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Why is it interesting?
A Super Computer

CRAY X-MP/48 - 4 processors, shared
memory

Intel IPSC/860 - 128 860 processors
distributed memory

Connection Machine - 65,535 simple
processors
Is a Super Computer cost effective?
Compare with -
Apollo DN10000 - 4x3 units (Cray 4x8)

Silicon Graphics SGI 240 - 4xMIPS 2000
processors

We do need all this power.

FERMILAB:
High Energy Ph;{ﬁiclsts have always wanted more

computer power than they could afford to buy in the
commerctal market place.

CERN: Computing in the 90's:
Total needs in 1991-92 = 600 units
150 in CERN computer center

300 from outside laboratories
150 by parallel farms

Present computer center has:

Cray X'MP 48 = 32 units
IBM 3090-600E = 39 units



What Is the success of vectorization and
parallelization of algorithms?

How can we benefit from automatic tools such as:

compllers
process schedulers

session schedulers

FARMING: identical code on many processors
each recelving a single physics event.

The IBM emulators (the original)
FERMILAB ACP (the ultimate)
1.3 Lepics (compromise)
Aleph FALCON (system building)



FARMING: Identical code on many processors
each recelving a single physics event.

Input Output

Master

Aleph
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On-line Applications

IBM Parallel Processing Computer Server (PPCS)
RISC Sparc on FASTBUS
MEIKO Transputers (+ i860’s)
HP-Apollo, Cresco-Data (+DSP’s)
ASPEX
AMT DAP



EL

TRANSPUTERS

Used in the experiments:

Jetset
OPAL Jets
UA6
ZEUS
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Definition Fiynn’s taxonomy

Parallel Architecture: SISD - Single Instruction, Single Data stream
Defines serial computers

A parallel architecture provides an explich, MISD — Muttiple Instruction, Single Data stream
high-level framework for the development of Multiple processors applying different Instructions
parallel programming solutions by providing to a single data stream. |

multiple processors, whether simple or complex, Possible but impractical.

that cooperate to solve problems through

>oncurrent execution. SIMD - Single Instruction, Multiple Data streams

Multiple processors simultaneously executing
the same instruction on different data.

MIMD - Muitiple Instruction, Muitiple Data streams
Muttiple processors autonomously executing
diverse Instructions on diverse data.



Duncan’s taxonomy

—Vector
—Processor array
Synchronous SIMD
| __Assoclative
memory
—Systolic
—Distributed Memory
MIMD
—Shared Memory
—MIMD/SIMD
—Dataflow
MIMD paradigm ——
—Reduction

— Wavefront

1z

Synchronous

Duncan’s taxonomy

—Vector

(gCray, IBM 3090 VF,
ontro! Data Cyber 205 etc.)

—Processor array
(ICL DAP,
Connection m/c)
—SIMD ——
Assoclative
" memory
(Aspex)
___Systolic
(Warp)



Vector
register A

at

a9
atlo

Vector
register B

b1

b9
b10

Pipelined Vector Processors
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SIMD architectures




Bit-plane array processing Associative memory processing

1 bit serial memory bit planes =

processors Proaram Program
melgnory 3 controller controller
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Associative memory processing

Comparison register
1t 0011010

Mask register
11110000

Assoclative
Associative memory register
10011000 1
011 000O01 0
10000100 0
00110010 0
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Assoclative memory

Assoclative memory processing

search window

1 0 0{1|1 0 0 0O

0 1 1/0{0 0 0 1

1 0 0(0;{0 1 0 O

0 0 1i1/0 0 1 0
bit column

Assoclative

registers
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1
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Systolic Arrays

Memory

UV — T |wf—

20

T B T | —P

Duncan’s taxonomy

—Distributed Memory
(transputer, IWarp, etc.)

MIMD

——Shared Memory
(Encore Multimax, Cm*,
Alliant FX/8, BBN Butterfly)

24



MIMD - distributed memory MIMD - distributed memory topologies

22 72



MIMD - distributed memory topologles

MIMD - distributed memory hypercube

OREING

' reconfigurable

)




MIMD - shared memory

MIMD - shared memory

P P P
Cache Cache Cache
Bus
Memory Memory Memory
2 X 2 crossbar switch
P _
Cache S S
P
Cache S S
Memory Memory

24

Multistage Interconnection network



Duncan’s taxonomy MIMD/SIMD

—MIMD/SIMD
(Non-Von)

MIMD operation mode

—Dataflow SIMD controlier

(Manchester Dataflow Computer,
MIT Tagged Token Dataflow
. MIMD paradigm ——| Computer, Toulouse LAU, etc.)

SIMD slave processors

——Reduction
(Newcastle Reduction Machine)

L Wavefront
(RSRE Wavefront Machine)

28 2%



Dataflow Dataflow using tokens

Instruction token
Opcode =?
operandi = 15
operand2 = 10

Dest = ?
data token
Dest=3
Matching [Value = 10 Node store
unit unit
data token
Dest=3 Instuction token
value = 15 Opcode = +
operandl = 15
\\ P operand2 = 10
1 Dest =4
a=5 P
b= P
=]

30 3



Reduction (or Demand Driven) Graph Reduction

Like functional languages

7a b+c
a=b+c¢
b=d+e
c=f*g demand demand
d=1e=3;f=5;g=7 Need: b Need: ¢
@+ (9
demand demand | { demand demand
Need: d Need: e || Need: f Need: g

32
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Waveform Array

Memory

TV — TV |=g

Dataflow in systolic arrays.

3t

T 3 T (—I
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Shared Memory Systems

Semaphores
Monitors

Messages

Distributed Memory Systems

Network

Semaphores
Monitors

Messages

36

Restrict Access to an Object

Critical Section

Object

Like tumning off Interupts In a sequential computer

AND Conditional Synchronisation
Busy waiting :

1 Object

OR Conditional Synchronlisation
Positive wake~up

1 Object

Danger: Deadlock
37




Semaphores

P(s) : Walt until >0
S = 51

V(s): s =s+1

Binary Semaphore restricts value to (0,1)

General Semaphore has any value >=0

Critical Section

P(s)
<critical section>
V(s)

Conditional Synchronisation

When condition true
V(s)

h/w: Fetch&Add or ReadTestWrite

s/w: Difficult to make deadlock free programs

Monitors

Critical Section (based on Object Oriented
Programming) called a monitor.

Variables
Initlal‘zation Prochures
| One CALL only
at any time.

Conditional Synchronisation

Process | Monltor
CALL Walt | Note status
Sleep

Process Monitor

Activated [ " Do activate " Set cond.




Transputer (distributed memory)

Process

MACH operating system using shared memory

Process

send ————=gp-recelve

block

notify

Message Passing (Examples)

Message Passing (models for naming)

Direct Naming

A

Process

send

recelve

toB =P from A

-

Process

Message

Shared Memory

40

Client/Server

A

send

recelve

toB =—Pfrom ?

Global Naming
send
A to?

Mallbox

+1

recelve ‘
from ? B



Models - shared and distributed memory

virtual memory with paging in shared memory model

disk

pages on disk

| page
map

FTFFFITT.

shared
memory

pages In memory

Distributed memory looking like Shared memory

Leslie Valient proved - with parallel slackness
the communication can be hidden.

age
disk Page g 2
map Messages
pages on disk
4420000 ]
222000
TSNSV
222000 ]
LI 2D DI
L222002
NNy
JJJjj)J
S DDDD
2200000
3333333
JJ){{JJ
distributed
memory

i

Lot bbh

pages In memory
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IMST801
transputer

* 32 bit architecture

* 30 MIPS (peak)

* On-chip IEEE 754 FPU

* 4.3 Mflops (peak)

* 630 ns interrupt response

* De-mulitplexed address and data bus

* 60 Mbytes/sec data rate to external memory
* 4 Kbytes on-chip SRAM

* 4 high speed serial links
(5/10/20 Mbits/sec)

20, 25 AND 30 MHz

* 100 pin PGA packages
— Inventing the future

TP801 5/89




g sF

IMS C004
programmable
link switch

« Standard INMOS serial links
* 32 way crossbar switch

« Cascadable

* 10 or 20 Mbits/sec

* 84 pin PGA package

“— Inventing the future

LinkinQ) —>p

Linkin31 —»

+—» LinkOut0

—& LinkOut31

Configlinkin -/
ConfigLinkOut -

TPC0045/89




occam  Tony Hoare: Communicating
Sequential Processes, CSP.

The Chorus Operating System

1) Sequential code:;
SEQ

a=1

b=2

2) Parallel code:

3) Messages:
al3

and
a ? value

4) Atemative routes:
ALT
(d=0)a?value
<code>
(d>0)Db ?value
<code>

?
(d>0)c? Va'lizod» | ( A multithreaded actor)




A

LINDA

send a
data

A
—a

Mailbox

send a
tuple

Tuple Space

+5

recelve a
data structure
matching a
pattem

recelve a

t\:l’lﬁietuple

matching

LINDA

To put a tuple In tuple space:

=2
out (1, 1.5,1)

To get a tuple from tuple space:
In (1, 1.5, 2) succeeds |
In(1,1.5, 3) blocks
in (1,1, 2) succeeds and sets f to 1.5

To read a tuple from tuple space:
rd (1, 1.5, 2 ) succeeds
etc.

Note: type and value matches are required



1) One can acheive high performance on
essentially all scientific computations which
are:

large (necessary condition)

loosely synchronous — MIMD or

synchronous - SIMD

2) Domain decomposition or data
parallelism is a universal source of
parallelism that scales to a large number of
nodes

3) Greatest success has come from 1’000
to 10°000 line codes written from scratch
for a particular machine. Usually the
application scientist can specify parallelism
from the natural geometrical structure of
the problem.

50

4) Performance rules :-

Performance scales linearly in number of
nodes at constant grain size (problem size
proportional to machine size).

Fixed problem size does not scale by
Amdahl's law.

5) A key question is: ‘What is the
appropiate productive standard
programming environment for parallel
machines?’

New languages and approaches (e.g.
graphical techniques);

Compiler generated parallelism;
Application specific high-level environments:

Explicit user decomposition.
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The End
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