20 kDa acidic protein that supports the
survival of most chick embryonic neurons from the
PNS in vitro®>. This action is seen not only at very low
protein concentrations, but also at very low cell
density. Furthermore, there is no indication that
CNTF is a mitogen for non-neuronal cells, so that a
direct action of CNTF on neurons is very likely.
Nevertheless, it is not clear that CNTF plays a role in
the regulation of naturally occurring neuronal death
in vivo, its concentration in the target tissues of chick
ciliary neurons being very high. The purification
factor necessary to obtain a pure preparation from
these tissues at embryonic day 15 is only about 400-
fold?5. It is worth noting that to purify NGF from
‘normal’ target tissues (which, understandably, has
never been done), a purification factor of a few
millionfold would be necessary®. From the adult male
mouse submandibular gland (generally accepted as
being irrelevant to the developing nervous system),
the figure calculated for B-NGF is only slightly lower
than for CNTF, about 100-fold?5. Interestingly,
CNTFis presentin ciliary neuron target tissues early in
development (embryonic day 8)*%, though in lower
but still inexplicably high amounts before the period
of neuronal death actually starts in the ciliary gang-
lion. CNTF is aiso present in large amounts in
peripheral nerves®’. Since neuronal cell death does
take place, and is even dramatically increased after
administration of NGF-antibodies in sympathetic and
sensory ganglia (whose nerves presumably also con-
tain large amounts of CNTF), it is difficult to under-
stand how CNTF would operate in the context of
naturally occurring neuronal death. As mentioned
above, mechanisms allowing release, but neverthe-
less restricting the availability of CNTF would have to
be postulated. In any event, the in-vitro effects of
CNTF are so clear and dramatic on peripheral neur-
ons, whose axons can regrow after lesion, thatitis a
very intriguing and interesting molecule. Clearly,
more work remains to be done before it is possible to
assign to CNTF its biclogical role in vivo.

Brain-derived neurotrophic factor (BDNF)

BDNF is a 12 kDa basic protein purified from the
brain on the basis of its ability to support the in-vitro
survival of embryonic sensory neurons?®, Of all the
putative neurotrophic factors purified so far, BONF
is by far the rarest protein. Based on its specific
activity in vitro, a purification factor of over

1000000-fold was needed to obtain a pure
sample?®2®, Taking into account an overall yield of
about 20%, the purification procedure described
indicates that there is about 5 ng g~ wet weight of
BONF in adult pig brain?®. The hypothesis that the
amounts of BDNF might be limiting during normal
development in vivo has been tested by showing that
microgram amounts injected into quail embryos
decrease naturally occurring neuronal death in sen-
sory ganglia®®. Although the data obtained until now
are consistent with the idea that BDNF is, like NGF, a
neurotrophic factor present in limiting amounts,
much more needs to be done to prove that BDNF is
the endogenous protein that regulates neuronal
survival during normal development. In particular, it
is unclear where BDNF is synthesized, as there is no
direct demonstration that it is made specifically in the
targets of neurons needing it for survival. Finally, it
remains to be shown that BDNF is a secretory protein.
The availability of a cDNA probe and recombinant
BDNF should greatly help to resolve some of these
questions.

Conclusion

While extremely useful in characterizing new
proteins, in-vitro tests of neuronal survival have
limited predictive value: for the reasons discussed,
the ability to rescue neurons in vitro is, alone, no
jonger sufficient to imply that a new molecule will
rescue neurons during normal development. Thus,
in my opinion, the term ‘neurotrophic factor’, when
used in connection with the physiological phenom-
enon of naturally occurring neuronal death, should
be used to refer to agents likely to affect the
development or maintenance of neurons in vivo on
the basis of additional criteria. In particular, con-
siderations such as tissue distribution, mechanisms
of release and, above all, quantity, are necessary. it
remains to be seen what physiological roles many
new agents can play in vivo, having been character-
ized on the basis of their in-vitro activity. Elucidation
of their roles is an exciting task for the future.

Note:

After submission of this manuscript, two studies were
published demonstrating that the protein neuroleukin
discussed here is identical with the ubiquitous, cytoplasmic
enzyme glucose-6-phosphate isomerase3031,
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