INTERNATIONAL ATOMIC ENERGY AGENCY | v
‘ @ P UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LCT.2, PO. BOX 586, 34100 TRIESTE, ITALY, CABLF CENTRATOM TRIESTE

m_.i)_‘
A
@ UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION g.’/’
INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

0 INTERNATIONAL CENTRE FOL THEORETICAL PHYSICS 100 TRIESTE (ITALY) VIA CRIGNANG, % IADKIATICO PALACE) PO BOX §86 TELEPHONE 0M3 2407 TECFRAY MO IS TELEX 38 APH |

SMR/474 - 14

COLLEGE ON
*THE DESIGN OF REAL-TIME CONTROL SYSTEMS"
1 - 28 October

MINIX

M. REIS
Laboratorio de Instrumentacao ¢ Fisica
Experimental de Particulas (L.I.P.)
Av. Elias Garcia 14-1
Lisbon 1000
Portugal

These are preliminary lecture notes, intended only for distribution to participants,

M. REIS -10/90

)

What is Minix ?

» Muiltiuser Multiprogramming Operating System .

* Unix Version 7 compatible.
(IPC mechanisms are restricted to pipes and signals)

- Designed to be readable and used for teaching
operating systems

ADVANTAGES:
» Sources may be bought from Prentice Hall for a
moderate fee.

» The system may be modified by the user to fit
his needs

DISADVANTAGE:

« Minix as provided is not as efficient as an
optimized operating system (e.g. Unix)

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

M. REIS -10/90

Minix:General Information

Supported Hardware
IBM: PC, XT, AT, PS/2
clones: AT&T 6300, AMIGA 100/Sidecar
AMSTRAD AMSTRAD Portable

COMMODORE PC COMPAQ Deskpro
COMPAQ Portable DEC VAXmate

HP Vectra OLIVETTI M24
TANDY 1000 TOSHIBA

UNISYS micro IT ZENITH

Software Support
+ Andrew Tanenbaum controls official releases.
+ Usenet Newsgroup: comp.os.minix publishes:
- bugs and code patches.
» new tools and library routines.
= general problem discussion.
(on Bitnet distribution list Is INFO-MINIX)

23

Minix; Operating System Overview
Design of Real Time Control Systems, October 1990

M. REIS -10/90

=

Minix:Related References

The Book

Tanenbaum, A., Operating Systems: Design and
Implementation, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1987 (Contains chapters on Minix and Minix source
code listings).

The First Article

Tanenbaum, A., "A Unix Clone with Source Code for
Operating Systems Courses,” Operating Systems
Review, Vol. 21, No. 1, January 1987, pp. 20-29.

Useful Refer ni

Bach, M., The Design of the Unix® Operating System ,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987 (Contains
an extensive description of the internals of Unix
which are in some parts of the system similar to
Minix).

Minix: Operating System Overview
Design of Real Time Control Systems, October 19390

M. REIS -10/90

Minix versus Unix V.7

{general design concepts)

mmo ign feature
« User Shell Interface
« Similar Multiprogramming Environment
+ Similar Library Procedures
» Unix Commands and Utllitles
« Device Independent I/O
« Similar File System internal organization
« C compiler and combined assembler/loader

* Memory Management designed with hardware
MemoryManagement in mind

)

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

M. REIS -10/80

Minix versus Unix V.7

{general design concepts (suite))

Where Minix is different

» Modular structure

- File system runs as a user program (in user mode).

« RPC based networking (using the AMOEBA protocol)
« Runnable on PC clones and other microcomputers.

» Memory manager runs in usgr mode

« Memory management is simple and segmented. (PC
compatibility?.
(while Unix v. 7 runs on machines with Virtual Memory,
Paging and Swapping) ‘

- Special commands to overcome implementation
differences (e.g. chmem, dosread, doswrite, ...).

» Internally all communication uses message passing
mechanism (" rendez-vous ").

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

layer 4

layer 3

layer 2

layer 1

M. REIS -10/90

Inside Minix

=

Internal Structure of Minix ; the 4 layers
Init User User . User
Process | Process | °°° Processes
Memory File Server
Manager System eee Processes
. vo)
Disk | Tty Clock | System | ... | tasks [K
task | Task| Task | Task E
N
. E
Process Management L

Tasks in layer 1 and 2 are linked together forming the
kernel. They share a common address space but
each task has its own context stack and memory
map and they all communicate by message

passing.

Design of Real Time Control Systems, October 1990

Minix: Operating System Overview

M. REIS -10/90 M. REIS -10/90

UNIX Kerne! Block Diagram Process Management

(Process Creation)

user programs

(trap) \ libraries + PROCESS CREATION (UNIX like):
User Level {rap) « fork - Create another process with a similar memory
: image to this one.
Kernel Level system call Interface The fork system call stages:
; I 1. Check to see if process table is full.
I 2. Try to allocate memory for the child
. inter-process h . he child'
file subsystem process communication] 3. Copy the parent's image to the child's memory.
N ' hedul 4. Find a free process slot and copy parent's slot to it
control | SCheduler 5. Enter child's memory map in process table.
l buffe‘r cache I subsystem m:g]aorgment 6. Choose a pid for the child.
: - g 7. Tell kernel and file system about child.
- 8. Report child's memory map to kernel.
character] block 9. Send reply messages to parent and child.
device drivers |
t in OS89 forking implies only duplication of the process' data
space.
hardware <control
formel Lovel « exec - Replace the current process’ memory image with
Hardware Level hardware a new one, including setting up a new stack.
Minix: Operating System Overview Minix: Operating System Overview

Design of Real Time Control Systems, October 1990 Design of Real Time Control Systems, October 1990

M. REIS -10/90

Process Management

(Process Creation(suite))

The exec system call stages:
1. Check permissions. Is the file executable ?

2. Read the header to get the segment and totai
sizes

. Fetch the arguments and environment from the
caller

. Release the old memory and allocate a new one.
. Copy stack to new memory image.

. Copy text and data segments to new memory
image.

7. Check for and handle setuid, and setgid bits.
8. Fix up process table entry.
9. Tell kernel that process is now runnable.

[

5

o O,

Usage of fork and exec:

if (fork() 1= 0) { /* fork off child process */
wait(&status); /I parent code */

} else {

execve(command, parameters, 0); /* child code */

Minix: Operating System Overview '
Design of Real Time Control Systems, October 1990

M. REIS -10/90

Process Scheduling

Process Status Diagram:

In Minix we may distinguish 3 states: Running, Ready or
Blocked. A process gets blocked depending on it having to
wait for input. The transitions between Ready and Runnable
are caused by the process scheduler.

Blocked

1. Process blocks Sfor input or
due to system call

2. Scheduler picks a different
process from the runnable
queue and preempts current
process

3. Scheduler selects a process
to run.

4. Process becomes runnable.

Minix: Operating System Overview
Design of Real Time Contro! Systems, October 1990

M. REIS -10/90

Process Scheduling

(suite)

Multilevel queueing system with 3 levels of priority:
Highest priority: layers 1,2 ---> kernel

Middle priority: layer 3 ---> servers

Lowest priority: layer 4 --->user processes

Round-robin in each level
User processes have 100 msec time slices

Rdy_head Rdy _tail
User Q {=|3|—*5—"4[*+(User.Q

Server Q] _,. | FS | MM | <+——| Server_Q

Task_Q |, [Clock———]Task_Q

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

M. REIS -10/90

Why Minix is NOT real-time

Minix uses Non-preemptive scheduling

» Tasks, the memory manager and the file system
are never pre-empted no matter how long they
have been running. They should block after
finishing their work.

- a Task (I/0 task) running at the time of the
::ptgrtr‘upt will continue to run after processing is
inished. -

Notice the different strategy of 0S9:

It IS real-time, because it relies on preemptive
scheduling, whereby a running process will be
Ereempte as soon as a higher priority process

ecomes ready. The previously running process
looses therefore the rest of its timeslice

Minix may be used in applications where time
constraints are not very tight, provided these
programs take into account these limitations.

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

M. REIS -10/90

Interprocess

Communication:

Inside Minix;
The "rendez-vous" principle.

A process doing a RECEIVE from a particular source or
ANY indicates that it is ready to accept a message. If
there is no message available for this process from
that sourcs, the messaFe is delivered, else the
process is blocked until the message is available.

Likewise a SEND results in a delivered message if the
destination has previously issued a RECEIVE, else
the sending process is blocked until it is delivered.
SENDREC is merely a SEND followed by a RECEIVE
from the same process.

These calls may only be used by the tasks or servers.

or th r; il
» pipes
* signals

These are the only IPC mechanisms provided to the
user.

If using Minix Networkin MOEBA RPC):
client/server model: getreq, putrep, trans

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

M. REIS -10/90

Minix versus Unix

User-System Communication

Minix is highly modular and moderately efficient.
I

Whereas in UNIX all processes have a user-space and a
kernel-space part which communicate via a trap followed
by state saving.

I

User space
W rocesses user a process
y 2N P
User
space part
| 4
Kernel
‘ space File

Device
Driver

Kernet
space

Device
Driver

The Minix approach is more modular, has cleaner
interfaces, and extends more easily to distributed
systems. Some efficiency is lost because of number of
messages exchanged in each system call. The Unix
approach Is more efficient.

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

M. REIS -10/90 M. REIS -10/80

/0 in Minix I/0 in Minix

(Main Concepts) (Main Concepts(suite))

The 4 layers of | ftware in Minb; Thed | Minix :

1. Interrupt Handilers: 3- Devicfe Ind.epende‘nf Il(? Software: '

Interrupt procedures running jn kernel, that save -Contaln.ed ln_th.e_ManjLe_sxsigm C?mprlses:
' interfacing with device drivers, buffering, block

allocation, protection and management of all
the UNIX-like file structure.

4 - User-level I/O Software;
Unix-like libraries and utilities.
No daemons are provided in the standard

the context of the running process and builld a
message to be sent to the corresponding device
driver.

2 - Device Drivers:
I/O tasks._in the kernel with their own execution
context. '

] . _— configuration, but as e.g. spooler daemons are
Qutline of the main procedure of a driver:

just user processes, so it is easy to add them as

io_task()
{ needed.
initialize(); y
while(TRUE) { ' J owe.ver. .- - N
receive(ANY' &messaga); /" wait request */ + Ad ing a device- river reqUIres l'ecompllailon
decode_message(); /* who & what */ of the kernel..(Major difference to 0S9).
do_the_work(); * do operation */
send(caller &message)- il reply to caller */ « Devices are described by special files under /
}
}
Minix: Operating System Overview Minix: Operating System Overview

Design of Real Time Control Systems, October 1990 Design of Real Time Control Systems, October 1990

M. REIS -10/90

1O in Minix

{(General Remarks) -

Deadlock avoidance:
« No algorithm Is being used. However care s taken

between the Memory Manager and the File
System.

» Problem solved by having the File System only
replying to the Memory Manager's requests,
except when at start up it reports its size to MM.

RAM DISK:
- Like In OS9 Is assoclated with a block device.

» Contains the root file system., so that removable
media may be used, e.g. a floppy may be mounted
and unmounted at wiil. ‘

+ Minix mounted file system support provides an
integrated file system.

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

M. REIS -10/90

The Mount command

nmounted flle system
root file system " n y

Drive 0
/

x/ ~a, Y

Nib /in luser

. / \ ; \/user//petar

before mounting: We have 2 different file systems
completely independent : -

« the root file system
» another file system e.g. on a floppy disk

The mount system call provides a mean to merge both file
system trees. This way the files on floppy may be
accessed in a device independent way.

Minix: Operating System Overview
Design of Real Time Controt Systems, October 1990

M. REIS -10/90

The Mount command

(suite)

root file system with Drive 0 mounted

/

flib /bin juser

/ \ \lusa r/ipeter
c d

Juser/peter/x / ~a, /user/peter/y

Now the files on floppy may be accessed in a device
independent way without the need to specify the
drive

M. REIS -10/90

MOUNT/UMOUNT

(Warnings)

To mount a fi wi er fil stem:

/etc/mount /dev/fd0 /user

Then work on the files you want to change and when
you are finished, before removing the floppy disk:

fetc/umount /dev/fd1
- The user may only remove the floppy after “ok".

- If a floppy disk is removed while it is mounted the
system may hang, but it will continue to run once
the floppy Is re-inserted.

« [faflo is r Vi ile it Is moun n
another oneis | into | | both fil
systems will r I m

ATIN TEM A FLOPPY DISK

On_a 360K floppy disk: mkfs /dev/fd0 360

Only after mkis a disk may the user execute the
mount of this file system on a certain e.g. empty
directory.

Any changes to this directory will be as if done on
the device. Before exiting umount must be
executed.

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

Minix: Operating System Overview
Design of Rea! Time Control Systems, October 1990

M. REIS -10/90 M. REIS -10/90

Terminal Input

(A simplified 1/O call example) The SYSTEM TASK

Read request from terminal when no characters are . Being the File System (FS) and the Memory Manager

pending. user processes outside the Kernel they cannot access
directly the Kernel data structures to supply

Interrupt - Interrupt routine. - Solution: There is a Kernel task (the System Task) that

communicates with the File System and the Memory
‘ Manager via the standard mechanism of message

passing and which also has access to all the kernel
\ tables. .

1 MESSAGE TYPES ACCEPTED BY THE SYSTEM TASK

\
o | ° Messagetype From _Meaning
/ SYS_FORK MM A process has forked

2 3 6 SYS_NEWMAP MM Install memory map for new
f / process
/ SYS_EXEC MM Set stack ptr. after EXEC call
SYS XIT MM A'process has exited
SYS_GETSP MM MM wants a process stack pir.
4 SYS_TIMES FS FS wants a process execution

times
SYS_ABORT Both Panic: Minix unable to continue
SYS_SIG MM Interrtéf)t a process with a signal
SYS_COPY Both Copy data between processes

Minix: Operating System Overview Minix: Operating System Overview
Design of Real Time Control Systems, October 1990 Design of Real Time Control Systems, October 1990

M. REIS -10/90

M. REIS -16/90

MEMORY MANAGEMENT
(Main Concepts)

MEMORY MANAGEMENT

(Introduction)

+ Memory Management

_MINIX MEMORY MAF FOR THE IBM P Infiuenced by the IBM PC Hardware Memory
(After Minix has been loaded from the disk into memory). Management and 8088 lack of virtual memory
) support and support for stack overflow.
Memory available
for user y L4 Simple so that Is easily portable.
programs
Typ. 70K .
Init « Memory Management Function divided between:
Memory Manager Server (MM)
File System - Handles Minix System Calls involving memory
a— 40K management deciding which processes to load.
Memory Manager 25K Depend. System Task In Kernel
on nr. of /O ;
Memory Task tasks Setting up of Memory Maps.
Terminal Task - Due to the 8088 architecture each segment
Disk Task effectively must begin at an address that is
ISk 1as ’ multiple of 16 bytes. We define a click as a
+ MM manages the addresses In clicks.
Process Management \1‘3 ?33 f « MM record:;_. memory ?Ilocation by having a copy
Unused a7 . ofarto of a part of the kernel's memory allocation

. . . Minix: Operating System Overview
Minix: Operating System Overview . .
Design of Real Time Control Systems, October 1990 Design of Real Time Control Systems, October 1990

M. REIS -10/90

MEMORY MANAGEMENT

(Main Concepts(suite))

+ A process can be organized in memory in 2
ways:

Separated Instruction and Data Spaces
Non-separated Instruction and Data Spaces

Address(hex)
210K(0x34800)
Stack
207K(0x33C00)
Data
— 203K(0x32C00)
Text
" | 200K(0x32000)
Non-Separate | & D Separate1 & D
Virtual Physical Length Virtual Physical Length
Text 0 0x3200 O 0 0x3200 0xCO
Data 0 0x3200 0x1CO 0 0x32C0 0x100
Stack 0x200 0x3400 0x80 0x140 0x3400 0x80

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

M. REIS -10/90

MEMORY MANAGEMENT
(Memory Allocation)

C |child of A after
childiof A exec of C

B B B
A

A and B are A forks A’s child execs
user procs.

- Memory Allocation Is done in click boundary from a
poo! of free memory using the first fit algorithm.
his algori i
0S9 version on Rosy uses a similar scheme.
« To overcome this imElgmgnialiQn default and to
allow for sizing of the dynamic allocation part of an
executable program Minix provides chmem.

. chmem: is a command used to modify the excutable
file header to provide for a larger or short dynamic
allocation area (gap between data and stack

components.)

Minix: Operating System Overview
Design of Real Time Control Systems, October 1990

M. REIS -10/90 M. REIS -10/90

Minix Message Passing

The Minix File System
(Reading a block from disk)

(Main Concepts)

. Managed by a File Server (FS) outside the Kernel.

- Except for the Interaction with thg_ﬂp_m_rr
procedures. and the kernel done in Minix via
message passing, the rest of the internals of the

Minix File System are almost identical to Unix.
« Unix-like device Independent Interface:

- File System handles I/0 device independent
interface:

interfacing to drivers, block allocation, buffering.

- Unix-like File System specifics: (*)
File types: data files, pipes, device files. (*)
Unix-like File System structure:
Boot block, Superblock, i-node structure, block cache
User's view of a directory tree.

File descriptors and corresponding indexation to
i-nodes ,

File protection modes

(CFs s
' 2
Creating links to files: soft and hard links.

Mounting and Unmounting a File System

(*) All these topics were extensively covered by the

lectures on Unix by U. Reich. [~ The BEST CASE: The block s in the cache. |

Minix: Operating System Overview Minix: Operating System Overview
Design of Real Time Control Systems, October 1990 Design of Real Ti‘r)ne Control Systems, October 1990

M. REIS -10/90

Minix Start-Up Overview

« Computer turned on

« Hardware reads first sector of first track into
memory and jumps to it.

. Bootstrar program executes loading the operating
system Into memory and starts it running.

. Ke;.nel, MM, FS initialize themselves one after the
other.

« Init Is started

« Init reads /etc/ttys to get number of terminals
installed. '

» Init forks off one process per each terminal.

+ Each of Init's children executes /bin/login and
waits until someone logs in.

- After successful login, /bin/login executes the
user's shell.

« Shell prompts user for command.

- Forks off new process per command and walits for
child to terminate.

» Then the shell will prompt again for a command.

» Now the user is in a Unix Programming
Environment with a Shell.

« 1t is his turn to do some work.
+ Hope you enjoy and learn o.s.s with Minix.

Minix: Operating System Overview
Design of Rea! Time Control Systems, October 1990

