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1 INTRODUCTION 1

1 Introduction

These lectures will be like a bag of partially unrelated tricks about what to do with data Just
acquired in real time.

We will cover the following topics:

¢ Self describing data file. Real time data acquisition systems produce a lot of informations,
part of which will be archived for later retrival and processing. If the file contains a description
preamble, its later use will be much easier.

Arithmetic, both with integera and floating points. Although it is easier to work with floating
point numbers, operations on them are slower, and this may not be acceptable in real time
systems,

Using the lectures on floating points of the previous College, it will be remainded how to
avoid some of pitfalls of computer arithmetic.

Basic statistics, on unordered data, mean, variance, skewness, kurtosis, and how they can be
applied to check the quality of data.

» Time series, tests of atability, (basic Fourrier analysis).

Data visualization, tables, graphica, scaling effects.

« Real time controls, moving averages, abnormalities, alarma, riak of false alarm, risk of missing
an error.
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2 Self descriptive Data File

Any scientist making experiments, any one making regular observations, keeps a log book of his
measurements. This book may also contain notes concerning any change in the procedures and
environement. This is very useful to reirieve older values, do extra Procesuing, compare old and
oew etc.

Today, many data acquisition systems still archive the row data alone, while the user has to keep
a manuscript log of all other parameters. This not only gives extra work to the user, with risks of
errors, but also preclude the easy use of these informations by later programs.

We shall consider all data files made of three parts:

1. One or mors rectangular tables containing the data in a homogeneous form, for example each
line concerning an event, each columa & different source (This is also the basic structure of
Relational Data Bases).

2. A table description, giving all gensral informations concerning the data and their gathering,
dates, instruments, users, operators, weather conditions, number of columns and rows ete,
and for each columa: its name, limijts, tnean, min, max, etc.

This can best be done with keywords, each line starting with a main keyword defining the
content of the rest of the line.

3. A data manipulation history, where any subsequent operation on the file (statistical analysis,
data reduction, cotrections etc.) is recorded with date, operator, procedure(s) used, columns,
row or file newly created, stc. using similar keywords as before,

For practical reasons, part 2 and 3 above should come either at the begining of the file (they contain
information necessary to read part 1) or in a separate file with the same name but a different suffix.

In either case, these two parts should be written in a very standardized format, like blocks of 50
lines of 80 ascii characters sach, in such a way that they can be read without any knowledge of the
content of the file.

Then data analysis programs can adapt themselves easily.

Finally, a file containing such a good description of its contents is easy to send to other partners
around the world without any long description.

The “FITS” format used by astronomers make it very easy to transfer all kind of information from
single observation to large set of images, lists of stars etc.

Reference for FITS (Flexible Image Transport Syatem):
Wells, D. C. et al., Astron. Astrophys. Suppl. 44, 363 (1881)
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3 Arithmetic

The notes concerning arithmetic from the previous College on Microprocessors will not be repeated
here. We will only take a small example concerning the evaluation of 2 polynome under various
cicconstances and present graphs that also exhibit visualization of data.

The foliowing graphs show the differeat effects of rounding errors according to the methed used to
evaluate a polynomial with know roots.

The three methads are :

n = 30+¢1Z+u.:23+---+a";;"
P2 = ao+z{a +2(aa+2(- )
= (:—z;)(:—z,)---(:—zn)

We will use the following roots:
r; = 1,2,3,4,5 giving coefficients a; = 120,274, 225,85, -15,1
z; = 2,4,6,8,10 giving coefficients a; = —3840, 4384, --1800,340,-30,1

and z; = 1,2,3,4,5,6,7,8,9,10 giving coefficients a; = 3.620¢ + 06, —1.063¢ + 07,1.275¢ + 07,
_8.4le + 06,3.417¢ 4 06, —9.021e + 05, 1.578¢ + 05, — 1.815e 4 04,1320, 55,1

Nore of the coefficients are very large, all the roots are well separated but alsoin 2 limited domain.
Nevertheless the graphs show how difficult it is to calculate polynomials, and in fact any summation.

The first method is represented with O, the second (Hoerner) with  and the Jast with a continuous
line. Some of the effects will appear better if the OI are coloured.

1t should be noted that all calculations have been done in single precision floating point arithmetic
{All summation should have been done in double precision ...but the demonstration would not
have beer so clear)
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Figure 2: z; = {2,4,6,8,10} with coefficients a; = {- 3840, 4384, — 1800, 340, - 30, 1}
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Figure 4: An general view of the last polynome
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4 Basic statistic

Having a set of n data, {d;}, we can define the following descriptive parameters:
The mean d = ¥ di/n.

The median, such that there is un equal number of data smaller and larger than the median. (Sort
the d;, then the median = d,,;5.

The variance o3 = T (d; — d)*/(n — 1) This is the second order momentum. It is a measure of the
dispersion of the data around the mean.

The skewness A = T°{d; — d)3/(n—-1) ia the third order momentum. Compared to o3, it is sensitive
to any asymetry around the mean.

The kurtosie K = ¥ (di ~ d)*/(n—1) is the fourth order momentum. Compared to o?, it is sensitive
to the flatness of the distribution around the mean,

The exact relation between the last three parameters depends on the distribution od the data,

It is usually easier to calculate running suma of the various pawers of the data, and then to combine
them to get the previous parameters. The individual data doesa’t need to stay in memory.

If we have §; = 3~ d! /n, then, by simple calculation:

al = 85; - §i/n
A= 513515 +2S€/u

K=5,-45,5 + 6525, - 3§}/n

4.1 Algorithins to evaluate the mean in real time

We can consider that all parameters above, except the median, are some sort of means. So a good
algorithm for the mean can be used for the others too.

Here is list of successive methods with decreasing truncation errors and risk for overflow:

M, = Zd;/n
My = di+Y {di-di}f(n-1)

My = M, M =(i-1/ilM_1+(1/i)d, Mog=0
My = My, Mi=M_,4+(di-M_)/i, Mo=0
Ms = M,, M =(d/i)+ M- —-(M_/i), Mo=0
My = M., M = M._|+(d,‘—M._1+l'/2)/i, My=10
Msy = M,, M =(d;+i/2)}i+ My -(Mi_y+i/2)/i, M;=10

The following algorithm is as good as the previous, but specialy adapted to fixed point calculations,
and great care has been given to avoid arithmetic overflow.

1 BASIC STATISTIC

SHR(A, B} denotes a shift of the variable A to the right B bits.
SHL( ) similarly denotes a shift left.
I. Each data point is incorporated into a series of sums as
shown in Figure 3. N and MAX are initialized at 0.
A. A new data point is introduced
Xe—Xil—ONe—=N+1,,NN«N
B, As mentioned in Figure 3, the hits of NN serve as a
guide to the merging process. X is an intermediate vari-
able, ultimately placed in the appropriate register of the
array ().
If NN is odd,
Dl —X
If I > MAX then MAX «1I
go to A
If NN is even,
X «— SHRID(D + X, 1)
[—]+1
NN « SHR(NN, 1}
go to B.

II. The “Wrap Up"™: The mean is computed from the interme-
diate sums. NN again serves as a guide. The “ones” in N
indicate which registers in D(} must be incorporated into
the final sum.

A. I MAX = 0 then D(0) is the mean . . . (trivial case)
le—0 K+«0, MEAN <0
B. Starting with the register whose value encompasses the
least number of data peints, D{0), the contents of the
perlinent registers of D( ) are weighted and added into
the final sum.
NN «—SHR(N, [)
If NN is odd,
MEAN « SHR(MEAN, K] ... (weighling)
MEAN «— SHR(SHL(D(D), 1) + MEAN, 1} ... {weight-
ing and adding)
K0
gato C.
If NN is even,
Ke—K+1
goto C.
C.lel+1
If I < MAX thengo to B
11 = MAX then MEAN - 2M* /N is the computed mean

Figure §: M, fixed point algorithm for the mean

10
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5 Time series

We will first look at parameters that give indication of any trend or abnormal datain a serie.
The first Lest was introduced by the german optician Abbe.

The idea is to compare the variance obtained in the previous section (that do not depends on the
order of the data) to the variance obtained by squaring the differences between successive data:

If a2 = (d; — d,_1)*/2n, then r = 7 fo? is very scusitive to abnormal behaviour of the data. If
they are random and uncorrelated, then r = L. If the data tend to oscillate, then 1 < r < 2. If
slow changes are perturbing the data, then 0 < r < 1. r is roughly normal, with variance 1//n.
This test is very insensitive to the distribution of the data.

We can, as in the previous section, keep a running sum of the successive squared difference 54, 2nd
combine this with the other §; to get s? and r, without having to keep all the data in memory.

The second test conaist in using the skewness defined before. Any drop of the “signal” will appear
88 & negative asymetry, any “spike” as a positive one. This test is quite sensitive to the theoretical
distribution of the data and the value obtained must be compared to either a theoretical one, or to
previously obtained ones.

The third test consist in comparing the observed and theoretical variance (or previously obtained
ones). For example, if the d; consist of counts of random events, then the d; have a poissonian
distribution, with variance o, . 1 = d. We can define p = 03, o0/ %3 eoretical If P < 1, then
something is shurely wrong, as the Jispersion is smaller than can be expected. If p > I, then some
extra “noise” is present in the data. This test is also insensitive to the distribution of the data. p
follow roughly a Fisher distribution.

5.1 Frequency domain

Time series are best analyzed in the frequency domain, using Fourrier Analysis. This is out of the

scope of these lectures, but a very important point should be noted, concerning the sampling of
variable signals.

The Nyquist theorem says that there should be at least two samples for the shortest period,
corresponding to the highest frequency, present in the signal and the noise, Otherwise, all kind of
strange effects (frequency fording) will take place. If necessary, a low pass filter should be placed
in front of the sampler. In practice, 3-5 samples/period are suggested.
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6 Data presentation
Some principles:

o The author of a graph or table should understand the application well enough to summarize
the important data and avoid unnecessary details.

Graphs and tables can portray a complex set of relationships simply and clearly. The reader
should use his vision system more than his cognitive skills. Siructures and relationships are
more important than details.

They should be accurate, not only numerocally but also in quality. The reader should get the
true meaaing of the data, and not missinterpret them (see the effect of linear or logarithmic
scale for example).

e They should be attractive, but for the data, not for themselves. Start with simple design,
verify that the effects seen are significant, and use eraser for superfluous ink ...

The examples bellow show how tables and graphs can be improved, and some effects of scaling.

Contineat Area %Earth Pop. %Total
Asiu 16,999,000 29.7 2.897,000.000 59.8
Aflrica 11,638,000 204 551,000,000 11.4
Naorth America 9,366,000 16.3 400,000,000 8.3
South America 6,881,000 12.0 271,000,000 5.6
Anlarctica 5,100,000 8.9 0 1]
Europe 4,017,000 1.0 -
Auslralia 2,966,000 5.2 Continent Area Population
Mill. 5g. Mi. % Mill. %
Asia 18.899 29.7 2897 | 558
Alrica 11.888 2C.4 551 11.4
North America 9.366 163 400 8.3
— South America 6.881 12.0 27 56
Continen! ‘ 0,“'" TR e o [Antarciica 5,100 89 0{ o
Sa. MI. | Total Total Europs 4.017 7.0 702 | 14.5
Asig 16.999 | 297 2,897 59.8 Australia 2.966 5.2 16 0.3
Africa 11.888 204 £51 11.4
Narth Amarica 9 1366 18.2 40Q 83
Soulth Amarica 6.881 12.0 271 58
Antarctica 5100 89 Q 0 LAND AREA POPULATION
Europe 4.017 T0 702 14.5 CONTINENT Milliens of s
Australia 2.968 52 16 0a Square Miles Percent | Millions | Percent
Asia 16.999 1 2,897 $9.8
Afcica 11.688 204 551 L4
North America 9.346 161 400 81}
South America 6.8814 12.0 271 56
Antarcticy 5.1G0 89 o Lt
Europe 4017 7.0 702 i4.5
Australia 2.964 5.2 i6 03

Figure 7: Variations for a table
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7 TReal Time Controls

7.1 Data Filtering

When data are noisy, it is difficult to see possible trends, changes or get the form of a signal,

What we want in fact is often to reduce a large set of noisy data into a much smaller one that is
easy to interprete.

The statistical parameters seen oarlier are on¢ Way to extract these basic informations. Tt assumes

NAPOLEON'S RUSSIAN CAMPAIGN: June to December, 1812 a non variable signal, whose mean is sometimes the only thing we are interested ia.

A second way is to model the data nccording to a known relation. For example, if we record the
radioactive emission of & short leaving element, then we know that the counts should follow a
decaying exponential, and we could fit such s fuaction to the data, using nonlinear least squares
100 methods, and get good estimates of the initial amount and decay rate.

This method is very sffectlve because it uses axternal information {exponential decay in qur ex.

Polatask ample) and reduce all the data to & strict minimum of parameters.

‘ot The information content in » set of data is always limited. If too many parameters are present,
2SNy, T Malaysrostavel s they will be less ligniﬁcmt.

R : . I An unreferenced theorem says:
Smorgoni X :
From » given sat of not infinitely precise data, one can extract an infinite number of
: Do meaningless parameters . ..
Mogilev . . [] 80 Lo
Dmeper R - : .

The third method xssumes no apriori functional knowledge. The data are filtered to reduce, possibly

- $0°F eliminate, the noise.
1°F .
#o%F Effective technics sasumes that we know the spectral distribution of the noise and signal, but this
F o°F can be estimated from the data themselves, oz & sample of them.
F -20°F A very simple, but usually quite effective technic consists in replacing the original data with
3F ge . . )
P o Do D 26 Haw vETm Py o prerteeelld (weighted) average of the surrounding ones
-26* -as* -22° v T -18* " az* 32
Fmitk
d; — f.‘ = Z w,d,;
jmi—k

with Y w;=1.

The w; can be all equal, or approximate & gaussian using binomial values. The later choice gives
a better smothing.

A variant use a recursive form that is easier and faster to implement:

& —f ad; +8 fi (1)
or = adi+ffiat+t1fia 2)

withat+f=lota+tf+71=1
In the first form, the effect of an erroncous value decays exponentially.

The smoothing effect is smal if a ~ 1, large fa<l
Figure 10: Napoleon goes to Moscow .. .and comes back



7 REAL TIME CONTROLS 17

7.2 Alarms, risks

ldeally, one would like to ring an alarm when the signal overpass some limit, but only when it is
significant, and never when it is just due to noise.

This is of course impossible, and we have to to sccept some tradeof between the two risks. If the
limit is to low, many falase alarm will zing (first risk), if it is set to hich, many real alarms will be
lost (second risk).

A good estimate of the distribution of the signal, in particular its variance, will permit to set the
limit at a value minizing the total (weighted) risk, using the usual statistical tests.



