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Abstract. The reliability of identification of a visual
target increases with time available for inspection of
the stimulus. We suggest that the neura! basis of this
improvement is the existence of a mechanism for
integrating a noisy firing rate over some period,
leading to a reduction in mean firing rate variance with
available processing time. We have determined the
experimental time course of the improvement in
reliability in a parallel search task where the available
inspection time is limited by the presentation of a mask
at various times after a brief stimulus. We compare the
resulting psychometric functions with the predictions
of a model based on Signal Detection Theory. The
model is based on the assumption that the reliability of
the observer’s response is limited by the variability of
the responses of individual neurons. The reliability of
the discrimination between two stimuli at the neuronal
level is then directly refated to the ratio of the difference
between their integrated mean responses (over many
trials) to the response standard deviation. This relia-
bility increases with inspection time. To demonstrate
application of the model to electrophysiological data,
“neurometric functions™ are derived from the firing
rates of a monkey V1 cortical neuron. The data were
obtained while the animal was active in a discrimi-
nation task. The results correspond qualitatively to
our observed human psychometric functions.

1 Introduction

One of the central goals of sensory neurophysiologists
is to understand the neural basis of perception. Barlow
(1972) has suggested that this probiem should be dealt
with at the level of the responses of the single neuron. A
number of attempts to match visual performance with
neural function at this level have been made recently
(for example see Tolhurst et al. 1983; Bradley et al.
1987; Skottun et al. 1987; Barlow et al. 1987; Newsome
et al. 1989). One of the main topics in this domain is the

study of psychophysical reliability and its possible
neural basis.

Psychophysical reliability in visval stimulus dis-
crimination has been shown to depend on task dif-
ficulty. The stimulus contrast (Skottun et al. 1987), the
available processing time (the stimulus onset asyn-
chrony, Julesz 1981), and the degree to which the
target differs from surrounding distractors (Bergen and
Julesz 1983a) contribute to this difficuity.

Discrimination reliability may be assumed to be
limited by neuronal response variability, and 2 number
of authors have examined this relation using Signal
Detection Theory. Tothurst ¢t al. (1983) have shown
that the probability that a neuron fire a criterion
number of impulses grows monotonically with the
visual stimulus contrast and that neural “psychometric
functions™ can be compared to psychophysical re-
sponses of humans. Skottun et al. (1987) showed that
some cortical cells exhibit the psychophysically ob-
served saturation of discrimination ability at quite low
contrast. Barlow et al. (1987) demonstrated that mon-
key cortical neurons exhibit a threshold for contrast
discrimination at about the same level as that observed
psychophysically in man. Tolhurst (1989, using an
information theory approach} found that a typical
cortical reuron can convey less than one bit of contrast
information in 0.5 s. Bradley et al. (1987) assessed the
minimum orientation and spatial frequency differences
that elicit a criterion level of discrimination between
two stimuli and found that the selectivity of the best
cells was comparable to the psychophysical thresholds.

Psychophysical studies by Julesz and collaborators
(Julesz 1981 ; Bergen and Julesz 1983b) have shown the
importance of available processing time for target
detection in pop-out experiments. However, the neural
basis for the development of psychophysical reliability
as a function of available processing time (the temporal
psychometric function) has not been explored. We now
present a neural model for this function.
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The general model posits a continuous flow of
noisy information in response to each of the two
stimuli to be discriminated, for a limited time. Under
certain mild constraints, any mechanism for infor-
mation integration and comparison will lead to a
decision reliability which increases monotonically with
available processing time to a saturated value, similar
to the form of the temporal psychometric functions. In
this sense, the qualitative predictions of the model are
exceedingly robust and general.

In order to make the model explicit and quantita-
tive, we suppose the information to be carried by noisy
response firing rates in a single neuron (or a group of
neurons acting together). We suggest that the psycho-
physical decision is based on the integration of the
firing rates over the available processing time. We
make certain further explicit assumptions for ease and
transparency of calculation, but the generalization of
the model presents no problems, nor would the
qualitative predictions be affected.

The dependence of reliability on integration time
could be measured for either of the two modes of early
visual processing of muiti-clement stimuli - parallel or
serial — or for an isoiated element. We have chosen
initially to work on the parallel mode. We shall begin
by describing the application of Signal Detection
Theory to such an experiment. We shall then carry out
the limited model in detail. We follow this calculation
with a description of the psychophysical experiment
and its resuits, and compare these results, and those of
related published works, with the predictions of the
model. Finally, in order to strengthen our claim to
robusiness of the model, we apply it to responses of a
monkey cortical cell. We find that the resulting curves
correspond quite well to the human psychometric
functions. This correspondence may also be taken to
indicate that the human psychophysical decisions are
based on the responses of no more than a few cells, but
the differences in conditions preclude firmer conclu-
sions at this point.

2 Signal Detection and the Parallel Search Task

Inatypical “pop out” task, a field of bars may be briefly
presented and the observer required to detect the
presence or absence of a horizontal target bar among
vertical distractors (Julesz 1981 ; Treisman and Gelade
1980; Sagi and Julesz 1985; Treisman 1985). The target
appears in half the presentations, randomly chosen,
and its position is varied randomly from trial to trial.
In order to succeed in such a behavioral task the
subject must of course make use of visual mechanisms
which can discriminate between the presentation of a
horizontal and a vertical bar of light.

We shall consider a neuron whose response firing
rate is orientation-selective. This tuning is statistical,
however, since there is a considerable variance in the
response firing rate of the cell to a given stimulus. Thus,
we shall need to define probability distributions for the
firing rates in response to presentation in the cell's
receptive field of a bar of the preferred orentation
(target or stimulus 1) and a bar of the orthogonal
orientation (distractor or stimulus 2). We shall begin
by assuming both these distributions to be Gaussian
and to have the same standard deviation (Green and
Swets 1974). We later drop these constraints by dealing
with real neuron data.

We shall show that as more processing time is
available the variance in the mean firing rates de-
creases so that if correct identification is limited by this
variance, this reliability improves with time. That is,
there is an increase in the discriminability between the
target (horizontal bar) and the distractor (vertical bar)
elements, as the degree of overlap between the two
distributions decreases. We shall use the formalism of
Signal Detection Theory to show that, for the present
simplified case, the probability of correct element
identification by this neuron is a monotonically in-
creasing, saturating, function of the processing time.

In principle, the available processing time can be
limited by the integration time of the system or by the
duration of the signal (the response of the system to a
stimulus presentation). This duration in turn may be
limited by the duration of the stimulus, or of the
response if it is intrinsically transient, or by the
imposition of a masking stimulus which erases the
response. Use of such a masking stimulus makes
possible a mapping of the time course of discrimination
reliability as a function of the time between stimulus
onset and masking onset (Stimulus Onset Asynchrony
or SOA). The present model assumes both an in-
tegration time and a response duration long compared
with the SOA,

In order to derive a psychometric function we shall
assume that each neuron (processor) is an independent
channel analyzing the element in its receptive field. We
shall use a multiple noisy channel approach to tackle
the problem of combining these signals (Shannon and
Weaver 1949). We calculate the expected rates of Hits,
Misses, Correct Rejections, and False Alarms as
functions of time.

In Sects.4 and 5 we present data of our own
experiments and those previously published by others
for parallel processing tasks and compare the results to
the model’s predictions. In the Postscript {Sect. 7} we
present electrophysiological data from cortical
neurons and use the model to predict neuron “psycho-
metric functions” from these data.
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3 Model

Consider a visual neuron whose response orientation
tuning is such that the cell is better driven by a
horizontal bar than a vertical bar. We start by
assuming for computational convenience that the
neuron’s reaction to the presentation of a stimulus is a
step increase in firing rate degraded by noise lasting
until the mask is presented. We call the mean firing rate
of the cell for a horizontal “target” stimulus X,
However, due to the stochastic nature of the cell’s
response to such a stimulus a normal probability
distribution of mean firing rates is expected around the
mean X ; with a standard deviation, . The same holds
for a less effective stimulus such as a vertical bar, the
“distractor” stimulus, for which the mean firing rate is
X p. We assume that the standard deviation is the same
for these two distributions. These probability distri-
butions, with arbitrary equal widths, are plotted in
Fig. 1A. For this case, the mean firing rates are jocated
at the peaks of the distributions for horizontal and
vertical bar stimuli, respectively, and they constitute
two points on the orientation tuning curve of this
hypothetical neuron.

The critical point is that the longer the stimulus is
available for processing, the more action potentials
there are, and the more reliable is the average firing
rate. Thus, for a square wave response, the variance
of both distributions is inversely proportional to the
available processing time of the stimulus. This is
illustrated by the two narrower distributions around
the same means displayed in Fig. 1B, which is for a
processing period that is four times longer than in
Fig. 1A. As a result of the decrease in o the detectability
of the target element increases with time. The same
point can be seen in the comparison of the inset panels
of Fig. 1, which display the action potential count, that
is, the rate integrated over 50 ms (upper inset panel)
and 200 ms (lower inset panel). The smaller degree of
overlap between the two distributions in the lower
inset panel compared with the upper inset panel
reflects higher discriminability.

We may now compute the percent of correct
detections based on the responses of our detector
neuron, as a function of the time the stimulus image is
available for analysis before the mask “erases” the
image (the SOA). Let p, (1) be the probability that a cell
“recognizes” correctly a target (horizontal bar) when
presented to it (by firing at a rate over some fixed
criterion k). This probability of a Hit is equal to the
area under the Gaussian distribution between k and
infinity:

@O
e—[X—X-rl’.'Za(thx_ (1)
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Fig. 1A and B. A model of a visual neuron’s responses based on
Signal Detection Theory. Gaussian probability distributions of
response of & hypothetical visual neuron to the presentation of a
horizontal light bar (target — right curves) or a vertical light bar
(distractor — left curves). For purposes of the model we have
assumed the standard deviations of the two distributions to be
equal. Although the cell’s preferred stimulus is a horizontal bar,
variability in the mean response rates reduces the neuron’s ability
to convey reliable information about the orientation of the
stimulus. However, the variance in the mean firing rate decreases
with the available processing time due to a larger sample size.
This is shown in the narrower probability distributions of the
lower panel (B) compared to the upper panel (A). Equivalently,
this is seen in the smaller area of overlap between the distri-
butions of the integrated firing rate as shown in the insets.
Processing times for the lower panels were four times those of the
upper pancls. Thus, the reliability of the processor’s “decision™
about the stimulus orientation is a monotonically increasing
function of the processing time

1}

Similarly, the probability of a Correct Rejection of a
stimulus not containing the target is:

1 k 2
Polt) = - e [X—XoPr2et¥Pq x , 2
o o) _Im 2)
where the negative firing rates implied by the — oo limit
correspond to inhibition of ongoing activity. Note that
in (1) and (2) we have expressly indicated the de-
pendence of o on processing time,
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The reliability index of a neuron, that is, the
probability of correct responses is then the mean of
p.(t) and po(2). This index, however, is dependent on
the choice of criterion {(Green and Swets 1974). An
alternative criterion-independent parameter is the
detectability

Xr—X
din= 2r—4p 3
0="12"2, G)
where o{t) is the standard deviation of the probability
distributions of the response to the target (T) and
nontarget (D) stimuli, for a stimulus of duration ¢.

As discussed above, o{t) narrows as the square root

of time. Then,

_ o
Ve

where o{t) is defined as the difference between the mean
responses to the target and the distractor, (1)
=X;—Xp, and t is therefore the time when the
detectability, d'(z), is unity. Then

d{t)=)/ (/7). )

Thus an improvement in the reliability of the neuron’s
“decision” is expected with time,

If one chooses a criterion one can calculate the
probability of correct responses from either of the
above approaches. In our model case of two equal
Gaussians, the optimal criterion is the crossover point

(1) 4)
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Fig. 2. Reliability index (RI), the fraction of correct identifi-
cations, [Hits + Correct Rejections]/2, of the stimuli presented to
our model neuron is plotted as a function of processing time. Hits
and Correct Rejections were calculated by integrating the area
under the appropriate Gaussian distribution between some fixed
criterion k and + o, respectively [see Egs.(1)and (2) of the tex1]. k
was assumed to be optimal, that is, 50 spikes/s in Fig. 1; in this
case Hits and Correct Rejections are equal and the curve is then
also valid for either separately. RI begins at the chance rate of 0.5
since the two stimuli are presented with equal probability

0

between the two curves. The resulting prediction of the
model is shown in Fig. 2, where we plot the percent of
correct responses (Hits plus Correct Rejections as a
percent of trials) expected at the single neuron level (the
reliability index) as a function of processing time.

In order to analyze the observer’s performance for
a multi-element display we must now combine infor-
mation from the different processors (Shannon and
Weaver 1949). Consider a noisy binary channel with
two possible inputs {0,1} and outputs {0,1}. Let a
vertical bar be equivalent to 0 and a horizontal bar
equivalent to 1. Such a channel is drawn in Fig. 3. The
transition probability matrix:

[Po ‘10]

q4; D"

will be calculated according to (1) and (2) with the
appropriate integral limits. Notice that the channel’s
reliability improves with time according to (4).

It is assumed that in a parailel search situation all
processors are activated simultaneously. Furthermore,
if N elements are present they are all scanned with the
same degree of reliability depending on the SOA. In the
special case where the type and density of distractor
elements projected on the screen is kept constant, to
eliminate variability in the effects of lateral inhibition
(Sagi and Julesz 1986; see Discussion), we may assume
independence between channels and use a multiplica-
tive model to compute the observer’s expected re-
sponse. The observer’s response is then “yes” (a target
was present in the stimulus) if at least one of the
processors signals so and “no” otherwise. Since the
processors’ answers are assumed to be independent
there can be occasions of false detections of more than
one target and in all such circumstances we expect the
observer to respond “yes” rather than “no”. Thus, the
probability that the subject will correctly report that

P,

0 »0

SENDER RECEIVER

1o 1

P,

Fig. 3. A noisy binary channel analogy. Each orientation pro-
cessor can be seen as a binary channel with two possible inputs
{0=vertical bar, 1 =horizontal bar) and outputs. The depen-
dence of the transition probability matrix on time can be directly
calculated by using the Signal Detection Theory model {see Fig. 2
for the special case of optimal criterion). Assuming that the
channels are independent of one another, one can predict the
observer’s overall performance as a function of the processing
time



there was no target present in the display (Correct
Rejection) is the product of the probabilities of N
processors correctly signalling that there is no target:

P(CR)=[fo(t)]", (6)

where f, is the probability of a Correct Rejection by a
particular neuron in whose receptive field there is a
distractor element.

The likelihood that any detector neuron wili
encounter a target is 1/2N since there are N stimulus
elements and a target is present in half the trals.
Accordingly, neurons must be strongly biased against
False Alarms. In the symmetrical model we develop,
for optimal performance the bias must ensure that the
number of False Alarms equals the number of Misses.
The a priori probability for Correct Rejection by a
neuron is thus increased from 0.5 to (2N —1)/2N, and
this probability increases with processing time by a
degree proportional to p, from (2). The probability of a
Correct Rejection by a neuron in whose receptive field
a distractor element is displayed therefore becomes

2N—1 1 :
folt)=——+ WPO(I)- 7

2N
The probability of a subject incorrectly reporting the
presence of a target (False Alarm) is the complement of
the probability for a Correct Rejection,

P(FA)=1—P(CR). 8

The probability of failing to report the presence of a
target (Miss) is the product of (N—1} processors
correctly signalling that there is no target in their
receptive fields and a single processor failing to report
the presence of a target in its field:

PM)=Lfo0)]" "V [1-£,0], ©)

where the probability, f,(z), of a Hit by the neuron in
whose receptive field there is the target element is the a
priori probability of the element being the target, 1/2N,
increased towards 1 by a degree proportional to p,(t)
from (1), that is,
1 2N-1

fi)= 55 + S50, (10)
The probability of correctly reporting the presence of a
target (Hit) is the complement of the probability of a
Miss,

P(HY=1—P(M). (11)
The probability of correct responses for the array of
neurons then becomes

P(H)+ P(CR)

% correct= 3 ,

(t2)
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where these variables can be obtained from the cell
firing rates and variances by using (6)—(11) and (1) and
{2). The corresponding curve looks quantitatively like
that of Fig. 2, departing from the origin with a
monotonically declining positive slope. In the foliow-
ing sections we present data from psychophysical
experiments and compare their results with the predic-
tions of this model, using (6})—(11) to modify Fig. 2.

4 Comparison with Psychophysics
4.1 Experimental Design

The experiments conducted to test this model were a
typical pop-out search task. Briefly flashed stimuli
were followed by a mask after a variable time interval
(SOA), and the mean percent of correct answers for the
various SOAs (the psychometric function) was mea-
sured. This method (Bergen and Julesz 1983b) has an
advantage over previously used reaction time tech-
niques for understanding early vision, because the brief
stimulus presentations ensure that no eye movements
are involved. Observers had to report the presence or
absence of an odd-man-out. This was a red horizontal
element that in some experiments was embedded in an
array of green horizontal distractor elements, so that a
color judgment had to be performed, and in other
experiments was embedded in an array of red vertical
distractor elements, so that correct target identifi-
cation was based on orientation differences.

4.2 Methods

4.2.1 Visual Stimulus. The stimuli were displayed on
the face of a Barco CD-233 short-persistence color
monitor. The display was controlled by a PDP 11/23
computer via a Peritek VCG-Q color graphics video
interface. Data collection and analysis were carried out
on the same computer. Figure 4 illustrates the tem-
poral and spatial pattern of the stimuli used. The
number of elements was 64 (8 x 8), and the entire
stimulus grid covered 10x8 cm. The target never
appeared as one of the outer shell elements. This
ensured that the target always had distractor element
neighbors on all sides. A jitter of 20% of the inter-
element distance was introduced into the location of
elements to prevent detection based on luminance
differences or on a departure from overall symmetry. A
fixation point of size 2x2min of arc was present
throughout the experiment at the center of the stimu-
Ius. The stimulus was viewed from a distance of 170 cm.
Distractor elements were either red vertical or green
horizontal bars. Bar length and width were 14 and
3.5min of arc, respectively. The target was a red
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Fig. 4. Spatiotemporal properties of the stimulus. The stimulus
was presented for 33 ms and was followed by a mask after a
variable delay (stimulus onset asynchrony or SOA; range
50-200 ms). The target was present in half the trials and was
randomly positioned anywhere except in the outer shell of
elements. The case shown is for 64 elements with the target being
a horizontal bar and the distractors vertical bars. Other experi-
ments were done with target and distractors differing in color
rather than orientation. Jitter was introduced into the exact
location of the elements to prevent detection based on luminance
differences or symmetry breaking

horizontal bar of the same size. The colors were nearly
isoluminant using the flicker criterion so that dis-
tractor differences in the color dimension were mainly
the result of chrominance rather than luminance
differences. The arrangement of the distractors and the
position of the target were randomized between trials.
The SOA was randomized between trials (range
50-200 ms in steps of 16.6ms) and the stimulus
presentation time was 33.3ms to prevent a second
fixation. Mask duration was 100 ms.

4.2.2 Task Procedure. Subjects were asked to report
the presence or absence of the target by pressing the
appropriate key on the computer keyboard. The target
was present in half of the trials and an auditory
feedback tone was given following every error made by
the subjects. The rate of correct responses was cal-
culated as the sum of the Hits and Correct Rejections
divided by the total number of stimulus presentations.
In this way effects on the psychometric function of
subjective differences in the decision criterion were
reduced. Performance was measured as the mean
correct response rate at various SOAs, and described
by a psychometric function for each subject. Each data
point in these psychometric functions is the average of
50 repetitions.

4.2.3 Subjects. Five subjects participated in the pop-
out experiments. All were naive to the purpose of the
experiment and had normal or corrected-to-normal
vision. All subjects were given 100 practice trials before
data collection was begun.
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Fig. 5A and B. Percent of correct identifications of a target
element in the presence of background elements (100 x Hits plus
Correct Rejections divided by the total number of trials). A Data
and psychometric functions for three subjects using horizontal
colored bars. A red target replaced in half the trails one of the
central 36 green distractors in a field of 64 elements. B Data and
psychometric functions from three subjects for detection of a
horizontal target which replaced in half the trials one of the
central 36 vertical bars in a field of 64 bars. In addition, the stars
and diamonds represent data from two subjects of Bergen and
Julesz (1983b) for an “L” target in a field of 35 * 4+ 7™ distractors.
The same function fits all the data well; the different values of
parameters in our data and those of Bergen and Julesz may be
due to different stimuiation conditions. In all cases the curves
show the best fit to the data of the prediction of the model
described in the text
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4.3 Results

The percent of correct responses as a function of SOA
was measured for both the color and the orientation
pop-out tasks. Figure 5A and B shows examples of the
psychometric data obtained for a stimulus containing
64 elements in which the target was present as one of
the inner 36 elements in half of the trials. The data
confirm earlier results (Bergen and Julesz 1983b) that
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both color and orientation may serve as textons for
rapid and eflortless detection of an odd man out.
The data of Fig. 5 exhibit a sigmoidal or threshold
form which differs from the curve predicted from {12)
which looks like that of Fig. 2. However, a single
reasonable addition leads to a good fit: The assump-
tion that there is a threshold time, t;, which is a
minimum processing time, or equivalently that there is
a minimum number of neuron action potentials below
which no information gain is achieved. The resulting
psychometric functions are shown in Fig. 5 by the
continuous lines. There are now two free parameters,
to, the threshold time, and 7, the time for which the
standard deviation of the Gaussian distributions of the
firing rates equals the difference between the means of
the firing rates for vertical and horizontal bar stimuli,
that is when &' = 1. The best-fit psychometric curves are
shown in Fig. 5. The fit is quite good in all cases. T was
in the range 25-96 ms for different observers; and t,
was in the range 10-96ms. These curves were con-
structed using (12) of Sect. 3, where N =36 elements.

5 Comparison of the Model
with Other Psychometric Data

We have also checked our model's performance with
data from experiments done by Bergen and Julesz
(1983a). The main purpose of their experiments was to
show that performance decreases as texton gradients
become smaller. They reduced the gradients by chang-
ing the orientation differences between the back-
ground elements (distractors) and the target from
90 deg down to 10 deg. This is equivalent to bringing
the two Gaussian distributions of Fig. 1 closer to-
gether, as the two mean firing rates are in most cases
closer when the orientation differences between the
two stimuli are smaller. Thus, we expect discrimina-
bility to deteriorate as texton gradients decrease in
our model as well. This does not mean that we rule out
effects due to lateral inhibition (Sagi and Julesz 1986)
which may aiso contribute to the deteriorating perfor-
mance, but discrimination performance deteriorates
also in the case of absolute judgement of the orien-
tation of a single element in consequence of reductions
in the difference between the two orientations from
which the stimulus is chosen (Dick and Hochstein
1988). Thus, lateral inhibition does not seem to be the
sole factor underlying this phenomenon (see
Discussion).

Figure 6 shows the data from Bergen and Julesz
(1983a), for 6 different background orientations (90, 75,
60, 45, 30, and 20 deg} while the target was always
vertical (0 deg). Data for SOAs longer than 200 ms
have been omitted. The continuous lines represent the
model’s best fit to the data. The model parameter
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Fig. 6. Data (from Bergen and Julesz 1983a) and psychometric
functions (from our model) obtained for five different texton
gradients. The target stimulus was always a vertical bar while the
distractors differed from the target by 90° (X7s), 75° (diamonds),
60° (squares), 45° (triangles), 30° (asterisks), and 20° (circles). As
the orientation gradient becomes smaller target detection
becomes harder and slower {greater r and ¢,), as seen in the inset
{z: triangles; 15: squares)

whose value should be varied as a function of the
distractor element orientation is the mean firing rate of
the response to the non-target stimulus X . This could
affect the values of both ¢, and 7. The values chosen for
best fit to the data (Fig. 6, inset) suggest that there is in
both cases a monotonic dependence on the orientation
angle difference between the two stimuli.

6 Discuossion

Our main goal in this paper is to suggest a plausible
model at the level of the single cortical neuron that may
account for the improved performance with SOA that
has been shown for a number of simple detection tasks
(such as orientation and color discrimination). We
have proposed that the discrimination is limited by the
signal-to-noise ratios of the firing rates of single cells,
integrated over the available processing time (SOA).
Neurons capable of carrying out these tasks - that is,
having limited tuning curves — are common in visual
cortex. Given these tuning curves and the varability
of each point on them we were able, using Signal
Detection Theory, to calculate the percent correct
responses an ideal decision maker would achieve.
This variability decreases and therefore the percent
correct response increases with increasing available
processing time (SOA).

The available processing time is the integration
time of the decision process, or the duration of the
useful signal, whichever is shorter. This duration is
longer than that of the stimulus by 100-200 ms (e.g.

ERET R
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Spitzer et al. 1988, Fig. 1) so the integration time
optimally should be at least this number.

The signal-to-noise ratio or detectability depends
not only on the signal and noise variability, which
corresponds to the widths of the Gaussians of Fig. 1A,
but also on the widths of the tuning curves which
corresponds to the separation of the Gaussians. These
widths can be affected by task difficulty (contrast:
Barlow et al. 1987; stimulus separation along the
relevant dimension: Spitzer et al. 1988) and by atten-
tional shifts (Hochstein and Maunsell 1985), as well as
other factors such as brightness, color, and size.

An independent factor which may also affect the
tuning curves and therefore the detectability and which
we have not included in our model is element density.
Sagi and Julesz (1986) have shown the effect of element
density on the detection of feature differences and
claim that “preattentive processing is limited to short
range interactions that operate only at a high density
of elements. ... The operation of the preattentive
system c¢an then be accounted forby a simple system of
feature detectors with local connections of inhibitory
or excitatory type between similar detectors.” There
have been several reports of inhibitory surround effects
outside the classic receptive field (Aliman et al. 1985).
Furthermore, cells which are sensitive to orientation
gradients or color gradients were found in extrastriate
areas V2 and V4, respectively (De-Yoe et al. 1986;
Desimone et al. 1985). This effect, like the temporal
integration effect we propose, is passive 1n nature (ie.
there is no need for active attention to turn it on).

A point of view similar 1o the one presented here
was taken by Tolhurst et al. (1983) and Skottun et al.
(1987). Tolhurst et al. (1983) argued that “the varia-
bility of the discharge of visual cortical cells in cats and
macaque monkeys limits the reliability with which
such neurons can relay signals about weak stimuli. ...
The probability that a neuron will fire a criterion
number of impulses in a stimulus trial grows mono-
tonically with the contrast of a sinusoidal grating
stimulus.” Bradley et al. (1987) have followed this line
of thought in trying to estimate the minimal difference
in orientation or spatial frequency that could produce
reliable changes in the response characteristics of
individual neurons in the cat visual cortex. They
compared these values with orientation and spatial
frequency thresholds determined behaviorally. Their
results point to a correspondence between the
behavioral thresholds and those estimated from the
most selective single cortical cells in the cat. Fur-
thermore, the existence of a true threshold in the
contrast discrimination ability of cortical neurons,
which is comparable with the psychophysical thresh-
old (Barlow et al. 1987), corresponds to our finding
that there is a true temporal threshold (t,) in ability to

discriminate orientations in brief presentations, both
at the perceptual and the neuronal levels.

We conclude that the improvement with available
processing time of psychophysical performance tasks
may consistently be modelled as arising from decision
making at the level of the single cortical neuron. In
order to show that the model we have developed is
robust against changes in its specific assumptions and
that the psychophysical performance predicted from
the responses of real neurons is in the right range, we
now carry out our model for a monkey V1 cell.

7 Post-Script: Comparison with Physiological Data

Real neurons violate at least two of the model assump-
tions: That the response rate has a square-wave form
and that the target and distractor rate distributions are
Gaussian and of equal width. We shall now demons-
trate that the qualitative correspondence between the
model predictions and the psychophysical observa-
tions is unaffected by this violation. Furthermore, it is
more plausible that neurons compute by a counting
process (integrated response over some period) than by
directly averaging firing rates and we refine the model
accordingly.

Our present data were collected from monkey V1
neurons while the monkey was performing an orien-
tation discrimination task. However, we do not have
monkey psychophysical data and use human data for
comparison. Furthermore, we did not use masking
stimuli in these experiments and simulate the SOA
paradigm by integrating data over various response
periods. Accordingly, we claim only to demonstrate
the reasonableness of the model.

It has been reported that the variance of cortical
cell responses is roughly proportional to the magni-
tude of the response itself (Dean 1981; Tolhurst et al.
1983), rather than constant for all responses, as
assumed in our model. The standard deviation of the
response is then proportional to the square root of the
integrated response. Thus, the basic notion of improve-
ment of identification with increased available process-
ing time is expected to remain firm when USIng Neuron
action potential data. In fact, we did find that for our
¥1 data, as well, this relationship holds. This finding is
most easily related to the psychometric function if we
remember that the detectability of the signal is a
function of the distance between the mean integrated
responses to the signal and distractor, divided by the
square root of the sum of the squares of the standard
deviations of the two responses.

We check these ideas by considering the variability
of the response of single units in the primary visual
cortex (V1) in the awake, behaving monkey.
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7.1 Single Neuron Electrophysiology

7.1.1 Methods. Recordings were made from 17 Vi
neurons in a female rhesus monkey ( Macacca mulatta)
trained to move between its cage and a primate chair. A
head bolt, scleral search coil, and recording chamber
were implanted under aseptic conditions using bar-
biturate anesthesia. Transdural recordings were made
from striate cortex with glass-coated Pt/Ir electrodes.
The electrode signal was amplified and filtered, and
monitored on an oscilloscope and audio-monitor.
Single units were identified on the basis of waveform,
and their impulses were digitized using a window
discriminator.

Sinusoidal gratings of 4 different orientations
(0-135° in steps of 45°) were projected sequentially in
quasi-random order on an oscilloscope screen for
500 ms. Contrast was 36-57%; mean luminance
3 cd/m?*. The monkey had to identify the stimulus that
was identical to a cue stimulus, which was always the
first stimulus presented, by releasing a lever. He was
rewarded for a correct response with a drop of fruit
juice. After training, the monkey’s mean reaction time
was 330 ms at a success rate of 85%.

7.1.2 Results. Figure 7 shows a typical cell’s tuning
curve for the different orientations. The inset peri-
stimulus time histograms (PSTHs) show the cell’s
mean response firing rate as a function of time for each
of the four stimuli over 150 trials on average.

Itis evident from the PSTHs that the cell is selective
for orientation. However, it is not clear how well it can
discriminate between two differently oriented gratings
since the PSTH conveys no information about the
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Fig. 7. Orientation tuning curve of a cortical cell in ¥1 of an alert
monkey. The figure shows the dependence of the integrated
responses on orientation. The integration was started 50 ms after
stimulus presentation and lasted 200 ms. Error bars are the
standard errors of the mean (N =~150). The inscts show the PST
histograms for the four different stimuli. (Stimulus duration was
500 ms.) The reliability with which the cell can differentiate
between two different orientations depends both on the sepa-
ration of the values of the integrated responses and on their
variability
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Fig. 8. Histograms of integrated responses of the visual neuron
whose tuning curve and PSTH are shown in Fig 7. These
histograms are plotted for each of four different orientations
{columns) and give different integration times (50-2350 ms)
beginning at stimulus onsct. Notice that both the mean response
{denoted by an arrow) and the variance increase as the in-
tegration time is increased. Calibrations are shown at the top
right. X axis: Integrated firing rate. ¥ axis: Relative Frequency

variance about the mean response. We plot in Fig. 8
the distributions of the integrated responses of the cell
for the four fixed orientations as a function of the width
of the window of integration, starting from stimulus
presentation. As this window is increased the in-
tegrated response (the number of action potentials
occurring inside the window) increases and so does the
variance of the integrated response.

The variance, however, is roughly proportional to
the integrated firing rate. Thus, the degree of overlap
between the two response distributions (for instance, to
45° and 135° gratings) decreases, making it easier to
discriminate between the two stimuli. This is demon-
strated in Fig. @ which compares the results of in-
tegration over 60 and 100 ms. Note the qualitative
resemblance of the distributions in Fig. 9 to the
theoretical distributions in the insets of Fig. 1.

If we assume the decision-maker’s criterion to be at
the point of intersection of the two response distri-
butions to target and distractor elements, respectively
(arrows in Fig. 9) we can calculate the rates of Hits,
Misses, False Alarms, and Correct Rejections and we
can reconstruct the dependence of the percent of
correct “identifications™ of a stimulus on the action
potential integration time by this unit. This is shown in
Fig. 10 (triangles). This psychometric function at the
single neuron level will be called the neurometric
function. We measured the neurometric functions for
11 neurons in primate V1 as in Fig. 10. The neuro-
metric functions passed 75% reliability in 5 of these
cells. In these five, the integration time required to
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window width: 60 ms.
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Fig. 9. Integrated response distributions for 45° {cross hatched)
and 135° (black) stimuli for two different integration periods.
The window of integration was 60 ms and 100 ms in the upper
and lower panel, respectively. In both panels the point of
intersection between the response distributions to the target and
the distractors is indicated by an arrow. The degree of overlap
between the two distributions is reduced as the available
processing time is increased. Thus discriminability increases
with increasing integration time at the single detector level

reach a criterion of 75% correct discriminations
between a target of the neuron’s preferred orientation
and a distractor of the orthogonal orientation was
140+ 37 ms and the average maximal reliability was
85+ 5%.

There are two problems with the above approach,
however. There is a need to determine a criterion in
order to decide whether a particular response indicates
a vertical or a horizontal stimulus and in order to set
this criterion optimally, the response distributions
must be known. Furthermore, this criterion is time
dependent: Note the different positions of the arrows
in Fig. 9. It is not clear how this criterion could be
determined physiotogically.

0.90 -

e o
3 B
L 1

P(correct)

00
S0A (ms)
Fig. 10. The percent of correct discriminations between two
stimuli (45° and 135°) as a function of the integration time at the
level of the single unit (triangles). This neurometric function was
calculated by applying Signal Detection Theory to the results of
Fig. 9 with the cell criteria set at the points of intersection of the
two distributions (arrows in Fig. 9). Alternatively, the neuro-
metric function of the decision cell in the next layer {see Fig. 11) is
plotted by calculating the area under the ROC for each
integration time (see text for details). These curves may be
compared with the psychometric data and model of Figs. 5 and 6

However, improved petformance and criterion
independence may be obtained by the use of a simple
network of the sort described in Fig. 11a (see also
Newsome ¢t al. 1989). The cells of the first layer are
similar to the V1 neurons from which we recorded (e.g.
Fig. 7) which display orientation preference, for
example for horizontal (k) or vertical (v) stimuli,
respectively. The next layer’s cells (the decision
neurons — e.g. the H neuron) are excited by one
preference neuron (c.g. h) and inhibited by the other
{e.g. v). This computed difference in the response of the
preference neurons, at any time, is a measure of the
degree to which the criterion has been surpassed, and
of the reliability with which the orientation of the
stimulus has been detected. There is no criterion
dependence on time. For example, the horizontal
decision neuron (H) would respond if the horizontal
preference neuron (k) gave a stronger response than the
vertical one (v), irrespective of the integration period or
the absolute strength of the responses.

This case is similar to the results of a 2AFC
procedure in psychophysics with the response of the
vertical preference neuron corresponding to the
observer’s internal representation of the first stimulus,
and the response of the horizontal preference neuron
corresponding to the representation of the second
stimulus. It may thus be shown that the percentage of
correct responses of a decision neuron is simply the
area under the receiver operating characteristic (ROC),
assuming the noise of the two preference neurons is
uncorrelated (see Green and Swets 1974).
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Fig. 11. A A simple two layered network to compute orientations effectively. The first layer of preference neurons have response
distributions similar to the ones described in Fig. 1. The h and v stand for horizontal and vertical preference neurons, respectively.
Thus the v neuron has interchanged response distributions to horizontal and vertical stimuli with respect to the i peuron. The next
layer cells (decision neurons H, V) summate the responses of the preference celis with opposite signs. Their output reflects the
reliability of the detection of horizontal or vertical stimuli, respectively, for any time and is criterion independent (see text). B ROC
curves computed from the response distributions displayed in Fig. 9 by varying the criterion for two different integration periods:
60 ms (squares), 100 ms (triangles). The diagonal line is the ROC for zero integration time where the response distributions for the two
stimuli are the same. The area under the ROC corresponds to the percent of correct responses made by the decision neuron (see text)
and its dependence on integration time is plotted in Fig. 10 (squares}

We plot two ROC curves in Fig, 11b, by varying
the criterion in Fig. 9 for each of the two different
integration times: 60 ms (squares) and 100 ms (trian-
gles). The performance of a decision neuron for a
particular integration time may be calculated as the
area under the appropriate ROC. The integration time
dependence of this performance measure is displayed
in Fig. 10 (squares).

In theory, if the inpuis from the h and v preference
neurons were uncorrelated and the response distri-
butions were Gaussian, with mean responses to a
horizontal stimulus, X, and X, respectively, and with
the same standard deviation o, one would expect the
detectability of the H decision neuron to improve by a
factor of the square root of N, where N is the number of
preference neurons [with N/2 vertical (v) and N/2
horizontal (h) neurons]:

d'=]/N¢X"—_‘-)—(~".

a

Note that the neurometric function based on the ROC
{Fig. 10 squares) is above that based on an “optimal”
criterion (Fig. 10 triangles). That some points on this
curve are somewhat below the 50% level may be due to
noise at times shorter than the cell’s response latency
and before the neuron’s response threshold is reached.
This noise would decrease in the same way with ]/N

The correspondence between the psychometric
function (Figs. 5 and 6} and the neurometric function
(Fig. 10) supports the hypothesis that binary decisions
regarding simple features such as bar orientation can

be based on the activity of single units in the primary
visual cortex. Improved neuron performance with
increased processing time may be a basis for a better
target discrimination during simple search tasks.

We conclude that the results of the model analyzed
in the body of this report do not derive from the
assumptions made there regarding neuron response
time course or their Gaussian distributions of equal
width. Rather the results are robust and valid as well
for real neuron firing rate data in the behaving,
unanesthetized animal.

More quantitative conclusions require a study in
which both physiology and psychophysics are carried
out on the same animal. For instance, if the rise time of
identification success is faster behaviorally than it is for
a single neuron, it may be assumed within the model
that more than one unit participates in the compu-
tation of a stimulus orientation.
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