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Artificial Intelligence

Drew McDermott Tomaso Poggio

Prior to the invention of the computer, information was something that
was transmitted and stored, but it could be processed only when exam-
ined by a human being. The human was what made it information, by
giving it meaning. However, the computer has made it possible to build
autonomous, formal agents that process and condense information while re-
specting its meaning. For example, a payroll program performs a long series
of uninspired actions that produce the right answer. The objectification of
information made it conceivable that our original picture of the relation-
ship between humans and information processing could be turned around:
instead of humans making information processing possible, perhaps informa-
tion processing makes humans possible. This hypothesis, that the operation
of the mind is to be understood in terms of many small acts of computing
going on in the brain, has captured the imagination of an entire generation of
researchers since it was first proposed by Alan Turing. Not everyone agrees,
however, that all mental activity can be explained in terms of computation,
but it is obvious by now that large parts of what the brain does (say, in vision
and natural-language processing) can be analyzed as symbolic or numerical
computing. It seems pointless to draw boundaries around other parts of the
mind where computing must not trespass,

Artificial intelligence (AI) can thus be defined as the science that studies
mental faculties with computational models. How much of the mind can
ultimately be accounted for this way is as yet unknown. It is important
to note that computational model does not refer exclusively to a Turing
machine or a programming language. Parallel computers, analog networks,
and cellular automata represent acceptable models of certain computations.
A new branch of psychology, called cognitive acience, came into being in the
late 1950s, inspired by the work of Newell and Simon in Al. The work of
the cognitive scientists has helped replace behaviorism with less simplistic
models of humans. For example, work on visual imagery, which had all but
died out, is now alive and well. Philosophy has been influenced by AI as well.
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42 Scientific Contributions of Computer Science

One of the most debated questions in the philosophy of mind is the status
of “functionalism,” which explains mental states as analogs of the states
of computers. Many philosophers believe that this kind of model explains
much of psychology; the debate is whether it is compatible with the facts of
consciousness and intentionality. This debate could not be held without the
production of actual models of mind.

It is not easy to describe AI tidily. At this early stage, it is not clear
whether Al is based on a few fundamental principles or is a loose affiliation
of several different subfields, each concentrating on a different part of the
mind or on different applications. This report discusses some of the most
active areas of Al as examples of the kind of work being done.

Knowledge Representation and Reasoning

One candidate for a unifying principle in Al is the idea of knowledge represen-
tation. Although in some sense any computer program embodies knowledge
(if only of what to do next}, AI programs are unique in that they often make
inferences from complex pieces of knowledge expressed in general notations.
The knowledge implicit in a procedure is made manifest only by executing
that procedure, whereas knowledge represented declaratively as a set of facts
is explicit from the start and is accessible in more than one way. Indeed, such
knowledge can be assembled, analyzed, and corrected before we have decided
upon any particular way of using it. We can take as an analogy the laws
of Newtonian mechanics, which can be expressed in abstract mathematical
equations, and then later applied for many different purposes.

An important requirement for a useful representation language is that the
meaning of its sentences should depend compositionally only on the mean-
ings of the constituent structures of the sentence and not on the meanings
of other sentences or on other surrounding context. As a way of ensuring
this property, we are naturally led to the use of logic-based notations, in par-
ticular, various versions of the first-order predicate calculus. Starting in the
late 1960s, Al researchers came to realize that computers could not achieve
sophistication in various reasoning tasks unless they had formal encodings
of large quantities of information about their problem domains that could
be processed efficiently. This realization soon led to the elaboration of new
problems:

1. What kind of facts can be expressed in formal languages?
2. What is the best method to embody knowledge in data structures?
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3. What reasoning algorithms can be brought to bear?
4. How is new knowledge acquired?

Many of these problems now have at least partial solutions, which we discuss
briefly.

Concerning the most basic question of what can be expressed in formal
languages, experience has been encouraging. There are by now several de-
tailed frameworks for representing general facts about time, physics, and
the mental states of agents, as well as more specific facts about medicine,
business, geology and other subjects (particularly in the territory of expert
systems). It remains to be seen, however, whether these pieces can be put
together into a whole that covers a large chunk of human knowledge in a
unified way.

It is worthwhile studying formal languages in isolation, but for the com-
puter to make use of them, the formal assertions must be both connected
to information stored ir data bases and themselves embodied in data struc-
tures that summarize relations between assertions. There are now several
known ways of doing this, depending on the application. Many of them in-
volve translating logical assertions into systems of nodes, with links between
them that can be followed by computer programs to perform inferences ef-
ficiently. Such semantic nets are also very useful for storing information
about hierarchical classifications of objects.

The study of reasoning algorithms has a somewhat different flavor. The
initial focus of work in this area was on making deduction more efficient. The
result was the discovery of elegant algorithms, based on Robinson’s resolution
principle, and employing the unification algorithm. Our understanding of
how to carry out deduction has been revolutionized by discoveries like this.
But for any given application there are many nondeductive components.
Hence, there has been a blossoming of several different reasoning algorithms
and an undermining of the notion of a general foundational principle for
Al In practice, each reasoning algorithm follows its own domain-dependent
strategies and tends to demand somewhat different knowledge representa-
tion techniques. On the other hand, since it would be very usefu! to have
a general theory of reasoning, this state of affairs has exerted a pull on Al
theory to come up with broader reasoning algorithms.

One result of the study of reasoning in Al has been the invention of
nonmonotonic logics, or pseudodeductive systems in which conclusions are
revocable given more information. There are several paradigms for accom-
plishing this extension of traditional deduction. Most of the results are in
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what is known as a circumscription framework. Circumscribing a predicate
P in a theory means adding an axiom schema or second-order axiom to the
effect that “Any predicate P’ that satisfies the same laws as P and js as
strong as P is no stronger.” This new axiom allows us to conclude not P in
more circumstances than we can from laws for P alone. In semantic terms, it
rules out all models of the original facts about P except the minimal models.
Different versions of the circumscription axiom yield different kinds of min-
imality. Circumscription is nonmonotonic because adding more laws about
P and recircumscribing can eliminate conclusions.

Many of the new reasoning patterns discovered by Al researchers have
not been reduced to deduction, and it is not clear whether deduction can be
extended to capture them; hence, they must be taken on their own terms.
One example is work in qualitative physics. Quantitative simulation is in the
domain of scientific computing, but human engineers can often predict or ex-
plain the behavior of a system without needing detailed numbers describing
its components. Elegant methods now exist for predicting, as specifically as
possible, the behavior of a system starting from a qualitative description of
how its parts interact. One can think of these descriptions in a certain sense
as qualitative differential equations;, which specify the directions in which
state variables influence each other but without specifying the magnitudes.
The prediction algorithms note the directions in which quantities are chang-
ing and the interesting thresholds towards which they are heading. If just one
quantity can reach its threshold next, that tells the program unambiguously
what the next gualitative state of the system will be. Qualitative states can
be defined technically as regions in state space in which all quantity-influence
relations remain the same. In many cases, the behavior of the system is un-
derspecified, and more than one qualitative state is a possible successor to
the current one. The system pursues ail possibilities. The ultimate result
is a finite graph of qualitative states showing all possible behaviors of the
system.

An investigation of the Al literature reveals a multiplicity of knowledge
representation reasoning methods. It is not yet clear what unifying principles
underlie them, if indeed any do.

Machine Learning

If knowledge, its representations, and reasoning algorithms to manipulate it
are indeed central to Al, then the problem of machine learning (the auto-
matic acquisition of new facts and reasoning methods) is crucial. Here, too,
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various powerful techniques have been discovered but no unifying principles.
In fact, the absence of unifying principles may be counted as a major discov-
ery of AL. The idea that all mental activity might be explainable in terms
of learning, in an organism that starts as a tabulg rasa, has been discredited
by the discovery that certain apparently plausible unifying mechanisms are
in fact meaningless. For hundreds of years, psychologists and philosophers
have thought that the basic mechanism of learning was the transference of
successful behavior in a situation to nove] byt similar situations. When we
attempts to realize this idea on computers, we discover that there is no such
thing as intrinsic similarity. Two situations are similar if some algorithm
says they are, and any algorithm must neglect some differences; hence, for
any two situations some algorithm will say they are similar, and we are left
with the problem of devising algorithms for particular domains. It is now
clear that an algorithm for, say, learning cognitive maps will have little to
do with one for learning language. There is no choice but to study such
problems on their own terms. As a result, in learning as elsewhere, we now
know a little bit about a profusion of different learning tasks.

Some general principles have emerged, however. We can make a distinc-
tion between internal and ezternal learning. The former is learning conse-
quences of what we already know, as when we improve our skill at applying
methods of symbolic integration. External learning is acquisition of gen-
uinely new facts, as when we learn physical laws through observation. The
former can profit from the powerful technique known as ezplanation-based
learning. This method consists of extracting from a particular problem-
solving session a general principle that will allow similar problems to be
solved faster later by skipping over intermediate steps.

For external learning, guaranteed explanations are not obtainable. When
learning a new law, a learning program must search through the space of
possible versions of the iaw, trying experiments or making observations to
rule incorrect versions out. When the language of the law is simple enough
that all possible versions can be expressed as a lattice of more general and
less general candidates, then we can keep track of exactly which versions are
still viable by keeping track of the upper and lower bounds in the lattice
within which the correct version lies. As more observations come in, they
can be used to narrow the bounds. When applicable, this idea allows a
“binary search” through the set of candidate laws.
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Computer Vision

Not all subfields of Al are oriented directly around knowledge manipula-
tion. Computer vision, the attempt to understand how information can be
extracted from the light bouncing off objects, is a good example. As we
will discuss later, vision algorithms must embody a lot of knowledge anout
optics, but they do not need to represent it declaratively. This distinction
has not prevented the field of computer vision from developing some of the
most satisfying results in AI. Before computational methods were brought
to bear, vision theory had progressed little beyond optics. Electrodes could
be stuck into cells in the visual cortex, but their signals were generally a mys-
tery. Since approximately 1970, vision researchers have produced a plethora
of detailed models of different aspects of vision. Many workers believe that
the job of the visual system is to build a symbolic description of what it is
looking at, and the role of computer science is to tell us what a symbolic
description is. We may not know where to locate it in the brain, but we
know we are looking for it.

Problems in vision are usually classified as part of low-level (or “early”)
vision or part of high-level vision. Early vision performs the first steps in
processing images through the operation of a set of visual modules such
as edge detection, motion, shape-from-contours, shape-from-texture, shape-
from-shading, binocular stereo, surface reconstruction, and surface color. Its
goal is to yield a map of the physical surfaces around the viewer. High-level
vision can be identified with the “later” problems of object recognition and
shape representation. Here, questions of knowledge representation will enter
in an essential way.

The problem of vision begins with a large array of numbers recording
an intensity value for each pixel (picture element) in the image. The pre-
cise value at each pixel depends not only on the color and texture of the
three-dimensional (3-D) surface that is reflecting the light but also on the
orientation and distance of the surface with regpect to the viewer; on the
intensity, color, and geometry of the illumination; on the shadows cast by
other objects; and so on. The goal of early vision is to unscramble the infor-
mation about the physical properties of the surfaces from the image data.
In a sense early vision is the science of inverse optics. In classical optics (or
computer graphics) the basic problem is to determine the two-dimensjonal
(2-D) images of 3-D objects, whereas vision (whether biological or artificial)
is confronted with the inverse problem of recovering 3-D surface from 2-D
images. In color sensing, for instance, the goal of vision is to decode the
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measured lights in terms of the reflectance of the surfaces and the spectral
power distribution of the illuminant.

The problems of inverse optics are very difficult to solve, despite the
apparent ease and reliability with which our visual system gives meaningful
descriptions of the world around us. The difficulty is at least twofold. First,
the amount of information to be processed is staggering: a high-resolution
television frame is equivalent to 1 million pixels, each containing eight bits
of information about light intensity, making a total of 8 x 108 bits. The
image captured by the human eye is even more densely sampled, since in
the human eye there are in excess of 100 million photoreceptors. Real-time
visual processing must be able to deal with many such frames per second.
It is therefore not surprising that even the simplest operations on the flow
of images (such as filtering) require billions of multiplications and additions
per second. Second and more importaat, the images are highly ambiguous:
despite the huge number of bits in a frame, it turns out that they do not
contain enough information about the 3-D world. During the imaging step
that projects 3-D surfaces into 2-D images, much information is lost. The
inverse transformation (from the 2-D image to the 3-D object that produced
it) is badly underdetermined.

The natural way to approach this problem is to exploit a priori knowl-
edge about our 3-D world to remove the ambiguities of the inverse mapping.
One of the major achievements of computer vision work in the last decade is
the demonstration that generic natural constraints (the term generic is used
here in the same sense as in the mathematical theory of dynamical systems)
that is, general assumptions about the physical world that are correct in
almost all situations are sufficient to solve the problems of early vision; and
very specific, high-level, domain-dependent knowledge is not needed. Two
main themes are therefore intertwined at the heart of the main achievement
of early vision research: the identification and characterization of generic
constraints for each problem and their use in an algorithm to solve the prob-
lem.

Some of the most powerful constraints reflect generic properties of 3-D
surfaces. One of the best examples is the recovery of structure from mo-
tion. Perceptual studies show that a temporal sequence of images of an
object in motion yields information about its 3-D structure. Consider for
instance a rotating cylinder with a textured surface: its 3-D shape becomes
immediately evident as soon as rotation begins. It has been proved that a
3-D shape can be computed from a small number of identified points across
a small number of frames — if one assumes that the surface is rigid. Vari-
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ous theorems characterize almost completely the minimum number of points
and frames that are required. Continuity of surfaces is another useful as-
sumption: surfaces are typically regions of coherent aggregates of matter, do
not consist of scattered points at different spatial locations, and are usually
smooth. These constraints are very powerful for solving the correspondence
problem in stereo and motion and for reconstructing surfaces from sparse
depth points. Of course, constraints of this type are occasionally violated,
and in these cases algorithms that strictly enforce them will suffer from
“visual illusions.”

It is natural to ask whether a general method exists for formalizing con-
straints in each specific case and translating them into algorithms. An in-
teresting answer to this question has emerged in the last two years. We will
describe it from a representative point of view, though by no means the only
possible one. This unifying theoretical framework is based on the recogni-
tion that most early vision problems are mathematically ill posed problems.
A problem is well posed when its solution exists, is unique, and depends
continuously on the initial data. Il posed problems fail to satisfy one or
more of these criteria. In vision, edge detection (the detection and localiza-
tion of sharp intensity changes) is ill posed when considered as a problem of
numerical differentiation, because the result does not depend continuously
on the data. Another example is the reconstruction of 3-D surfaces from
sparse data points, which is ill posed for a different reason: the data alone,
without further constraints, allow an infinite number of solutions, so that
uniqueness is not guaranteed without further assumptions. The main idea
in mathematics for “solving” ill posed problems (i.e., for restoring them to
well posed problems) is to restrict the space of admissible solutions by intro-
ducing suitable a priori knowledge. In vision, this is identical to exploiting
the natural constraints described earlier. Mathematicians have developed
several formal techniques for achieving this goal that go under the name of
regularization theory.

In standard regularization the solution is found as the function that min-
imizes a certain convex functional. This functional can be regarded as an
“energy” or a “cost” that measures how close the solution is to the data and
how well it respects the a priori knowledge about its properties. Consider
the direct problem of finding y, given z and the mapping A:

Az=y

The inverse and usually ill-posed problem is to find z from y. Standard
regularization suggests transforming the equation into a variational problem
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by writing a cost functional consisting of two terms. The first term measures
the distance between the data and the desired solution z; the second term
measures the cost associated with a functional of the solution ||Pz|| that
embeds the a priori information on z. In summary, the problem is reduced
to finding z that minimizes the quantity

1Az =yl + Aj|Pz]|

where A, the regularization parameter, controls the compromise between
the degree of regularization of the solution and its closeness to the data.
Mathematical results characterize various properties of this method such as
uniqueness and behavior of the solution. Solutions of this type have been ob-
tained for several early vision problems: edge detection, optical flow, surface
reconstruction, spatiotemporal approximation, color, shape from shading,
and stereo.

Computer vision has always had a special two-way relationship with brain
sciences: suggestions from visual physiology and psychophysics have played
a role in many developments of computer vision. For instance, discoveries
of neurons that seem to behave as edge detectors in the visual cortex of pri-
mates had a significant influence in the development of early computer vision
programs. In turn, computational theories of vision are now influencing the
psychophysics and the physiology of vision. It is very likely that this trend
will grow more important for both fields. Mainly because of the theoretical
advances of the last decade, it seems that early vision is now on its way to
a systematic solution. Much less has been accomplished in high-level vision,
however. At the level of object recognition and scene description, the vi-
sion system begins to blend with the rest of the mind, about which elegant
unifying theories do not yet exist.

Concluding Remarks

In summary, Al is in a way the branch of computer science that is most
nearly a classical empirical science. It studies the world at the computa-

- tional level, in much the same way that chemxstry ‘studies the world at the
chemical level. It is not a priori obvious that there is a chemical level; in
principle, everything is just physics. But in many situations it is possible-—
and necessary—to ignore the details of elementary-particle interactions and
focus on interactions in terms of molecular bonds, valence, stoichiometry,
reaction rates, and so on. Similarly, in principle, the brain’s functioning can




50 Scientific Contributions of Computer Science

chemical level in understanding chemjca] systems.
The nervous system is not the only pPlace in the universe where nature

the operation of a cel] 18 at a computational leve] jn which genes are thought
of as switching each other op and off, so that the set of active genes behaves
like the stateof a computing device, the next state and the outputs (proteins)
being functions of the current inputs and the Previous state. The study of
such molecular computers—if they really do exist—might or might not be




