		•

INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY
(10 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS MIND TRESTE (THALT), VIA GERMAND, 9 (ADDITATION PALACE) P.O. BOX 5M TELEPHONE OND MITT. TELEFAX ORD MINT. TELEFAX ORD MINT.

8MR/474 - 16

"THE DESIGN OF REAL-TIME CONTROL SYSTEMS" 1 - 26 October

PARALLEL PROCESSING

I. WILLERS
Advanced Computing Group
CERN
CH-1211 Geneva 23
Switzerland

These are preliminary lecture notes, intended only for distribution to participants.

Parallel Computing

lan Willers

Parallel Processing

Why is it interesting?

Classification of Architectures;

Common Practical Models;

Three concrete examples.

Ian Willers

College on
The Design of Real-Time
Control Systems

Why is it interesting?

A Super Computer

CRAY X-MP/48 – 4 processors, shared memory

Intel iPSC/860 - 128 i860 processors distributed memory

Connection Machine – 65,535 simple processors

Is a Super Computer cost effective?

Compare with -

Apollo DN10000 - 4x3 units (Cray 4x8)

Silicon Graphics SGI 240 – 4xMIPS 2000 processors

We do need all this power.

FERMILAB:

High Energy Physicists have always wanted more computer power than they could afford to buy in the commercial market place.

CERN: Computing in the 90's:

Total needs in 1991-92 = 600 units

150 in CERN computer center 300 from outside laboratories 150 by parallel farms

Present computer center has:

Cray X/MP 48 = 32 units IBM 3090-600E = 39 units

What is the success of vectorization and parallelization of algorithms?

How can we benefit from automatic tools such as:

compilers

process schedulers
session schedulers

FARMING: Identical code on many processors each receiving a single physics event.

The IBM emulators (the original)
FERMILAB ACP (the ultimate)
L3 Lepics (compromise)
Aleph FALCON (system building)

FARMING: Identical code on many processors each receiving a single physics event.

On-line Applications

IBM Parallel Processing Computer Server (PPCS)

RISC Sparc on FASTBUS

MEIKO Transputers (+ i860's)

HP-Apollo, Cresco-Data (+DSP's)

ASPEX

AMT DAP

Parallel Computing lan Willers

Why is it interesting?

Classification of Architectures;

Common Practical Models;

Three concrete examples.

TRANSPUTERS

Used in the experiments:

Jetset

OPAL Jets

UA6

ZEUS

Definition

Parallel Architecture:

A parallel architecture provides an explicit, high-level framework for the development of parallel programming solutions by providing multiple processors, whether simple or complex, that cooperate to solve problems through concurrent execution.

Flynn's taxonomy

- SISD Single Instruction, Single Data stream Defines serial computers
- MISD Multiple Instruction, Single Data stream

 Multiple processors applying different instructions
 to a single data stream.

 Possible but impractical.
- SIMD Single Instruction, Multiple Data streams
 Multiple processors simultaneously executing
 the same instruction on different data.
- MIMD Multiple Instruction, Multiple Data streams

 Multiple processors autonomously executing
 diverse instructions on diverse data.

Duncan's taxonomy

Duncan's taxonomy

Pipelined Vector Processors

Vector register A a1 a9 a10 Vector addition pipeline Vector register C stages 3 4 5 6 C1 a8 a7 a6 a5 **c2** c4 c3 Vector register B b8 b7 b6 b5 b1 ••• b9 **b10**

SIMD architectures

Bit-plane array processing

Associative memory processing

Associative memory processing

Comparison register

1	_	^	4	4	_	_	_
	- 17	IJ	1	1	- (1	7	n
, ,	•	•			v		v
L.							_

Mask register

ı	4	-4	- 4	-	^	_	_	_
ı			ı	1	- ()	Λ	Λ	n
1	•	•	•	•	•	v	v	v

Associative memory

1	0	0	1	1	0	0	0
0	1	1	0	0	0 0 1 0	0	1
1	0	0	0	0	1	0	0
0	0	1	1	0	0	1	0

Associative register

Associative memory processing

Associative memory

bit column search window mask register

Systolic Arrays

Duncan's taxonomy

MIMD - distributed memory

MIMD – distributed memory topologies

MIMD – distributed memory topologies

MIMD – distributed memory hypercube

MIMD - shared memory

P Cache S S P Cache S Memory Memory

MIMD - shared memory

Multistage Interconnection network

Duncan's taxonomy

-MIMD/SIMD (Non-Von) -Dataflow (Manchester Dataflow Computer, MIT Tagged Token Dataflow Computer, Toulouse LAU, etc.) . MIMD paradigm . **Reduction** (Newcastle Reduction Machine) -Wavefront (RSRE Wavefront Machine)

MIMD/SIMD

Dataflow

Node 4 + Node 3 Node 1 * Node 2 3 a=? 5 b=?

a=5 b=2

Dataflow using tokens

Reduction (or Demand Driven)

Like functional languages

$$a = b + c$$

$$b = d + e$$

$$c = f * g$$

$$d = 1$$
; $e = 3$; $f = 5$; $g = 7$

?a

Graph Reduction

Waveform Array

Dataflow in systolic arrays.

Parallel Computing

lan Willers

Why is it interesting?

Classification of Architectures;

Common Practical Models;

Three concrete examples.

Restrict Access to an Object

Like turning off interupts in a sequential computer

Semaphores

P(s): Wait until s>0

s = s-1

V(s): s = s+1

Binary Semaphore restricts value to (0,1)

General Semaphore has any value >=0

Critical Section

P(s)
<critical section>
V(s)

Conditional Synchronisation

When condition true V(s)

h/w: Fetch&Add or ReadTestWrite

s/w: Difficult to make deadlock free programs

Monitors

Critical Section (based on Object Oriented Programming) called a monitor.

Conditional Synchronisation

Message Passing (Examples)

Transputer (distributed memory)

MACH operating system using shared memory

Message Passing (models for naming)

Direct Naming

Client/Server

Global Naming

Models - shared and distributed memory

virtual memory with paging in shared memory model

Distributed memory looking like Shared memory

Leslie Vallent proved – with parallel slackness the communication can be hidden.

Parallel Computing lan Willers

Why is it interesting?

Classification of Architectures;

Common Practical Models;

Three concrete examples.

IMST801 transputer

- 32 bit architecture
- 30 MIPS (peak)
- On-chip IEEE 754 FPU
- 4.3 Mflops (peak)
- 630 ns interrupt response
- De-mulitplexed address and data bus
- 60 Mbytes/sec data rate to external memory
- 4 Kbytes on-chip SRAM
- 4 high speed serial links (5/10/20 Mbits/sec)
- 20 , 25 AND 30 MHz
- 100 pin PGA packages
- Inventing the future

IMS C004 programmable link switch

- Standard INMOS serial links
- 32 way crossbar switch
- Cascadable
- 10 or 20 Mbits/sec
- 84 pin PGA package

inventing the future

Occam Tony Hoare: Communicating Sequential Processes, CSP.

1) Sequential code:

SEQ

a = 1

b = 2

2) Parallel code:

PAR

a = 1

b = 2

3) Messages:

a!3

and

a? value

4) Atemative routes:

ALT

(d=0) a ? value

<code>

(d > 0) b ? value

<code>

(d > 0) c ? value

<code>

The Chorus Operating System

LINDA

LINDA

To put a tuple in tuple space:

To get a tuple from tuple space:

in (1, 1.5, 2) succeeds in (1, 1.5, 3) blocks

in (1, f, 2) succeeds and sets f to 1.5

To read a tuple from tuple space:

rd (1, 1.5, 2) succeeds etc.

Note: type and value matches are required

1) One can acheive high performance on essentially all scientific computations which are:

large (necessary condition)
loosely synchronous – MIMD or
synchronous – SIMD

- 2) Domain decomposition or data parallelism is a universal source of parallelism that scales to a large number of nodes
- 3) Greatest success has come from 1'000 to 10'000 line codes written from scratch for a particular machine. Usually the application scientist can specify parallelism from the natural geometrical structure of the problem.

4) Performance rules :-

Performance scales linearly in number of nodes at constant grain size (problem size proportional to machine size).

Fixed problem size does not scale by Amdahl's law.

5) A key question is: 'What is the appropriate productive standard programming environment for parallel machines?'

New languages and approaches (e.g. graphical techniques);

Compiler generated parallelism;

Application specific high-level environments;

Explicit user decomposition.

Parallel Computing

lan Willers

Why is it interesting?

Classification of Architectures;

Common Practical Models;

Three concrete examples.

The End