INTERNATIONAL ATOMIC ENERGY AGENCY
‘ % ; UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
1LCTP, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

Fabma

Five
@ UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION ("}}

INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

c'o INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS M100 TRIESTE IITALY) VA GRIGNAND, 9 (ADRIATICO PALACE) P.O. BOX b TELEPHONE 040457 TELEFAX M40 IMSTS

TLLEX A6l APH |

SMR/474 - 15

Parallel Processing
COLLEGE ON
"THE DESIGN OF REAL-TIME CONTROL SYSTEMS"
1 - 28 October

PARALLEL PROCESSING

Ian Willers
I. WILLERS
Advanced Computing Group
CERN
CH-1211 Geneva 23
Switzerland
College on

The Design of Real-Time
Control Systems

These are preliminary lecture notes, intended only for distribution to participants.

1. Classes of Parallelism 1. Classes of Parallelism

- Result Parallelism — Result Parallelism
- Specialist Parallelism - Specialist Parallelism
— Agenda Parallelism — Agenda Parallelism

2. Programming Paradigms

— Live Data Structures How to write parallel programs -

- Message Passing
Choose class of parallelism natural

- Distributed Data Structures to the problem.

3. Linda
_ Distributed Data Structures Choo§e the corresponding programming
paradigm

- Message Passing

Write a program
- Live Data Structures i€ a prog

— Result Parallelism
— Example: building a house
— Start by looking at the final product
— Divide it into its components

front, rear, right, left walls, interior
walls, foundation, roof, etc.

— Assign one worker to each component

— Start all workers simultaneously

Each worker is assigned to produce one
piece of the result, They all work in
parallel up to the natural restrictions
imposed by the problem.

— Specialist Parallelism
- Example: building a house

— Start by assembling teams of experts
to do the job

We need suveyors, excavators,
foundation builders, carpenters,
roofers, etc.

— Each skill is represented by a
specialist worker

- Start all workers simultaneously

Each worker works on his skill. They
all work in paraliel up to the natural
restrictions imposed by the problem.

— Agenda Parallelism

- Example: building a house

- Write an agenda of activities that must
be completed in order to build the house

1. Build foundation
2. Erect external walls
3. Construct roof

4. Erect internal walls
3. Do plastering

6. etc

- Select a team that can do the whole job

- Start all workers on item 1. When
some finish they start item 2 and so on.

Each worker helps with the current
item on the agenda and they all work
in parallel up to the natural restrictions
imposed by the problem.

- -

— Result Parallelism

— focuses on the shape of the finished
product;

— Specialist Parallelism

- focuses on the makeup of the workers;

— Agenda Parallelism

~ focuses on the list of tasks to be
performed.

— How does this map onio software?

_ Result Parallelism

- plan a parallel application around the
data structure yielded as the ultimate

result, and get parallelism by computing
all elements of the result simultaneously;

~ Specialist Parallelism

— plan an application around an
ensemble of specialists connected into

a logical network of some kind;
parallelism results from all nodes of the
network being active simultaneously;

- Agenda Parallelism

- plan an application around a
particular agenda of activities and then
assign many workers to each step.

— Building a House

— What conceptual class of parallelism
do we use?

_ Result Parallelism '

The factory built house =

The walls, roof assembly, staircases etc.
are all built in parallel in the factory
and assembled on site. |

— Specialist Parallelism

The standard house -

The specialists each do their own task.
Sometimes in parallel as the plumber
and the electrician may work at the same
time.

— Agenda Parallelism

Barn raising -
One group turns its attention to one of a
list of tasks in turn.

— Programming using Result Parallelism

~ The programiner asks

Is my program intended to produce
some muliple-element data structure
qs its result (or can it be conceived in
these terms)?

If so, can I specify exactly how each

element of the resulting structure

depends on the rest and on the input?
~ The program then looks like

Build a data structure to represent the
result

Determine the value of each element
of this structure simultaneously by
specifying the computation required

Terminate when all values are known.

- 10 -

— Programming using Result Parallelism

— A simple example

- Compute the sum S of two n—element
vectors A and B

Construct an n—element vector S

To determine the i~th element of S,
add the i-th element of A to the i-th
clement of B

When all additions done terminate

_ Since the elements of S are independent,
all additions can start simultaneously

and can be done in parallel

-11 -

— Programming using Result Parallelism — Programming using Specialist Parallelism

— When is this applicable? - The programmer asks
In any problem whose goal is to Can my problem be expressed as a
produce a series of values with network in which each node executes
predictable organisation and a relatively autonomous computation
interdependencies. and internode communication follows

predictable paths

The program then looks like
Model my problem onto processes
that perform according to items in my

model and communicate via well
defined channels.

-12 - - 13-

— Programming using Specialist Parallelism
— Examples:
— A Circuit Emulator

Each circuit element is represented by
a process and communication takes
place according to the circuit

~ Europe wide transport estimates for
travel time between two points, given
current estimates of road conditions,
weather and traffic.

Each country could be represented by
a node in the network knowing
conditions in that country.

A lorry going on a route from Trieste
to London could be passed from Italy,
via France to England. The England

node would then print the travel time.

- 14 -

— Programming using Agenda Parallelism

- The programmer asks

Can my problem be expressed as a
series of transformations to be applied
to some set of data in parallel
— The program then looks like

The master-worker paradigm is a good
example.

The master initialises the computation
and creates a collection of identical
worker processes

Each worker process is capable of
performing any step in the computation

Workers repeatedly seek a task to
perform, do the task and repeat

When no tasks remain terminate.

-15-

~ Programming using Agenda Parallelism — Programming using Agenda Parallelism

- The master-worker paradigm - An example
advantages

The same program can run with — Identify the employer with the lowest
1, 10 or 1000 workers in three ratio of salary to dependents in a database

consecutive runs. of employee records

By distributing tasks on the fly, this

is naturally load balancing. While one
worker is tied up with a time consuming
task, another might execute a dozen
shorter task assignments

- 168 -

The master obtains the employee
records and puts each record in a
“bag” where the workers can find
those records

Each worker repeatedly draws a record
from the “bag”, computes the ratio of
salary to dependents and sends the
result to the master

The master keeps a record of the lowest

so far and, when all tasks are complete,
report the answer.

-17-

— Programming using Agenda Parallelism

— Data Parallelism

— The transformations take place on all
elements of a data structure
simultaneously

This is usually. associated with
SIMD machines where all
transformations happen concurrently
and synchronously.

~ Programming using Agenda Parallelism

— Speculative Parallelism

— A collection of parallel activities is
undertaken with the understanding
that some may ultimately prove to be
unnecessary to the final result

An example is in logic programming
Xory
We can work on x and y in parallel
the first one that is true determines
the result.
Many workers can work on a list of tasks,

yet only one of the results contributes to
the final result

-19 -

1. Classes of Parallelism 2. Programming Paradigms

- Result Parallelism .
~ Live Data Structures

- Specialist Parallelism

-M Passi

- Agenda Parallelism eesage Tassing

2. Programming Paradigms - Distributed Data Structures

- Live Data Structures
How to write parallel programs -

~ Message Passing

~ Distributed Data Structures Choose class of parallelism natural
) to the problem.
3. Linda
- Distributed Data Structures Choose the corresponding programming

paradigm
— Message Passing

- Live Data Structures Write a program

- 20 - -3t -

\ DO\
O 1Ol BO] 1O

- Live Data Structures

read

N

Ol 1O

O

O

O 1100 1O

= process

= data element

-27 -

- Live Data Structures

The result data structure - the number
of its elements and their relationship -
determines the program structure

Every concurrent process is locked inside
a data object

The job of the process is to produce the
value for that data element

A process may read another data object

-23 -

~ Message Passing

receive

receive

[] = data element = message

Q = Process

-2 -

— Message Passing

The process structure — the number of
processes and their relationships -
determines the program structure

A collection of concurrent processes
communicate by exchanging messages

Every data object is locked inside some
process

- 25 -

— Distributed Data Structures — Match between Parallel Classes and
Programming Paradigms

N
R O .
Result Parallelism
writ <>
write Live Data Structures
read

Specialist Parallelism
-~

Message Passing

Agenda Parallelism
[] = data element -

Distributed Data Structures
= Process

- 26 - -27 -

— Match between Parallel Classes and
Programming Paradigms

Result Parallelism
-

Live Data Structures

Example: Calculate the sum of two
vectors A and B and put the result
in S.

The live structure is the vector S
Trapped inside each element of S is

a process that computes A(i) + B(i)
for the appropiate i.

When a process is complete it vanishes
leaving behind the value it was charged

to compute.

- 128 -

— Match between Parallel Classes and

Programming Paradigms

Specialist Parallelism
-

Message Passing

Example: The travel time .program for
lorries in Europe.

Lorries and routes are represented by
messages

To introduce a lorry into the French
road system we send a message
describing the lorry and its route to
France.

France calculates an estimated transit
time and passes the message on

-29 -

— Match between Parallel Classes and
Programming Paradigms

Agenda Parallelism
-~

Distributed Data Structures

Example: master-worker using a “bag”
The master puts tasks into the “bag”

The worker takes tasks from the “bag”
and returns the result to the “bag”

The master picks up its results from
the “bag”

- 30 -

— The n-body problem

The 2-body problem

m m

1 mlm2 2

O ¢z <0
r

The n-body problem
Simulate the n-bodies
Calculate the forces between all bodies
Update each body’s position

Do this for a number of time steps

-3 -

 The n-body problem — The n-body problem

— Result Parallelism / Live Data Structures

Position after
2nd iteration

= Result Parallelism | Live Data Structures

Use a matrix M(i, j) to describe the v
problem clellclicBeResNe
M(i, j) is the position of the i-th body
after j time steps Ol O O I ©
M(i, 0) gives the starting position and the |
last column gives the final position of each O OO0 O 1O 1O
body. 4th
a1 O D00 O @O ©
Now define a function
position (i,j) O OO0 1O O 1O
that calculates the position of body i for
the j-th iteration. O OO O 1O 10
O A0 O O 1O

- 32 - -3~

— The n-body problem — The n~body problem

— Result Parallelism | Live Data Structures — Result Parallelism | Live Data Structures
Position after Position after
2nd iteration 2nd iteration
Y Y
ololiciiocNeoNeNe OQO0Q0 00 ©
oNeollciicNeNeNe oololioNecHeONe
ololiciioNeoNeNe OO0Q0Q Qo
w0 Q|00 O O © wraloNellelicNoNeNe
OO0 K030 o oollelicNoNeNe
O OO0 0 O O OO0 D A O
oNeliclicNecNeoNe oeollclicNeoNeoNe

- 34 - -35-

—~ The n-body problem

— Specialist Parallelism | Message Passing

Create a series of processes each one
specialising in a single body

That process is responsible for calculating

a single body’s current position throughout
the simulation

At the start of each iteration, each process
informs each other process by message
of the current position of its body

Each process receives the position of all
the other bodies

The process calculates its new position

Then iterates

-3 -

— Message Passing

- 17 -

Process
describing
3rd body.

— The n-body problem — The n-body problem

— Agenda Parallelism | Distributed Data Structure — Agenda FParallelism / Distributed Data Structure

Repeatedly apply the transformation
compute next position
to all bodies in the set

Create a master process that creates

n initial task descriptions, one for each
body

On the first iteration, each worker in a
group of identical workers processes
repeatedly grabs a task descriptor and
computes the next position of the
corresponding body

When the pile of task descriptors are used
up the tasks stop and the bodies have
advanced to the new position

Store the current position in a distributed
table so all tasks can refer to it

then iterate

- 38 - -39 -

1. Classes of Parallelism 3. Linda

~ Result Parallelism _ Distributed Data Structures

— Specialist Parallelism)
— Message Passing

- Agenda Parallelism
- Live Data Structures

2. Programming Paradigms

- Live Data Structures
How to write parallel programs =
— Message Passing
_ Distributed Data Structures Choose class of parallelism natural
to the problem.
3. Linda

_ Distributed Data Structures Choose the corresponding programming
paradigm

— Message Passing
Write a program

— Live Data Structures

—~ 40 -

- Linda — Linda

— Tuple Space (Distributed Data Structure) — The four basic operations

out(t) causes tuple ‘¢’ to be inserted into
tuple space

1 [¥]
| in(s) causes some tuple ‘t’ that matches
Tuole S the template ‘s’ to be withdrawn
uple Space from tuple space
If no matching tuple ‘t’ exists
when in(s) executes, the
process suspends until one is,
then proceeds as before

rd(s) is the same as in(s) except that
the matching tuple remains in
tuple space

[] =atuple eval(t) is the same as out(t) except that
the tuple ‘t’ is evaluated after it
enters tuple space

- 42- -4 -

- Linda

~ Simple Examples

out(“‘a string”, 15.01, 17, “another string”*)

out(0,1)

in(“a string”, ? f, ? i, “another string”)

rd(“a string”, ? f, ? i, “another string”)

eval(“e”,7,exp(7))

rd(“e”, 7, ? value)

-4~

- Linda

— Semaphores

A semaphore is used as a lock to protect
critical code.

out(“‘sem”)

in(“sem”) in(“sem”)
<critical code 1> <critical code 2>
out(“sem’’) out(“sem’’)

A counting semaphore limits the access
to devices by ‘n’ processes

for (i=1;i<n;++i)(
out(“sem”)

)

- 45 -

~w

- Linda

— Bags

A bag is a data structure that defines
two operations
‘add an element’
and
‘withdraw an element’
Master-worker paradigm
Add a task to the bag (master):
out(“task”, taskdescription)
Withdraw a task (worker):

in(“task”’, newtask)

— 46 -

-~ Linda

— Make a sequential loop parallel using a bag

The sequential loop is:

for (<loop control>) (
<something>
)

Then the parallel loop is:

for (<loop control>) (
eval(“this loop”, something())

)

for (doop control>) (
in(“this loop™, 1)
)

* <something> is re-written to be a
function something() returning the
value ‘1’

-dT -

— Linda

— Named-Access Structures

This is often used in real-time monitors:
Use the tuple (name , value)

Then to read the value corresponding
to a device use:

rd (name , ? value)
To update the value:

in(name, ? old)
out(name , new)

~ 48 -

-~ Linda

— Barrier Synchronization

Each process in some group waits at a
barrier until all processes in the group
have reached the barrier

Then all can proceed

If the group contains ‘n’ processes we
set up the barrier by executing:

out(“barrier”’, n)
Then each process executes:

in(“barrier”’, ? val)
out(“barrier”, val - 1)
rd(“barrier”, 0)

- 49 -

o e M————

— Linda

- Position Accessed Structures

This is a distributed array.

To set the 14th, element of vector V’
out(“V?, 14, 123.5)

For an array containing prime numbers
out(“primes”,1,2)
out(“primes”?, 2, 3)
out(“primes”?, 3,5)
etc.

If some processes are calculating primes
while others want to read:

rd(“primes”, 100, ? val)

will block until the 100-th prime has
been calculated.

- 50 =

- Linda

— Generalized Streams

A stream is an ordered sequence of
elements to which processes may apper
elements

and processes may, at any time, remove
the stream’s head element

Must keep track of the head and tail
so we need the tuples:

(“strm” , “head” , value)
(‘“‘strm”’ , “tail’’ , Value)

-51-

= Linda - Linda

— Generalized Streams — Live Data Structures

To append a new element To get the live version of a data structure
we use ‘eval’ instead of ‘out’
in(“strm” , “tail” , ? index)
out(‘“‘strm” , “tail”’, index + 1) Suppose we need a stream of processes
out(“strm” , index , newelement) then we write

{3 13] : 4
To remove an element from the stream eval(“live stream” , i, f(i))

if £ is the factorial then this resolves to

in(“strm” , “head” , ? index) the stream
out(“strm”’ , “head”, index + 1)
in(“strm” , index , ? element) (“live stream”,1,1)

(“live stream”,2,2)
(“live stream”, 3, 6)
etc.

Note that
rd(‘“‘live stream”,1,? x)
blocks until the evaluation of f(1) ends.

- 52~ e

-~ Linda

~ A Complete Program

Here we will use result parallelism:

We define an n-element vector whose
i~th value is the i-th prime

We build this structure in tuple space
and associate with each element with
a process ‘isprime(i)’
We set this up with the loop
for (i=2;i<limit; ++i) (

eval(“primes”, i, isprime(i))
We then read the j-th element with

rd(“primes” , j, ? ok)

- %4 -

Imain() (
int i,ok

for(i=2;i<limit;++i) (
eval(“primes” , i, isprime(i))

for(i=2;1i < limit; ++i) (
rd(“primes”,i, ? ok)
if (ok) printfy(“%d\n”, i)
)
isprime(me) int me;
int i, limit, ok;
limit = sqrt((double) me) + 1;
for (i=2;1i < limit; ++i) (
rd(“primes”, i, ? ok)
if (ok && (me % i ==0)) return 0 |

return 1

- 55 -

