¢ 3, INTERNATIONAL ATOMIC ENERGY AGENCY
‘ !v UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

Pt
l
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS |=——=

I.CT.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CaBLE: CENTRATOM TRIESTE

%‘@.’ﬁ? a(('5)
S UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION 7 g

INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

¢'0 INTERNATIONAL CENTRE FOR THEORETICAL PHASICS MI00 TRIESTE (ITALY) V1A GRIGNANO, 9 (ADRIATICD PALACE) P.O. BOX $86 TELEPHOKE (024572 TELEFAX MO-ZMSY TELEX 46036 APH |

SMR/474 - 3

COLLEGE ON '
"“THE DESIGN OF REAL-TIME CONTROL SYSTEMS"
1 - 26 October

INTRODUCTION TO REAL TIME
OPERATING SYSTEMS

C. VERKERK
Computing and Networks Division
CERN
Geneva CH-1211
Switzerland

These are preliminary lecture notes, intended only for distribution to participants.

Mars BLiLDING STRaDA CosTiERa. 11 TeL. 22401 TELEFax 226163 TELEx 460392 Apmiamico Guest House Via Guosano, 9 Trr 224241 Teresax 224531 TeLes 460435
Microerocessor Lan. Via Berer, 3] TeL. 224471 Teverax 224163 TELEx 460392 GatiLeo Guest House Via Beire1. 7 Toe 22300 TeLErax 224559 Tryps 460367

Introduction to real time
operating systems.

September 19, 1990

C. Verkerk
CERN
Geneva

Real time College, Trieste 1—27 October 1990

Introduction to real time operating systems.

Introduction.

| ® These lectures give a basic
introduction to real-time operating
systems.

® We will concentrate on principles and
show various solutions to some of the
probiems.

® For concrete examples, we will -
' nearly always - use 0S-9.

® The lectures will largely follow the
presentation given in the book:

*; A. Tanenbaum; "Operating Systems,

Design and Implementation”,

Prentice-Hall Int.,1987,

ISBN 0-13-637331-3.

Seplember 16 15497}

Intreduction to real time operating systems.

Real bime College. Trieste 127 Oclober 1990 1

Introduction.

® Thus one view of an operating system
is that it shali provide a reasonable
interface to the user. In other words, it
should provide to the programmer a
set of easily understandable
commands, for instance for doing 1/0.
All idiosynchracies of the CPU
architecture and of interface chips
should be hidden.

®* Another view of an operating system is
that it should provide resource
management, resolving possibly
conflicting user requests.

Seplember 19, 1930

Real {ime Coflege, Jrieste 1—-27 Oclober 1990 3

N

introduction io real ume operating systems.

Introduction.

* What is an operating system? Why do
we need it? What can we do with it?

¢ A computer is useful only when it
executes a program. Certain parts of
this program must handle directly
pieces of hardware. This is not simple
and very often beyond the average
programmer or user. Just try to think
of disk /0!

Seplember 19 1930

introduclion to real time operating systems.

Real lime Coliege. Triesie t - 27 October 1990 2

| e

Introduction.

® One can distinguish different types of

interactive operating systems:

- simple, single user (MSDOS, Flex)

« multitasking (Macintosh, GEM,
052)

- multi-iser, time sharing (UNIX, VM,
VMS, 08-9)

- real-tire Kernels (iRMK,
AMX VRTX LynxQOS,etc.)

® As you will have to start soon working
with OS-9, we will look first at its
outside, hefore delving into the internal
workings of operating systems.

September 19, 1390

Real fime College, Trieste 1 — 27 Oclober 1990 <«

- A s

- ;| s -

A =R R . A 8a =

Introduction te real time operating systems.

Overview of 05-9.

The main characteristics of OS-8 are:

e A real-time, muiti-tasking, muiti-user
operating systemn, providing the
necessary process scheduling.

e provides management of system
resources: memory, input/output
devices and CPU-time.

* highly modular structure, so that a
wide range of applications can be
covered, from minimal embedded
systems (entirely in ROM) to level I
multi-user system.

Sepiember 18, 1990 Real lime College, Trieste 1-27 Oclober 1990 5

Introduction to real time operating systems.

Overview of 0S5-9,

The system comes with a comprehensive
set of utility commands (enhanced and
expanded by users) including:

® an editor with macro facilities (edit)

® an assembler (asm)

* a debugger (debug)

September 18, 1930

Real lime College, Triesle 1—27 Oclober 1950 7

(N

Introduction to real time operating systems.

Overview of 05-9.

device-independent I/Q system,
expandable.

a simple, somewhat Unix-like, user
interface (shel).

As in UNIX, the system provides,
amongst other things: hierarchical file
structure, with file modes; input/output
re-direction and pipes and filters, shell
scripls.

the system is fast and small {entirely
written in assembly language).

Seplember 18, 1990

Introduction to real time operating systems.

Overview of 05-9.

It can be further expanded with:

® an interpreter of structured Basic

{Basic09)

* 3 Pascal compiler

® a C compiler {cc1 is the base

module)

Real ttme Coliege, Trieste 1 =27 October 1990

The Microprocessor Laboratory has
acquired licences for OS-9 itself and for
the C compiler.

Seplamber 18, 1990

Reas! lime College, Triaste 1 — 27 Oclober 1890

———
=
-4
=
e
!
|
- ——— e

Disk File

|

|

| Manager
1 (RBF)
|

L}

|

|

_co | Ibl | |D2

_——t Vo V-

RBF Device Descr

05-9 COMPONENT MODULE

05-9 KERNEL
(CS9P1, 0S9P2)

{ IOMAN)

- —— ——
- -
=
o)
=
(ad
~
[=
=
[nd
g}
=
2]
=
o
2
o

i i i
| | Pipe File |
} | Manager |
" | (Pipeman) |
_ _
- .

| |
| Pipe |
| Driver |
i !

[_cu | | Pipe |

1 [}]
iptors Pipe Descr.

- - Y p—

CRGANIZATION
| g .
| ! !
| --1 Clock !
| ! !
_ b e e]
|||||)
i
ger |
|
]
||||| t
|
Jrrr e |
| |
I Char. File |
| Manager |
| {SCF) _
! !
b o e e e e 1
[|
{ J
| | |
| ACIA | | PIA [
| Driver | | Driver |
| I |
Ve e] L]
| | J |
| | | |
ITL § 172 | Pl | (P2 |

| I | [}
mmm Device Descriptors

Root directory

Prof . White

-
W
@ Q
o O
\\\ &
E
[% nl‘u ‘C
r._m‘ ﬂ‘ w
m/ &
-
(o]
[(%]
a = 3
m\\\O
o -0
c
3 - . =0 P
2 . & o
m
o -0
o
;::rfAuL
-l.\\%l‘
" n
& Q
o
2
5 O
l.._\
b o
m -
[73]
el .-
2 Wl zZ ©
w =
=

Robbert

a = a - sA- AL 2 - A

L 1 &

- A &

A E A _ a&1 4

14 &

Introduction to real time operating systems.

Overview of 0S5-9.

¢ The file system is organized
hierarchically, as in UNIX, but the
physical device where the files reside
must be specified.

¢ The root is therefore /do , /d1, /11,
/ho etc.

¢ The root directory may contain files,
or it may contain directories.

e Each directory may contain
sub-directories, etc, etc to any depth.

e A tree structure is the result.

September 18, 1980

{ntroduction to real time operating systemns.

Real hme Coltege Triesle 1 — 27 Oclober 1990 9

r —_ J—

Qverview of 05-9.

* Two different files may have the same
name, provided they belong to
different directories.

o The working directory may be
designated: . , the parent directory: ..
So if C were my working directory,
and there also existed a file:

/D0/SRC/PASCAL/STATIS/ causs . p

| could reach it with:

.. /PASCAL /STATIS/GAusS.P

Seplember 18 1930

Rea! lime Coilege. Trieste 1 - 27 Oclobar 1990 11

S

Introduction to reai time operating systems.

Overview of 05-9.

¢ To reach one of the leaves {a file) you
follow a path:

/D0/SRC/C/ACCOUNT /atLL . c
This is a full pathname.

® One of the directories is the working
directory. For instance C above. The
same file "bill.c” can then be reached
following a partial path:

ACCOUNT/BILL.C

If "ACCOUNT” were the working
directory, the pathname “bill.c” would
be enough.

Septerber 18. 1990

Introduction to real time operating systems.

Real time College. Triesie § — 27 Oclober 1990

Overview of 0S-9.

e (S-9 has two working directories:
« working data directory
. working execution directory

s chd, chx commands change the data
and execution directories respectively

e pwd, pwx show what they are.

Seplember 18, 1990

Real lime College, Trieste 1 — 27 October 1990

uowi=y Zy (172 Amed-v-- o geLL SL/RD/U O wAausph (ol ETiE Amal-u-~ OUd S1/v0/06 O
3147 481 IV Amot-u-- wEll SL/v0/u6 O Aufds)p yy 2HE IMod-w-- EZ11 SL/w0/06 0
spowl 90z Vi L IMek-u-= HEEL GL/MOS06 O WBUS R Z44E 96E dMuld-e-~ BZIL SL/NO/06 O
wa} Yy yi Amod-u-- giil SL/wO/oe L 1P Zve Zut Amdl-w-- HZII SI/%0/06 O
EEINE 1443 AMod-g-- HEEL SE/m0/06 0 LHpep e 48t AmMoi-w-~ BZE] S1/R0/06 O
FA I Lt CoAmed-de~ HERL S1/M0/06 0 19 4y HETS Amea-w-- BZIL Sifv0/06 O
1 8t LeL dmoleg-- gEL]L S1/w0/us 0 11PP 961 64c dmvd-o-- 6ZIL Si/v0/06 0
dpaas qug k1vi dmel-u-- L1 S1/wi/oe 0 A2VIOP 90LE (iL]H IMed-0-- GZIL SE/v0/06 0
qupds qy9| QuL dMud-do- S0 S/ 06 0 CREY S K | 45€ amed-a-- gZI1 SE/N0/06 O
senuds gy t£us Aml-ve~ FELLE SL/NO/UE O FEER A4 6EE Imad-w-- @zl Si/w0/06 0
Jd08 £US ady AMad--- FELL SI/Y0/06 0 hio 19 et AMaI-9-~ @Zil S[/v0/u6 0
daafs gy V49 AmMpd-ee ZLfL SL/M0/06 U da zngy 0zt Imedav-s gzl SL/v0/f06 o
pofs diily av9 dMad-v-— LLLE S1/W0 06 0 Ldoa gyz ole Amol-w-- gZIll SL/w0/u6 O
uowfs 241 Va9 dmud-b-- 9ElL Sl/v0f0b O 1eqqudr 4{ 61¢ Ampl-o-- HZII S1/w0/06 0O
119Ys yiy H49 AMDLaRea QLY LI/wO/06 O dwa gyoq LOE amal-w-- GIZLL SI/W0/06 O
sw| jes g 199 AMul-0-- 9ELE SL/w0/ue 0 122 6041 942 amor-v-- g1l S1/90/06 0O
A|ps SHLT 59 mel-de- Yol SU/v0/06 0 2> g9dl [43rA dmMal-a-- gZII ST/%0/06 O
waps 9 949 Amsl-w-- 9ill Si/w0/06 O 11¥2 6VTI (3P4 amas-o-- /710 SL/w0/06 0
IGEESR LT oy9 mol-v-- 9Ll St/wefue 0 72 ¥t [4't4 Ampl-va- T SE/90/06 0O
Swued gl 9 Amad-ve- 9Ll S1/%0/Ge U ER 3 0ilz amat-d-- /11 SE/w0f06 O
dwnips geil aly Amed-w-- suifl Si/v0fue 0 dasd 2 pysz f4°74 Amad-a-- 7L} S1/90/06 O
r=d g1 419 Amad-w-- SO Si/M0f00 U ¢ssud o ghyg 1zz Ampi-a-- LZL] S1/90/06 0O
pad og 8l9 amad-w-- SELL SU/N0/00 0 1ssued 2 gryy LAt Imad-v-e LTI SI/R07/06 O
wdand 4y 91y Amul-u-- Sgil SES%0/un O 3do 2 azye il dMisd-o-- 9ZTT S1/90/06 ©
sowid ¢z7 719 dmel-v-- GEi [SE/R0/00 O YU{ 2 B4/E acr amar-a-- 9ZIT S1/H0/06 O
1a93ufad g4 019 dmod-v-- GOl SE/WO/0L O WSE 3 Y408 64 Amer-o-- GZI1 SI/90/06 O
1sHd ooz 419 Amate8.. Col] SE/vOf0L D P1inYg %S {4 Imat-u-- 9Z[1 SI/%0/06 U
yozed 9grg 6HS amed-a-- GL1[SI/p0/06 0 Xourq 942 I | amas-a-- 9ZI] SI/90/06 ©
zd e 48 Imed-u-- Ol S[/v0/oe O dudq Jz7¢(40 Amd1.9.- 9Z|{ SI/%0/06 O
14 ge [$1ES AMod-w-- y{ll SL/vO/06 O diysuyq oy CH] Imea-o-- Szll S1/%0/06 O
uwB L0 gy 144 Amed-v-- w | SL/ve/ue 0 4319 gy 9:) AmMed-v-- CTIL SI/90/06 O
Aw sy 137243 Amul-o-- el S1/w0/00 0 v milc e AMei-o-- SZI{[51/%0/06 0
SWUuw Il gy Vs AMaa-v-= el S1/v0/06 O sRyLE g4T as AMod-o-- CZL[SE/HU/06 O
CEES T ovs AMud-g-- wLl] s&L/M0/00 O 1SU120 £02 68 amat-w-- ST S1/v0/06 O
wdiew gy H S IMed-v-— HELL S1/VD/06 O IR BOSE 44 IMel-a-- CZV[Si/90/06 0O
vaus wuw YL £Ls tad-o-- HELL SL/%0Sus D Bnguq 904 69 AMad-d.- STl SI/v0/06 ©
dwnipas 6442 uys AMud-u-- gLtl Sl/v0/ue 0 WSy y{jy| 18 AMud-v-- ST SIf0/06 O
41 pw Yol g4g B R Y U N T O I 7 T R L L mem v mmsmesmae —aea
WO juw gy 145 AMIL b = EEEL SE/%0/00 O LI AT] g::C:c._h; A0 Jous S} 1Iu [| Jipow Juu] duim)
S gyg VLS e 1 A L IR WA ')
Appipw Y HES Amol-g-- LELL S1/%0/06 O, SUTLIIST SUMD/IR/S 30 Kl0rouagp
51 Y40L 905S dMad-o-- LEL] /YOS 06 O
upBop gy 1u% dewd-u-- Ll SE/v0/0e O SUHDS PR/ » 4)pigs0
prog % RV dMadeg-= Ze] SE/v0/06 O
As)L Ay iy AMpi-we- 0L SE/v0/ue O
L LT T B} dmai-e-~ ZyL 41/v0fue 0 S48 00 Y dsdme-p fLIL SL/Y0 06 G
CAI R IS oy R e 4 % B B WA TR AT DOEE 691 ay AMsldmu-p S S1L/M0/06 0
q11 yuli Ly AMud-u-- Ze L SE/w0/ue 0 4l ov Vi IMsdme-p o L] SL/90/06 O
RILELE NI T a6y AMaa-u-- 2Pt S1/vufue O 544 0¢s Ly Amsdma-p o gull S1/90/06 0
LEpPE EYL 6bY AMed-ue— L] STA0/060 0 SUHD ovd bt dmvamo-p O00FL SI/W0/06 0
Juepl 4y 1bY Amud-u-~ gLl SH/v0/00 0 dnjiule dve T4 AM-d---- gyl wI/%0/06
Xy oLy luy amed-v--] SE/vO/Ue 0 J00HeEY 6149 9 Ao EvHl Zo/cofo6 0O
dwy oy LT L N S A A VAT T Sommeemess memee-e- R M e ----
duad 5oy IR Y] AMut U - el s1/v0/foe o oUBU Putoau A 0 Ul Be g A Pa Jpow s auum
LT Ly Amuiou-- [EL) S1/v0/00 0
wul) oz ayy AMod-w-— Ll s1/vofue 0 L5914 1P/ Jo Kaoyseap
peawdag gy ey S R R B WAV AT YA
SUNPUEY dUC] Ly Amud-w-- [ELL SI/v0/0b O 1P/ @ Jppipsy
pury dlel by iMui-o-- QU SI/0/06 U
PLYE) 1dwe vy Amud-v-- 0Ll S1/v0/06 O
upyxo yl LdE AMad-o-~ L[S1/%/06 U SIUTVWS [[oy Ywodil| fEA0YDUE wedd ||
Aoa ke Z() Sdt Amod-v-- Ul Si/wa/06 O (Sdwyshd A0Mvua-]) Bi033ey 9tz (A1 powde)
oyse g £HE Madedo— 0Lt Y1/%0/ 08 U ZO/C0/06 fuo puiueds 00 ASHENOY 6501UNC - LOo0 dLal,
dup ggy 0dg mateo—o 0l SL/vO/u 0

wieip oyy outg Woteo ol s1/Y0 00 0 L/ weiy

ul —U.ﬂbio. .vv.w—-:»cv_
Ujupuyst3s]aooy
piomssed

Bawiie

EYEE 1]

Wigl}
uyuleg |}

hxe

4 Awwnp

Wb dwe) dwos
QOB

WO D

woD g

KT
0L
€4
Y93

Junuveyiy

8ot
Hel
ELT4
q44s
4
oY
osd
981
ad

JulwoeIfy

sy
036 AModocen HZH] S1/W0/uL U
Vie am-d---- y2H1 L1I/H0 e O
406 M- nZyl S1/w0/06 o
V6 m-d---- gyl st/v0/oe O

AOYOEE B pHQ AT U PO g pOW R JaU M

12:80:51 SAS/1p/ Ju A1)

SAS/LES » o Ltpiesu

9db B e 741 B VATV A T
tde Am-d-—-- 22l S1/Y0F06 0
4ve IM-1---~ ZZH91 S1/v0f06 O
P AM-d---- ZTY S1/v0/06 O
w6 AMedee-m ZZHL SL/WBS0E O
Ve AM-a---- Z27z%] SI/w0/0e 0
ETAN dM-d---- TZyL SU/VO/0G O
366 AMm-d---- ZEyl SL/W0/06 O
Voo AM—d---- TEYL S1/w0/06 O

10)9US SOILYAIIU P pOou JEe | dulng
GRIHIIYL JOMA/Ip/ Jo Ksojuoayp

DOME/ LB, A1PeED

[RCTER |
1t jAusn
[4t1?

y-£)38s
Yy duyn
yrowyin
rowgy
od&yuks
Y wowsAs
mmnvzhm
Y sBujiis
Yqripis

Y OFpIE

I} [euds

Yy wisds

Y s1es
y-dwfyes

Y- 402

y* suid

J1 ' sjupsisgEo
HjupPIIBLEO
sjuplqigse
) UPO]4HO

U HJUPLEO

s JopgBoO

i gs0

__. G_._——.uCE

- Sepow

1" & boussw
Yoy jew
[TRET]
yroymu]
sujunbe
-—.CCLLE

Y iaugsp
el p
y-4p
ultisiap

g wdd 2

I 504 30W0
qrjueq
y-daw

E—K.-EK
LM

oM
£)1d0a
AL | LY

Junuau Ay

otdl
9y
a5y
6l1
133
[4'L)
49¢€
941
el
KEL]
[%'11
9La
301
g
uve
L09
ovil
40¥
iz
131
a5l
HEVE
[4:3°1
60d
e
iy
ad
051
ol
did
vul
vl
1z
oul
{42
919
49
1A
Uy

Ui YA

Yuy
L]
g4l
il
]

Sub AM-a---- 12} SL/P0/06 0
1086 Am-a---- 0ZHL SE/M0/06 O
tve iM-d---- 0Z%F S1/90/06 O

AUYUE SUN[LT IU Pu) JIPOW JEE] tuusy)
(54151 HIIA1B/ jo LL1oyduipp

LI/ Ipf ©» 4ppiosU

406 dm-a-——- gZyl S1/vefue O
1ve Im-3---- @iyl SU/M0/06 O
068 AM-d.--— gI9E SE/HO/06 O
668 an-a---- gyl S1/90/06 0
g44 am-1---- giyl si/v0f06 0
1] am-1---- gIwi S1/q0/06 0
a8 IM-d---= BLYT SL/90/06 O
dse am-1---- giwl Si/90/06 0
Bg Am-I---- 141 S1/%0/06 O
L] im-de--- 71yl SU/Y0O/06 O
198 am-1---- £I%1 Si/90/06 O
198 AM-d---- L[% SU/%0/06 O
asg AM-d---- LI%] ST/n0/06 O
ose am-1---- [{9T S1/v0/06 O
g58 Im-I---- L1491 ST/90/06 O
0s@ AM-I-ana Iyl ST/90/06 O
cve 1M-3---- 9I%] SI/90/06 O
114'] Im-3---- 9IRE S1/%0/06 0O
€28 1M-k---- 9Ivi S1/v0/06 ©
444 AM-3---- 9IR[s[/%0/06 O
4L IM-de--- 9iyi SI/H90/06 O
zut d#-d---- 9%y 51/¥0/06 ©
172 1M-1---- 919l SI/90/06 0©
ave am-1---- 9iy] SL/90/U6 O
'l 1a-I---- Syl SL/%0/06 O
o m-1---- Syl SL/%0/06 O
£ve iM-d---- SY4T SI/v0/06 O
ove AM-2---- §1%T S1/%0/06 O
U6l amed---- GIHl S1/%0/06 O
Ut IM-A---- Syl SLSRO/06 O
0L am-d---- gyl SI/90/06 O
ace am-1---- Syl si/yn/os ©
6Ll am-d---- gln{ S[/¥0/06 O
9L AM-d---- HIy1 S1/90/06 O
2L IM-4---- winl SI/n0/f06 O
gt AM-d---- niwi S1/v0/06 O
{9t AM-d-eee gyl SI/H0/06 O
L9 AM-d---- yIy] ST/H%0/06 O
£9¢ am-a---- Byl SL/M0/06 O

ACYuut B HYLAT U o) g jpon IsE] Jeun)
9EILLIGL SAMI/ LB/ JO Kd0rveagp

SAAU/ IR/ v 1ppies0

use dmal-u-- pEll S1/%0/06 0
a5 amed-o-. ol SL/YO/06 O
'L 7 imel-a-- GELL SI/R0/06 O
1174 dmvl-u-- BELL SI/HO/06 0
ol areld-w-- gELL SL/v0/06 0O

r wTETN T W e W wy Ty v w ¥ T ¥YYS'¥Y

Iniroduction to real iime operaling syslems.

r
ROM-RAM disk.
-

* Operating OS-9 from floppy disks is
relatively slow. A very useful in-house
enhancement has been the

development of a ROM-RAM disk.

¢ The 640K ROM disk is the exact
equivalent of an entire floppy. It is
device r0.

® [t contains the entire system and all
the dtility commands {many more than
provided by Microware), the DEFS and
#include files, the C library and a set
of procedure files.

Septemper 15 1990 Rea! hine College Trieste 1-27 Oclober 1990 13

Intreduction to real time operating systems.

¢ The Shell is the interactive
user-interface to the system.

® You type a command, the shell will
take the necessary steps to execute it.

® |n addition to basic command line

processing. the shell has functions for:

- 1/O redirection (inciuding pipes and
filters)

- memory allocation

« multitasking {e.g. concurrent
execution)

- procedure file execution

« execution control (with built-in
commands)

Seplember 18, 1990 Resi lime College, Triesie 1—27 Oclober 1990 15 2

introduction 1o rea) ume operaibing sysiems.

ROM-RAM disk.

¢ The 160K RAM disk is used to hold
the working directory. Its use speeds
up considerably the execution of most
commands (in particular edit, asm and
ccl). ts name is /1.

Seplember 18, 1890 Real lime Coliege. Triesle 1 — 27 October 1990

Introduction to real time operating systems.

* A command line consists of:
» a "verb” (name of a program, shell
script or built-in command)
- parameters to be passed to the
program
- execirtion modifiers to be
processed by the shell.

ExAmMpPLES:

ASM MYFILE L -0 >/p] #12x

Sepiember 18 1890 Rest lime Coliege, Triesie 1 —27 October 1990

- /s — fsAaAas =+

e &

4 4 A A A a8 - &S &84 2 - A

- A & A

A4 B & _ A BA i

nrocucC 10 UV icta JiNe vk . V. 2§52 .550083.

Shell.

Execution modifiers are;

- # memory allocation

- seguential execution

. ! pipe

- < redirect standard input

- > redirect standard output

. > redirect error output

- & run in background
{concurrently).

Commands can be grouped using (
and).

059: (pir (MDS: pier SYS)! somt ! ECHD

September 18, 1990 Reat time College, Triesie 1—27 Oclober 1990

Introduction to real time operating systems

A command may be run in
background (by ending the command
line with &): As scon as execution has
started, control comes back to the
shell: the shell prompt OS9: appears.
You may now run another command in
background, or in foreground.

Interaction is only possible with the
program in foreground. The following
makes sense:

059: L1s7 LONGFILE >/P] &

039: EDIT MYFILE

September 19, 1990 Real time College, Trieste 1-27 October 1990

17

e B ¥r = . == e B B

Sheli.

e Built-in Shell commands:

. chd <pathlist> change data
directory

« c¢hx <pathlist> change
execution directory

- ex name execute name
instead of shell,

. W wait

« = text comment (script)

- kill <proc D> abort process

» setpr <proc ID> <priority >
change priority

. X, —X abort, do not
abort, on error

» P, P prompt on, off

-t —t copy, do not copy

input lines to output

Seplember 18. 1950 Rea! time College. Triesie | —27 October 1990

Introduction to real time operaling systems

Shell.

This does not make sense:

089: EpIT MYFILE &

059: LisT LONGFILE >/p)

& Shell may be instructed to execute two
or more commands in sequence:

059: cwp/rl; copy /D1/HELP/ATIR ATTR; £DIT ATTR

® The vast majority of OS-9 programs
are re-entrant. The OS-9 C Compiler
produces re-entrant code. Thus, if two
users are simultaneously editing (each
his own file), only one copy of “edit”
will be in memory. The two data
spaces are of course separate.

September 19, 1990 Feai time College, Triesle 1 —27 October 1950

introduction to real time operating systems

" e All commands use a default size of
working space (minimum one page of
256 bytes). The shell can override the
default with:

059: Ep:T #20k myFLLE

or 059 Eprr #80 myriLE,

* Shell will look for a command in the
current execution directory. If not
| found. it looks in the data directory. If
it finds there a file with the requested
name. it will try to execute it as a shell
script or procedure file. A shell script
contains one or more command lines
(and comments) that the shell will |
interpret.

September 19 10510

Introduction to real time operating systems

Real ime Colieae Trieste 1- 27 October 1990 21

T —

Unified I/0 System. ?

* Device-independency is achieved
through a layered structure:;

- IOMan at the top, manages all
requests. It passes a request on to
the appropriate file manager.

» For each type of device there is
such a file manager:

RBF FOR DISKS
SUF FOR CHARACTER DEVICES

FIPEMAN FOR PIPES.

A file manager can handie different
types of devices (rbf handies
floppies as well as hard disks).

Sepiember 19, 1950

Real lime College, Triesie 1 —27 Ociober 1990 23

LW N

introduction to real time operating systems

Unified I/0 System.

* As in UNIX, Input/Output devices are
treated as files in 0OS-8, making /O
device-independent from the user’s
point of view.

® (S-9 can handie various types of
devices:

- random block file (disks)
- sequential block file (tape)

- sequential character file (terminals, :
printers)

- pipes.

September 18, 1990 Real ime College, Trieste | ~ 27 Oclober 1990

Introduction to real time operating systems

Unified I/0 System.

- For each specific hardware
controller there is a device driver:

RYFDC FOR FLOPPIES
ROAMER FOR THE ROM-RAM prsk

ACIA AND ACIAS]l FOR TERMINALS., PRINTERS
PIPER FOR PIPES,

ETC,

- Every individual device has a
device descriptor. Examples of

those: d0, d1, r0, r1, term, p1, t2 elc.

September 19, 1950

Rea! lime Coliege, Trieste 1~ 27 Oclober 1990

2

- B 8 - A . AAa s

niroguction (o rea’ time operaiing systems

Unified YO System.

® A path is to be opened to (a file on} a
device before one can perform /O
transfers.

® There are three special paths, which
are always open:

- standard input (stdin) from the
keyboard,

« standard output (stdout) to the
screen,

- standard error (stderr), usually to
the screen.

September 19, 1990

Introduction to real time operating systems

Real fime Coilege. Trieste 1 —27 Oclober 1990 25

Unified I/O System.

* A pipe connects the output of a
program to the input of another
program:

059: pir £ ! sorT
You may continue;
059: pir ! worps ! somt

® A filter is a program which reads from
stdin, transforms the data, and writes
the result to stdout. Filters are very
useful for use in pipes. Sort, words, wc
are examples of filters.

Septenber 19, 1990

Real time Celiege, Triesie 1 =27 Oclober 1980 27

aA

Introduction 1o real time operating systems

Unified I/0 System.

® Input and Output may be redirected,
adding <pathname or > pathname on
the command line:

0S8: L1sT MyFILE >/P]
059: pIr E »/nl/KEEPDIR

0591 sORT </R1/UNSORTED >/R1/SORTED

& > > redirects stderr.

September 19, 1990

Introduction to real time operating systems

Memory Modules:

® All programs must conform to the
standard memotry module format,
otherwise they cannot be loaded.

* A memory module has a header,
folfowed by the program code, and a
CRC.

® Header contains the following:
. synchronization bytes (87CD)
« length of module (in bytes)
- pointer to module’s name string
» type/language byte
. revision/attribute byte
« checksum.

Septembar 18, 1990 Real lime College, Trieste 1 —27 Oclober 1980

Real time College, Trieste 1 — 27 Cctober 1990 [

EXECOTABLE MEMORY MODULE FORMAT

Relative Usage Check Range
Address
P itttk it . mmmAm—— e +-—-
$00 ! ! ! !
- Sync Bytes ($87CD} - ! !
e mememmm = e oo —em oo . ! !
$02 ! ! ! 1
S Module Size (bytes) -~ ! !
$03 ! 1 ! '
S ettt . ! _
504 ! ! ! 1
.- Mcdule Name Offset - header !
505 ! ! parity !
|||||||||||||||||||||||||||||| . ! 1
S06 ! Type ! Language 1 1 !
|||||||||||||||||||||||||||||| . ! !
$07 t Attributes ! Revision ! ! !
ittt bt . T module
508 ! Header Parity Check ! CRC
.............................. . !
509 ! !
- Execution Offset - .
SOA ! !
soB ! . !
.-— Permanent Storage Size -—.
$oC ! 1
S0D {Add']l optional header

extensions located here)

Module Body
object code, constants, etc. ul

haracter.

start
The name

he
See text.
A=

here in the meodule
See text,

The address of the
f ASCII characters

These two constant
of the previous eight bytes.

of the module.
The one's compliment of the vertical

The overall size of the module

d to locate modules.

DESCRIPTION
having the sign bit set on the last ¢

module name string relative to t

(first sync byte)
string can be located anyw

in bytes {includes CRC).
and consists of a string o
Attributes/Revision Level.

parity (exclusive OR)

Module Size.
Header Check.

bytes are use
= Offset to Module Name,

MODULE BEADER DEFINITIONS

$6 = Module Type/Language Type.

$8

The first nine bytes of all module headers are identical:
57

$0,51 = Sync Bytes {$87,8%CD}.

MCDULE
OFFSET
$2,%3 =
54,85

4.2.0

Introduction to real time operating systems

Memory Modules:

¢ Depending on the module type, the
following information may also be
contained in the header:
- pointer to execution entry point
- size of static storage area required.
- pointers to other name strings.

¢ The mod assembler directive sets up
the header.

® The emod assembler directive
generates a 3-byte CRC for the
module.

* Modules are loaded in high memory
addresses.

September 181890

Introduction to real time operating systems

Real lime College. Triesie 1- 27 October 1990 29

—
1 Memory Moduies:

¢ Re-entrancy is assured if you:

. don't store variables in the code
segment of the module.

» use program counter relative
addressing for addresses inside the
module.

- keep all variables in the direct
storage page. Address those
variables using either direct page
addressing or indexed addressing
(using the U register).

e The C compiler produces position
independent, re-entrant code. It adds
the header and CRC {o the code.

September 18, 1990

Real lime Collegs, Triesie 1 =27 Oclober 1990 31

A3

Introduction to real time operating systems

Memory Modules:

e Static storage areas associated with
modules are allocated at low memory
addresses.

® A directory of modules in memory is
kept in page 2 of memory.

¢ A module must be written in Position
Independent Code. Thus no relocation
is needed.

¢ In order t0 make modules sharable
between several processes, they
should be re-entrant.

September 18, 1990

Introduction to real time operating systems.

Limitations.

The system has of course its fimitations:
¢ memory is restricted to 64K. Care
must be exercised when compiling

programs.

¢ shell is rather restricted (it is very

smalll);
« no environment and other shell
variables,

« no wildcards,

- no conditionals or loops in shell
scripts.

. no formal parameters for sheli
scripts.

Seplember 19, 1990 Real time College, Trieste 1~ 27 Oclober 1990

Real time College, Trieste 1 —27 October 1990 [

byte 6
some of

000D 4C6973F4

.
B

guage run~time
ype before execution
either I-code or 6809

by checking the language type

.
H

redefined by convention,
run

The type codes are

y not implemented
may

example,
arbitrarily

-C0de
guage type is so high-level lan

odule is of the correct t

Eight types are p
for

Multi-module {for future use)
05-9 Device Descriptor mooule

Data module

User-definable
0S-9 File Manager module

0S-9 Device Driver module

Subroutine module
05-9 System module

Program module

Meaning
COBOL I-code
FORTRAN I-code

ghificant bits of byte 6 describe the language type as
the lan

6809 object code
BASIC09 I-code
PASCAL P
procedures

(non-executable)
C I-code

Name
Prgrm
Sbrtn
Multi
Data
Systm
F1Mgr
Drivr
Devic
of

can verify that a m
BASICO9,

NOTE: 0 is not a legal type code
attempted.

The following are current]

Code

SiD

$20

$30

$40
$50-SB0

SCO

SDo

SED

SFO

least si

Data

Obict

I1Code

PCode

CCode

CblCode

FrtnCode

Type/Language Byte
The module type is coded into the four most significant bits of

language

o
1
2
3
4
5

the module header,
6

purpose

4'2.1
o i 1 e only.
which are for 0S-9's internal us
four
The
sSystems

listed below:
is

The
machine
code,

* ok ok ok

* LIST UTILITY COMMAND

*
*

* STATIC STORAGE OFFSETS

*
BUFSIZ

IPATH
PRMPTR
BUFFER

LSTMEM

S9F01 LSTENT
8601

103Fr84

252E

9700

9F01

9600 LIST20
3043

108E00OCSE

103F8B

2509

8601

103F8C

24EC

2014

Clp3 LIST30
2610

9600

103F6F

2509

9EQ]

A6B4

810D

26CA

SF

103F06 LISTS0

958BB58

LSTEND

LSTNAM

mod hmemzu.rmezmz.wwow3+omunﬂ.
REENT+1,LSTENT, LSTMEM
"List"

fcs

equ
ORG
rnb
[§)11]
rmb
rmb
rmb
EQU

stx
lda
0s9
bcs
sta
stx

lda
leax
ldy
089
bcs
lda
0s9
bce
bra
cmpb
bne
lda
os9
bes
1dx
lda
cmpa
bne
clrb
059

emod

EQU

Syntax: list <pathname>
COPIES INPUT FROM SPECIFIED FILE TO STANDARD OUTPUT

0000 B7CDOC4E

200

0

1

2
BUFSIZ
200
200

PRMPTR
*READ.
ISOPEN
LISTS50
IPATH

PRMPTR

IPATH

BUFFER, U
#BUFSIZ

ISRDLN
LIST30
1

ISWRLN
LIST20
LISTSO

{ESEOF
LISTS50
IPATH
I5CLOS
LISTS50
PRMPTR
0,Xx
$50D
LSTENT

FSEXIT

*

'y

size of input buffer

input path numier
Paiameter pointer
allocate line buffer
allocate stack

room for parameter 1

save parameter ptr
select read access m
open input file

exit if error

save input path numbs
save updated param pt

load input path numbe
load buffer pointer
maximum bytes to reac
read line of input
exit if error

load std. out. path 4
output line

Repeat if no error
exit if error

at end of file?
branch if not

load input path numbe
close input path
-.eXit if error
restore parameter ptr

End of parameter line
«-No; list next file

.-« terminate

Module CRC

nirocuction 10 real ume operating systems.

Limitations.

® inter-process communication and
synchronization of user processes is
largety left to the user.

& There are however tricks to overcome

some of these limitations. Also some
commands allow wildcards,
parameters or loops.

Introduction to real time operating systems.

Levels of Abstraction.

One can view a computer at different
levels of abstraction:

- at the bottom is hardware.

= a microprogram (or hardwired
logic) acting on the hardware
defines a machine language.

- the operating system provides a
more convenient interface fo the
user. It defines a virtual machine.

- on top of the operating system we
have system utilities such as : a
command interpreter, compilers,
editors, etc.

September 1& 1990 Real lime College. Trieste 1~ 27 Qctober 1990 33 September 19,1990 Real time College, Triesie 1 — 27 October 1990 2

a;|ms D AaAsms s

Introduction to real time operating systems.

Levels of Abstraction.

. the top most layer is made up of
the application programs.

* The operating system itself can (and
usually is) also be layered.

* The operating system may in fact have
one of four possible structures:
« monolithic
« layered
- virtual machine
- serverclient.

® In the server-client concept some
functions, traditionally part of the
operating system, are pushed upward
to higher layers (e.g. file-server}.

Septembar 19, 1990

Real time College. Trieste 1—-27 October 1990 35

AT

Introduction to real time operating systems.

Levels of Abstraction.

® The client-server model is well

adapted to distributed systems.

On most machines, the operating
system runs in kernel (or protected)
mode, whereas the layers above it run
in user mode. Certain machine
instructions cannot be executed in user
mode.

Evolution of operating systems:
"plugboards”, batch,
multi-programming, time-sharing. With
PCs and workstations evolution toward
user-friendiiness and network
operating systems.

Septambar 19, 1990

Real time College. Trieste 1 =27 Oclober 1990

Banking Airline Adventure Application programs
system reservation games PP prog
15
Compilers Editors Command
interpreter L System
prograrns
Operating system
-
i
Machine language
Microprogramming > Hardware
Physical devices
-

Fig. 1-1. A computer system consists of hardware, system programs and appli-
cation programs.

0
1
[4
€
14
S

sweiboid Jasn
Jolejado ayyt

1uawabeuew yndinosinduy

juawabeusw wnip pue AJOWAK
LOHEUNWWOI ssad0id-s01etadQ)

Butwweiboidiynw pue uoIIEI0DY R J0SSAD0UY

"wasAs Junesado FHL 2yl Jo a1mponng *0z-1 *Hg

-wsks switjouow e 1oy ppow Fuumonns srdwis v *61-1 "3

I
I
|
I
I
I
!

@204d
1N
wano.d
e

=
Y

i i s

1/Q instructions here

Virtual 370s

/I\.

System calls here

CMS

CMS

trap here ——4 <4

CMmS ~—-trap

VM/370

370 Bare hardware

Fig. 1-21. The structure of vM/370 with CMs.

here

Kernel mode

} user mode

Machine 4

Terminal server

Client Client Process Terminal . o File Memory
process process server server server server
Kernel \

\ Client obtains
service by
sending messages
to server processes

Fig. 1-22. The client-server model.
Machine 1 Machine 2 Machine 3
Client T + File server Process server
see Kernel Kernel Kernet

|

]
S~

|

Kernel

l

!

\ Message from

client to server

AL

Netwark

Intreduction to real time operating systems,

System Calls and Processes.

& Propgrams communicate with the
operating system through system calls
(or service requests).implementation
varies, but it usually works through a
software interrupt.

* Key concept is the process. A process
is a program in execution; it consists
of the executable program, its data
and stack, program counter, stack
pointer and all other registers and
other information needed to run the
program.

September 14 1930

Introduction to real fime operating sysiems.

Real ttme Coilege. Trieste '~ 27 October 1990 37

System Calls and Processes.

® A process may be suspended and
later resumed. All information must be
saved before suspension!

® Processes will need memory to run in.
When a process dies, the memory
becomes free for another process to
use.

® Processes will often create child
processes to communicate with the
outside world, e.g. perform
input-output,

September 19, 1990

Real lime College, Trieste 1 —27 Oclober 1690 33

40

Introduciion to real iime operating systems.

System Calls and Processes.

¢ The existence of processes implies
that there must exist system calls for
creating and terminating processes.
The shell or command interpreter will
create a process when the user has
typed in a line. For instance, it may
create a process that wilt run the
compiier. When that process has
finished its job, it will execute a
system call to terminate itself.

& The shell itself is also a process. In
the example, the compiler is a child
process of the shell. When it
terminates it returns to the parent.

September 19, 1990

Introduction to real {ime eperating systems.

System Calls and Processes.

* |t is now easy to see that an operating
system has four main functions:
« process management
. memory management
» Input/Qutput management
« Interrupt handling and time
management.

* All these functions have their specific

system calls. They are impiemented
as a disjoint set of programs, which
make use of common utility routines
(for instance for adding or deleting
items from a table).

Seplember 19 1990

Real time College, Thiesle y — 27 October 1990 7

Real time College, Trieste 1 — 27 Oclober 1990

Introduction to real time operating systems.

¢ (Consists of two modules, both in ROM:

Kernel of 0S5-9,

QS9p1 and OS9p2.

Kernel takes care of:

« system initialisation

. Processing of service requests
{(system calis)

-« memory management

» process scheduling

- interrupt processing.

Service requests are made via SWI2,
foltowed by an identification number:

Wiz
FCB 306

Seplember 19,1980

Introduction to real time operaling systems.

Kernel of 05-9.

Therefore two dispatch tables in page
1 of memory.

Input/output system calls are another
category, not handled by the kernel
{but by 10Man)

After initialisation a contiguous block of
memory is free. The kernel can
aliocate pieces of it to program
modules and direct page storage
areas.

Seplember 19, 1990

Reat lime College.-Trieste t —27 Oclober 1990

Real lime Coilege. Triesle 1 —27 Qclober 1990 4!

2

4 o

introduction to real time operating systems.

Kemnel of 0S-9.

Or, in assembly, and using
"Q89sysdefs”:

059 FsExry
Or, in C, using functions in the library:
ExiT{0}

Two types of service requests to the

kernel:

- user mode system calls can be
made from any program.

. privileged system mode calls can
only be made from within system
routines.

Sepiember 19, 1990

Introduction to Real time operating system.

Service Requests of 0S-9.

There are:

. 30 user mode (of which 6 level Il)
« 40 privileged mode (28 tevel 1)

« 17 /O service requests.

They are used to

- allocate, de-allocate: bits in a
bitmap, 64 byte memory blocks or
memaory pages.

« load, link, unlink modules

- fork, chain, suspend, terminate
processes

. parse path names, compare names.

. send signals and signal intercepts.

« manipulate process IDs, priorities,
process queues.

. a few miscellaneous.

Seplember 19, 1990

Real lime College. Triesie 1 — 27 Qclober 1890 42

Real iime college, Triesle | —27 October 1990 £

Service Request Index

User Mode Service Requests

Mnemonic Function

Kernel call
.~
V6
Fig. 1-18. How a system call can be made

_||||.m\‘| Alowauw uiepy IIL

Page
T e 298
% M..c o F$AllBit Allocate in a bit map ., . , . e o . 11-3
v mw Q. FSCRC Generate CRC , , , . . . « e ¢ s« . 11-8
O F$Chain Chain process to new module . . « . 11-4
S 839 FSCmpNam Compare two names . ., 11-7
- O ° FSCpyMem Copy External Memory, , , . 12-g
E 3 = .8 FSDelBit Deallocate in a bit map 11-9
E o o) FSExit Terminate Process . . , ., ., , . . . 11-10
=4 B E E &3 F$Fork Start new process . . . , ., 11-12
&cE m m.m.ﬂ s . e F$GBlkMap Cet Syetem Sleck Map Copy 12-18
5= o LR m £ 2 3 F$SGModDr Get module Directory Copy 12-19
32 m Ondx ® .= 0 F$GPrDsc Get Process Descriptor Copy . , . . 12-20
N & > FSID Return process 10 , . . .7, . ., | 11-17
—A Wa Y o g.e F$Icpt Set signal intercept trap . , . . , 11-15
N o - e F$Link Link to memory module, ., . . 11-1g
— “ o5 F$Load Load module from mass-storage . . , 11-1%
. 00 g F$Mem Set memory size, ., 11-20
w5 5 E mw FSPerr Print error message . . , ., . , . . 11-21
S5 L — M F$PrsNam Parse pathlist name . . ., ,« 11-22
4 m - —_ e F$SPrior Set process priority, ., . 11-28
3 £ = —- 8 - FSSSWI Set software interrupt vector . . . 11-31
S u > . F$SSpd Not implemented
s o & F$STime Set current time, , . ., 11-12
2 “ F$SUser Set User ID number 12-32
I o 29 FSSchBit Search a bit map 11-28
m m = M F$Send Send signal to process . . , . ., . . 11-25
5 5 A”u .m = F$Sleep Suspend process . . , ., . ., 11-27
o e o O FSTime Return current time . . . , ., , | 11-33
a a @ 2w FSUnLink Unlink module . ., , 11-34
] @ 3 E FSUnLoad Unlink module by name 12-34
- o E 5 FSWait Wait for signal ., , . ., . , . « + o 11-35
O vy
22
@3
=3
S 8§
8 g
2=
C 3
~ 2
)
~ E
.
—— N
g @

gram.

Page C-]

LV

SALNEIYELY JTNAOW

103dT11a890 35Taag

Iaatig aotaag
1abeuey arT4d

3poo-1 T0Q0D = ¢ ATNpOW Wa3sAg
apo0)-~d [®28®kd = ¢§ e3eq
3pod-I 60D21IS¥L = TS STINPOR-TITNKW
apoo 303(qo 6089 = T3 J[npow sUI3NCIQNS
elEQ = 0§ weiboig

STOVNONYT F'INAOH

04$
03s
oas
002s
ors
0ts
0Zs
01s$

S3a4AlL IINAOW

08s = 41aq
ov¥s = dyvHS
0zs = 2dxad
o1 = LIUMd
808 = avadd
vos = J3x3a
dLIYM + avad = FIVGdNn andang 10313 piepueis = g
Z0s = ALI¥M 3nd3ng piepueis = |
108 = avad andul piaepue3s = g
S3d0D SS3J0V ITId SHLVE O/1 QUVANYLS
gLe-171 ° 0 v m o r ot tBRp @3TaM 93TIMSI
fL-tr ° 0 ot ot ottt s BUTT BTIM UIITIMSI
89-11 -~ * * * * * * ' Sn3je3ls adlaap Jog 31519881
L9-11 * * * ¢ * * 183jurtod AYTI uoljiTsoday Y3831
99-17 * * * * * "~ vt v BUTT peay ujpeaysy
mo|HH - - - L} . L] Ll . L - - - . Mumg gmwm vMQmWH
£9-TT * ° 3117 PurTisixe ue o3 gied ® uadp usadosI
29-11 toeot s ¢t BTT3 L1032917p ® ayel ITAABWS T
85-TI1 ottt Tttt snjels 33TAdp 31939 33539951
LS-TT st s = = =+ y3yed ajearrdng dags1
94-TT ottt vttt B0TAlp O/1 Yyoelag yoelaqsi
§S-1T1 T s T s Tttt 3TY3 e a3alag X3919ds1
FS~1T =T rror ottt 3113 e a3araq a31aT19ds1
Z5-1T Tttt ot s+ v 3TTJ MAU W BILIID ERL-ED RN
16-T1 vy m s st yjed e 3501 as0TDS I
05-11 * ¢ = * * KR1030317p buryiom abuey) 1Tabunst
gy-171 = - * * * * ° " * 32TASp O/I Yoezay yoelavsi
39vd NOILLONGJ JINOWINKW

SLS3N03¥ 3DTAYIS LOALNO/LOANI

x3apu]l 31sanbay aotaleg

INONVYH S.43HAVEID0Hd WALSXS 6-50

3 xypuaddy

LZs

¢ 8pod

Ly-11
0tE-21
6C-C1
iE-71
6Z-TI1
9P-11
S¥-11
1e-21
Pr-11
8g-¢1
Li-tl
£P-1T
9z-21
5¢-¢1
pi-2T
tZ-¢1
zT-T1
r-T1
iv-11
0r-T1
TZ-21
L1-21
91-71
6t~-11
ST-21
$1-21
£1-71
Z1-21
11-21
01-21
6-¢1
-zt
9-21
-1
¥-z1
£-21
-7l
1-21
9e-TT
BE- HH

. . .

* Aijujg K1032811(Q I[NPOW

ybnoyiTe ‘uoT3IduUN] SPOW 13SN B ST DASSSJ :ILONs

P T R T T T)

afnpow 3j3eplIeA
51a3S1ba1 Ivq 3Sel Ss2dold 3238
= ¢ ¢ * gbeut Lyd SS$30014 39S
* g ¥5®3 UT X'Q e ¥ 103§
+ + 3sanbai uor3ouny e TrEISUT
* uin3axr Alowaw wWaIsAg
asanbal Aiowauw waisds
WUTT WaISAS
xu0an Kiowsw a3ziq g @ uinlay
Jagqunu YSel anl1asdy
jaqunu yseL Isearay
gsa201d 3xau 3ie3s
mmwwvum JUIISIITP ©OF ©3IEpP IAONW
* * 3d01q Uquuuomm dep
[{x]'%+a]l a peon
[{x1'X] ¥ peon
g 3¥se3 uY X‘p woijy y peo1]

aTge3l buriyod OYI 193u3

ananb o/1 2193juz
agnpow O/I 33dTaq

13d ssa8001d 399
¥oOoTd moT 381l 3189
yooT1d YybTH @913 399
¥2071q Azowaw 33Aq y9 puyd
+ K13ua X103031Tp SINpow puTd
bursn juy1
?jenoIlread
ajed0T TR
103dtiosaq ssaooid ajepolf(eag
* S%201q W4 2bew] ajeooyTewag
ﬁmuﬂmoq 03 330/31d Lva 313auo)
* ¥o07q o73Toads 1edld
* asanbay 4Lioway deiisiocog
« waysds deirzsiyoog

. . = 9
» = & a

P . LI T T B L

. .
r &+ a2 a

. . .
* s 2+ & & =8
. . [S S}
s & 8 8 & e @
. e . . e =
. & 2 e a

1aqunu yse], ssadoid
B}00T9 WVd

LI} .
LY

“. . = LI

Lo uwnE== jyse] Ssa8dc01d IJRIO0TIV
vt =t S)Y00TQ WWY 33edOT(V
=+ * + 103d710S9d S530014 IILDOTTV
+ =+« 2yD0Tq WVH o2bewI 330V
=« yoolq Alowaw 3a3dAq p9 © 3jEdOTTY

* . .

* ananb ssaocoid sarjor 1

uoty

a3ug

sung

TNPOWAS
ASLIISS I
buryassa
XgVLlssd
¥JASSSd
WIWIYSSE I
wapbyssa
AUTISSA
v9lausd
ASLsaYsd
ASLT2¥84d
201dN$d
wbotw.m
A1adedsa
AXQda1s$d
AXVQTI$d
Xavai1sd
OdI$d
ndoIsd
1500Isd
do0149%4
41933484
mmww“hwm
yopuUTaSd
InpoKdsd
YuTI3Sd
AsL1aasa
weyIaasd
21419d44
burteqasd
bo1ivasd
NTEITOsd
wayIgs$d
Joodsd
ASLTTVSd
WYATIVSd
21471V
burtTVsd
PoTIVSd
2014944

STUCWIUR

g3sonbay 30TAJaS pabatTTAaTigd apoyd walsAs

xapu] 38enbay I0T7AIWS -

xjpuaddy

TVONVH S, ddNMVEO0dd WALSAS 6-850

vy ww— — w e W - v

T v W

- w W W ¥ Ty

Introduction to Real fime operating system.

Service Requests of 0S-9.

| o We can now look in more detail at an
example in assembly language and C.

o The C library (/rQ/LIB/clib.l) contains:

. standard C library routines. These
will often make use of the available
service requests. For instance
malloc{) will eventually translate
into F$SRqMem.
routines which are the equivalent of
the service requests, if they are
05-9 specific.

e stdio.h will help in translating into
0S-9 /O service requests.

® Try this: lib clib.l.

Septembper 14 1260 Reai ime college. Trieste 1 =27 Oclober 1992 45

Introduction to real time operating systems.

Processes,

* A process is an executing
program.including its input and output
and ils state (e.g. the contents of
machine registers and the values of
the program’s variables).

* The operating system must be able to
create a process when needed and to
destroy it when finished. In UNIX,Minix
and OS5-9 a process is created with the
FORK system call.

® A process may issue one or more
FORKs, and create child process(es).
The child(s) may again create other
childs, etc.

Septernber 19, 1990 Real time college. Triesle 1—27 Oclober 1990 47

Lo T}

Intreduction to real time operating systems.

Processes,

* A single CPU can only do one thing at

a time. Rapid switching from one task
to another creates the illusion that the
CPU is doing many things in parattel.

The process model helps to
understand what happens and to keep
track of things going on.

All runnable software (inciuding the

0OS) is organised in sequential
processes.

Seplember 191990

Infroduction to real time operating systems.

Real tme college. Triesle 1 — 27 October $990 4¢

Processes.

When the system is booted, at some
stage a process is forked, which will
start things going. In a
multiprogramming system, one
process per terminal may be started;
each will wait till someone logs in.

In OS-9, at the end of the boot SysGo
is called, which forks shell. Shell will
wait for a command from the user.
SysGo continues to exist as a process,
although it has nothing more to do.

in the model, processes are
independent entities, but often they
need to interact with each other
{through a pipe or otherwise).

September 19. 199¢

Real time college. Trieste 1 - 27 Oclober 1999

N 20% 1/0 wait

£ 100 |-

3

a 80 |- 50% 1/0 wait
£

| =

5 60 80% 1/0 wait
N

T 40

)

o]

& 20

! I] t l 1
0 1 2 3 4 5 6 7 8 9

10
Degree of multiprogramming

4-2. CPU utilization as a function of the number of processes in memory.

Processes

Scheduler

. The lowest layer of a process-structured operating system handles in-

and does scheduling. The rest of the system consists of sequential
S.

CPU
minutes
needed

#Processes

Acrrival

41

.59
15

.51

A9
16

64

.36
A8

.80

.20
20

time
10:00
10:10

10:15

Job

1

CPU idle

CPU busy
CPU/process

4

3
2
2

10:20

2
3
4

r e W — W™ W W

(b}

{a)

™~
— e e e —] =
™
r~
- ™
1 ||.||.I||Ii|ll..8
% - - o~
3 - N U
R —— it g ~
h o~
-
e
=]
=
/9 o) o
o~
—d— 1
ml Ml M
' o
—_— % - —T&
of| o] =
\n
lllll.llurl.lll-lllql
ol @
4} -d°
W
L
[
[+]
s
[*.]
o
3| 3
™~ -
L | 1
-— o™ L] < o
qor

{c)

Time (relative to job 1's arrival)

1

Ak wkw

* LIST UTILITY COMMAND
* Syntax: list <pathname>
* COPIES INPUT FROM SPECIFIED FILE TC STANDARD OUTPUT

0000 B7CDO04E mod LSTEND, LSTNAM, PRGRM+0OBJCT,

REENT+1, LSTENT, LSTMEM
000D 4C6973F4 LSTNAM fcs "List"

1
]
)
t
1
]
1
’
t
1
)
i
]
)
1
"
3
* STATIC STORAGE OFFSETS '
*]
0ocs BUFSIZ equ 200 size of input buffer ‘
0000 ORG O '
0000 IPATH rmb 1 input path number !
6001 PRMPTR rmb 2 parameter pointer "
0003 BUFFER rmb BUFSIZ allocate line buffer '
00CB rmb 200 allocate stack 1
0193 rmb 200 room for parameter list '
0258 LSTMEM EQU . !
1
0011 9F0) LSTENT stx PRMPTR save parameter ptr '
0013 8601 1lda ¥READ. select read access mode '
0015 103F84 089 ISOPEN open input file "
0018 252F bes LISTS0 exit if error !
001A 9700 sta IPATH save input path number " o
001C 5F0l stx PRMPTR save updated param ptr | 2
1 C
001E 9600 LIST20 lda IPATH load input path number , &0
0020 3043 leax BUFFER,U load buffer pointer ' €
0022 10BE0O0CS ldy $BUFSIZ maximum bytes to read ‘ E
0026 103FBB 059 ISRDLN read line of input y R0
¢029 2509 bes LIST30 exit if error ! Q
002B B601 lda 41 load std. out.. path # CE
002D 103F8C os9 ISWRLN output line ' v
0030 24EC becc LISTZ0 Repeat if no error o p
0032 2014 bra LISTS0 exit if error L EE
i) .
0034 C1D3 LIST30 cmpb #ESEOF at end of file? SiEx s
0036 2610 bne LIsSTS0 branch if not e T
0038 9600 lda IPATH load input path number I
003A 103F8P 0s9 ISCLOS close input path © S iCi
mcwc 2509 bcs LISTSO ..exit if error e Qi EE
03F 9EQ] ldx PRMPTR restore paramet $ T2 ECed
0041 A684 lda 0,x patameter ptr -2 1% sy
0043 810D cmpa #50D End of parameter ljine? e R ox
0045 26Ca bne LSTENT Ceno; 1ist nexe 1o s £ EEC
0047 SF clrb EEE R
0048 103F06 LIST50 059 FSEXIT ... terminate CED LTI
004B 95BR58 emod Module CRC

004E LSTEND EQU *

7':/

fedrededfe v v e dede v ek

%

e

1.

ok fedeve e e

B -

Yo e eyt e
L]

o'l
>
.
r

b

1, G5
v

te{n,&i,c)

t w
tn
main()

creat{colombo . .w)

2
=1234
2

in
in
i

c

{

#include <modes.h>
colombo="/c1"

char *colombo

w
wWri

1

A B A2 - =8

L e i N ARl - LIV LA ied e opera ing sysiems.

Processes. Processes.
* A common situation is that 2 process Note that OS-9 classifies process states
does not find input ready, when it somewhat differently.
needs it. It should then block, until
input becomes available. ¢ The diagram shows the possibie

transitions between the three states.
® |IT must not do busy-wait! This
occupies the CPU uselessly.

* Processes can be in one of three 3 “ 2
states:
Block
= running {e.g. using the CPU at this @
precise moment in time)
- blocked (e.g. waiting for an external
event or ancther process)

- ready (e.g. ready to run, waiting to
be scheduled for execution)

September 19, 1920 Real lime college, Trieste 1 - 27 Oclober 1990 49 Sepiember 19, 1990 Real time college, Triasie 1 —27 Oclober 1990 5(

Introduction to real time operating systems. Introduction to real time operating systems.
Processes. Processes,
® The process model allows us to think * The remaining part of the kernet only
in terms of user processes, disk needs to contain initialization and
processes, terminal /O processes, etc, utility routines used by other parts of
without having to consider interrupts the system {or the user).
and interrupt handling. {Obviously
running various processes ¢ The scheduler uses a process table of
concurrently needs interrupts, some sort to manage the various
generated by 1/O devices and by a processes. Every process which may
clock). run has an entry in this table. It
contains alt the information needed to
* |nside the operating system kernel is restart the process exactly where it left
the scheduler, which takes care of the off and with all states and conditions
interrupt handling and schedules restored as they were at the moment
processes for execution. The rest of the process was interrupted.
the operating system can be nicely
structured in processes.

Seplember 19, 1990 Real time college, Trieste 1 —27 October 1990 51 q Sepilember 19, 1990 Real time coliege. Triesie 1 —27 Ociober 1980 ¢

introduction to real time operating systems. introduction to real time operating systems.

f Processes. Processes.
l
| * The scheduling algorithm tries 1o ® For a real-time system controlling
satisfy one or more of the following equipment, response time is generally
-contradictory- criteria: the most important. If the system must
respond within a given limit of time,
- faimess we call it a hard real-time system.
. efficiency * The scheduler cannot predict what a
process is going to do, thus a clock
- response time must interrupt the system regutarly, so
that the scheduler may intervene.
» turn around
* Preemptive scheduling allows
- throughput temporary suspension of a running
process, in contrast to run to
T : completion.
Septamber 16 1960 Real time college. Trieste 1- 27 Oclober 1990 53 September 19 1990 Real time coliege. Trieste 1 — 27 Oclober 1950 *
Introduction to real time operating systems. Introduction to real time operating systems.
E’ e m e ! f T
; Processes. j Processes.
, S _ ,] IR
| ® Many scheduling algorithms exist: | * Processes need often to communicate
| . round robin: all processes get a with each other. Inter-process
fime slice in turn. communication is usually done with
- priority: each process has an initial messages (called signals in 05-9).
priority assigned. At each clock the
scheduler may decrement the * When a message is sent to a process,
priority of the running process. it will be celivered to it by the
» multiple priority classes. Within a operating system. It is the
class priority scheduling is applied. responsability of the receiving process
. shortest job first: run times must be to interpret the massage. Some
known in advance, or estimated messages are interpreted by the
from past behaviour. operating system itself {e.g. kill.
« policy driven: a goal is fixed and wakeup).
the scheduler tries to live up to it
(fairness, response time). T
. Two-level: needed when part of the
runnable processes are on disk.

Seplember 13 1990 Real ime coliege, Trieste 1 —27 October 1990 6§ September 19, 1930 Reat lime coliege. Triesie 1 — 27 Oclober 1990 =

ar

A 8 R _ A &3 i

-

Introduction to real time operating systems.

Processes in 0S-9,

¢ Kernel handies creation, scheduling
etc. of processes.

® All information on processes are kept
in Process Descriptors: 64-byte
structures (in level 1). Details in
0S9sysdefs.

®* A process is in one of three possible
states:
» active (it can be run)

for a signal)
. sleeping (suspended for a given
time, or until a signal is received).

- waiting (for a child to terminate, or

September 19, 1990

Introduction to real time operating systems.

1

i
i
i
i
|

Real lime Coliege. Trieste 1 — 27 Oclober 1990 &7

Processes in 05-9,

® Every process has a unigue process
ID, which can be used by other
processes {for inter-process
communication).

* A process terminates when executing
an Exit service request.

Seplember 19. 1990

Resl lime Cotlege, Triesie 1 —27 October 1990 59

n

Introduction to real time operating systems.

Processes in 0S-9,

® Processes are queued in three

queues, corresponding to these states.
Highest priority process is at the head
of the queue. :

Obviously a process may move from
one queue to another.

A new process is created with a fork
system call. Main argument of fork is
the name of the module. The module
is loaded, a process descriptor set up
and data storage allocated. Then the
new (child) process is put into the
active queue.

Seplember 1%, 1890

Introduction to real time operating systems.

Process Scheduling in 0S5-9.

All active processes are assured of
getting some CPU time.

High-priority processes get more.

Process scheduling is done at each
clock tick.

When a process is put into the active
queue it enters with its “age” equail to
its priority.

The active process with the oldest age
will be selected for execution; ali other
active processes will have their age
increased.

September 15, 1990

Renl time Coliege, Triesie 1 ~ 27 October 1990

Real time College. Triesie 1 —27 Qclober 1990 £

Introduction to real time operating systems.

Inter-process Communication in
08-9.

* There is only one mechanism in OS-9
for inter-process communication:

sending and receiving a signal.

* A signal can be sent to any process.
It consists of a single byte. A signai is
sent using the F$Send service request
and specifying the process ID of the
receiving process.

Seplember 19 1980

Introduction to real time operating systems.

Real hme College, Trieste 1 — 27 Oclober 1990 61

Inter-process Communication in
0s-9.

* the signal intercept routine can
examine the signal code (in the B
register) and take action.

* the signhal codes defined are;

- 0 = kill (non-interceptable)

- 1 = wakeup (wakes up sleeping
process, does not vector through
intercept routine)

« 2 = keyboard abort

» 3 = keyboard interrupt

» 4 — 255 user definable.

Seplember 19, 1990

Reat {ime College, Trieste 1 —27 Oclober 1990 63

ab

Introduction to real time operating systems.

Inter-process Communication in
0S-9.

® A signal is noted in the process
descriptor of the receiving process. If it
was sleeping or waiting, the receiving
process becomes active and thus
eligible for execution.

e If the receiving process has taken no
special measures, to treat the signal, it
will simply be killed.

s To process a signal properly, the
receiving process must contain a
signai intercept routine and the
address of it must have been
communicated to the kemel (with
F$itcp).

September 19 1990

Introduction to real time operating systems.

Inter-process Communication in
08-9.

* the signal intercept routine must be
short and end with RTI.

® an attempt to send a signal to a
process which has already a signal
pending will result in an error.

* We wiil come back later to this very
important topic of inter-process
communication and synchronisation
{(when we look at device drivers).

Saptember 19, 1990 Real time Cotlege, Trieste 1~ 27 Octobar 1990

Real lime College, Triesle 1 — 27 Oclpber 1990 €

Introduction to real time operating systems.

Interrupts in 0S-9.

e |nterrupts are vectored through

Introduction te real time operating systems.

Interrupts in 05-9.

® This technique can be used for other

addresses in page 0 of memory. interrupt sources as well (with
moderation!).

¢ NM! and FIRQ are not used by 0S-S,

and are vectored to a RTI instruction. * The logical interrupt polling system is
prioritized.
s SWI SWI2 and SWI3 are further
vectored through addresses local to ¢ Each interrupting device has an entry
the process (specified in the process in the interrupt polling table :
descriptor). - polling address (device’s status
register)
® The clock routine changes the iIRQ « mask byte ({(selects relevant bit)
vector, to its own address. So it gets - flip byte (selects positive or
quick service. It passes control to the negative logic)
IOMan’s polling system when the - address of interrupt service routine
interrupt did not originate from the - static storage address.
clock. - priority (0 is lowest. 255 highest)

September 19. 1990 Real hme College, Triesle 1— 27 October 1990 65 September 19, 19890 Reat lime Coliege, Trieste 1 —27 Qefober 1930 €

Introduction to real time operating systems. Introduction to real time cperating systems.

Interrupts in 0S5-9, Mutual Exclusion.

. & A device is entered in the tabie with ¢ |n most real-time systems various

the F3IRQ service request. tasks run concurrently, some of them

may be interrupt driven.

® An interrupt service routine must end
with RTS, not with RTI. s Synchronisation of the tasks is

necessary.

¢ Problems arise if several tasks access
a variable and can modify its value.
{or claim a sharable resource).

¢ Example: reai-time clock.
. an interrupt driven routine
maintains the time of the day in 3
bytes in memory: hh, mm, ss.

L

Seplember 19, 1930 Real time College, Treste 1 —27 Oclober 1990 67 September 18, 1920 Real lime Coliege. Trieste 1 —27 October 1990

introduction to real time operating systems.

Mutual Exclusion.

. another, independent task may read

' these bytes and display them.

« Now suppose hh:mm:ss have the
values 11:59:59 when the second
{ask is reading the time.

- Suppose a clock interrupt occurs
when the task has read hh, but
before it was abie to read mm.

- What will be displayed?

® The access to the shared variable(s) is
a critical section of the program and
the two processes must mutually
exclude access to this critical section.

® Access to hardware control registers
! of devices is also critical.

September 1B, 1890

Introduction to real time operaling systems.

Real e College, Trieste 1 — 27 Oclober 1990 §%

Mutuzal Exclusion.

® Fasy solution which always works:
disable interrupts before entering and
enable interrupts after leaving the
critical section.

* This is inadmissibie in a general
purpose mufti-user system. It may be
dangerous in a hard real-time system.

¢ A flag, which is set by one process
and read by the other does not work.
Why?

Septermber 18, 1590

Reai lime College, Trieste 1 — 27 October 1990 71

2

introduction to real time operating systems.

Mutual Exclusion.

¢ Examples, where synchronisation and
mutual exclusion are needed:

« car park (of a supermarket) with
several entrance gates and one or
more exit gates, where barriers
must be operated. Problems
become serious when the car park
is full.

- client-server model (particularly
relevant for real-time systems),
where a server produces items and
puts them into a buffer. The client
takes items out of the buffer and
consumes them. The critical
sections are the updating of the
buffer pointers. As long as the
buffer is not full or empty no great
harm is done. Serious probiems
when buffer is full or empty.

September 18, 1891 Real time Coliege Trieste + — 27 Cctober 1930

tntroduction to real time operating systems.

Mutual Exclusion.

Critrcal REGION, USING WORMAL vARIABLE: FLAD
Process 1 Process 2
TESTL * TESTZ *
LDA FLAG LDA FLAG
BEG 6001 BEQ GOON2
60 TO SLEEP GO TO SLEEP
BRA TEST1 BRA TEST2
GOON1 INCA bOOKZ TKCA
STA FLAG STA FLAG
USE RESOURCE USE RESOURCE
CLR FLAG CLR FLAG

September 18, 1990

Real lime College. Trieste 1 =27 Oclober 1980

- a s - =saaa =

Introduction to real time operating systems.

Mutual Exclusion.

¢ An indivisible (or atomic) test-and-set
instruction is needed to guard the
entrance to a critical section. TAS
instruction will test a variable and if it
is equal to zero, will set it to one. If it
is already one it will leave it
unchanged. The whole operation must
be uninterruptable.

e 6809 has no TAS. but LSR using a
memory location can replace it.

Seplember 18, 1950

Introduction to real time operating systems.

Real lime College, Triesie 1 - 27 DOclober 1950 73

Mutual Exclusion.

® What does a process do when access
to a critical section is denied to it? {(Or
when a server finds the buffer full?)

* Easiest and very inefficient solution:
busy-wait.

e Better solution: The process which
cannot get access should go to sleep,
and be woken-up later, when access
becomes free.

Seplember 18, 1990 Real time College, Triesie 1—27 October 193¢ 75

Infroduction to real time cperating systems,

Mutual Exclusion.
Criviear Reclon, using LSR.
Process 1 Process 2
TESTL * TEST2 *
LSR FLAG L5R FLAG
BCS GOOKRI BCS 600N2
G0 70 SLEEP G0 T0 SLEEP
BRA TEST1 BRA TEST2
GOON]1 use RESOURCE GOON2 usSE RESOURCE
LDA #1 LDA #1
STA FLAS STA FLAG
September 18, 1990 Real lime College. Trieste 1— 27 Oclober 1990 7

tntroduction to real time operating systems.

Mutual Exclusion.

® |t is important to realize that the TAS
(or equivalent) instruction is in itself
not enough to handie all possible
situations. It is useful help given by
the hardware.

* Several mechanisms have been

invented:

. Dekkers’ aigorithm (very
complicated)

« Dijkstra’s semaphore

. Event counters

. Monitors {a language construct)

. Message passing

. Ada rendez-vous (another language
construct).

September 18, 1990 Real time College. Triesle 1 —27 Oclober 1990

*55990¢ Itej Junnsua
SnYl ‘$$3001d 1310 I JOJ WEM O3) PARIOJ IARY PjROM 1my 3lqeLres a Jo
anfea a ‘jodooid ABua 3 3unnaaxa fns sem gz ssavosg SIym pue palxa
pey 1 pye Ameipunul uoidal ay Jousar o pardwiane PRy [ssavouyg g

212
{vwo1das uz1us})
asqof - Svyf aayi0 159

Spyf umo jas 3oy umo 2524

Ut - uiny 1537 FW Jou winy 135

UL JOU - UMy 1S3} {uo1824 2apap}
Fut Jou - uiny 531
Ju JOU - udmy 1531 {vo1das 131us)
Ul JOU - YNy 153) asmf - Joyf snyr0 1594
FoYf umo jasas an4; - oy 10 1599
Ui JOU ~.WiN) 1S3} 3w - wamy g5y
anuy - 8oy 4310 1531 andy - Soyf ay10 1531
oy umo stas vy umo 1as

2 $sa2044 [ss23014

"sidwane $53038 SROUBINWIS JO 3SBI I[NIYJIP IS0W B saensn ajdurexa
UL f ssazoiq o) hiwoud 3uaig sny ‘any st wamy JO 3n[eA U BY) S3wnsse
11 1mOJaq udAId S1 §53228 A10SAI 03 [ooooud A Jo 3sn) jo durexa wy

"wipnode s apieq - 7'z 8ig

‘puz
{¥20] aspa124} asipf =: 8oy fru
{ssa304d azyto o1 K111014d) ‘A you = wing
urdaq
‘(upajooq : aw ‘upajooq : 8oy Kw 1ea) yoopum aanpaoead
Jpua
pua
{42342 01 10213 Mou}
{umdo {1} ‘op 3oy sy apym
‘amay = Foyf fwe
{s2apa} s53304d 410}
{11 1om} ‘Op e <> uing AIym
‘asiof = Svy Kw
{s53204d 4ayp10 01 apasuos} utdaq
EE)
{421 01 1p213}
{2pa3uos o1 10 2apay o s5a304d}
{4ay10 10f DM} ‘op vy sy apym
Uy Aw = wmy gy
{vor3as Suraama 10 uy ssas04d 4ay10} waqy Svy siy ;n
‘amy = 3oy (s
urdaq

(uv3100q: w 'upapooq: Soy sy oy Kt xea) yo0) Inpadoad

ab

“igdefine N 100
" gnt count = 0;

.‘-éroducer()

{ while (TRUE) {

consumer()

{
t while (TRUE) {

| if (count N-1) wakeup{producer); /% was buffer full? «/
; consume_item(); /% print item «/
s }
}
SEC. 2.2 INTERPROCESS COMMUNICATION 61

fdefine N 100

typedef int semaphore;
aemaphore mutex = 1;
semaphore empty = N
semaphore full = O

praducer(}
int item;

while (TRUE) {
produce_item{&item);
down(empty);
down{mutex);
enter_item(item);
upf{mutex);
up(full});

consumer ()

{
int item;

while (TRUE) {
down{full);
down{mutex);
remove_item{&item);
up{mutex};
up (empty};
consume_item(item};

INTERPROCESS COMMUNICATION

produce_item();
if (count == N) sleep(); /» if buffer is full, go to sieep »/
enter_item();
count = count + 1; /% increment count of items in buffer «/
if {count == 1) wakeup(consumer);

/%
I
I
I
/»

/#
/%
/%
/%
/%
I
/»

I
/%
I
s
/»
/%
I

/#+ number of slots in the buffer »/
/« number of items in the buffer »/

/% repeat forever »/
/+ generate next item =/

/% put item in buffer =/

/% repeat forever «/

/+ take item out of buffer «/

number of slots in the buffer «/
semaphores are a special kind of int »/
controls access to critical region #/
counts empty buffer slots «/

caunts full buffer slots =/

TRUE is the constant 1 «/

generate something to put in buffer «/
decrement empty count «/

enter critical region »/

put new item in buffer «/

leave critical region %/

increment count of full slots »/

infinite locp »/

decrement full count »/

enter critical region #/

take item from buffer »/

leave critical region »/
increment count of empty slots #/
do something with the item «/

33

59

/%« was buffer empty? «/

if (count == Q) sleep(); /+ if buffer is empty, got to sleep #/
remove_item();
count = count - 1; /+ decrement count of items in buffer »/

T Sl sk AdW 3 A il IN N b B P nd N W ATAITL WS L T AT A ST

3o

fdefine N 100

typedef int evgnt_counter;
gvent_counter in;
avent_counter out;

roducer ()

int item, sequence = 0;

while (TRUE) {
produce_item{&item);
seguence = Sequence + l;
await{out, sequence - N);
enter_item(item);
advance(in);

consumer ()

- int item, sequence = 0;
while (TRUE) { —

SEQUENCE = SEQUENCE + 1}

await(in, sequence};

remove_item{&item);

advance(out};

consume_item({item);

/% number of slots in the buffer »/

/% event_counters are a special kind of int «/
/# counts items inserted intoc buffer «/

/% counts items removed from buffer /

/+ infinite loop #/

/+# generate something to put in buffer »/
/+ count items produced so far »/

/% wait until there is room in buffer «/
/+ put item in slot (sequence-1) % N &/

/% let consumer know about ancther item =/

/+= infinite loop «/

/+ number of item to remove from buffer =/
/»
/%
/-

walt until required item is present «/
take item from slot (sequence-i) % N «/
let producer know that item is gone »/
do something with the item «/

Fig. 2-12. The producer—consumer problem using event counters,

: @ monitor written in an imaginary language, pidgin Pascal.

monitor example
integer i;
condition c;

procedure producer(x);

end:

procedure consumer(x);

end;
end monitor;

Fig. 2-13. A monitor.

ol.

- a &a 8 - A As o«

- A &

- =B R _ B =i i

= A

A A

te

o e

= message m;

71 while (TRUED {
produceﬂitem(&item); /» generste something to put in buffer »/

=

f;&efing N 100 /% number of slots in the buffer «/
f ;ﬁducer()

“int item;
in . /% message buffer »/

receive (consumer, &m}; /# wait for an empty to arrive »/
build_message(&m, item); /# construct a message to send #/
: send(consumer, &m); /+ send item to consumer «/

}
}

consumer ()

int item, i;
messsge m;

for (i = 0; i < N; i++) send(producer, &m); /% send N empties »/

while (TRUE) {
receive(producer, &m); /« get message containing item «/
extract_item{&m, &item); /+ take item out of message »/
consume_item{item); /% do something with the item «/

send{producer, &m); /% send back empty reply #/

Fig. 2-16. The producer-consumer problem with N messages.

B
=
a
3
=2
®
» g
o o [
H &N O 5
> Q) 8 a
E -
—
An A o §
2; : £ % a B A
o oz] E 8) onioe’ T 3§
aa 5 - o = 3 &
28 =3 28 8§
e~ 2 bg‘ — — had
’\'3 QQ
[=3 g- hAT 85
g § e & B
E y, 8 8 e
Vv ~ = =]
- o 1) g__ Sy
= 3 g 's
o ‘_!-:- — =~
§ FOR
3 v

L1

INTERPROCESS COMMUNICATION mn

ey

‘(y301) nom
<pop aompoids

utdaq

Op DIDp”2i0u 2)1yM

damposd

‘pua
I<DIDE JUmMsued>
{(3gopvar wool). ol
!(y201) poulis

!<iaffng woif viop” poaxa>
‘(y201) 1nom
!(319D1vaD DIDP) 11DM
urdaq
Op DIDp 24010 APYM

JFUNSUOD

pue
‘pua
{aquywap” oiop) uds

(y20}) jpud)s

!<daffnq ut iop T iaasurs
(y201) 1n1OM
H(31qu1IpAD woos) nom
!<pwp aonposd>
uidaq
OP DIPp 240M AtYM

daompoad

sopjiy J2AD ¥ - §°T Bl

Ul 1x3u

noTixau

—

3}Jng papunoqun oy} - e

Byng ssiy eiep Sujiem ElEpR pasn

ul ixau N0 Ixau

introduction to real titne opéraiing systems.

Mutual Exclusion.

¢ Note that these methods will require in
most cases considerable efiort by the
programmer.

s Also note that none of these methods
will automatically prevent deadlock or
starvation.

e Simple example of deadiock:
. process A holds resource X and
needs Y
. process B holds resource Y and
needs X.

Seplember 18 1980

Introduction o real time operating systems.

Reai fime Coliege. Triesle 1—27 Ociober 1990 77

Input-Output.

¢ We usually distinguish between block
devices and character devices.

* The hardware of the device is
interfaced to the computer via a device
controller or adapter. In most cases a
specialized chip: disk controller, ACIA,
PIA, etc.

e The device is controlled by writing
commands into registers of the
controller, by reading back status
information. Data is transfered by
reading/writing from/to the controller’s
data register(s).

Introduction to real time operating systems.

—

Mutual Exclusion in 0S5-9.

e |n 0S-9 the only mechanism to obtain
synchronization is message passing.

e |t relies on disabling interrupts for
short periods (done by 0S-9).

e We will see how this mechanism is
used in OS-9 when we look at the
anatomy of a device driver.

® Making use of the LSR instruction, we
can implement general semaphores in
0S-9. We could put them in the C
library or even implement them as
new service requests.

Seplember 18, 1990

Introduction to real time operating systiems.

Real time Coliege, Trieste 1~ 27 Oclober 1930 T

input-Output.

e Reading and writing the registers of a
controller is done with special /O
instructions {Intel), or using
memory-mapping. In the latter case,
normal load and store instructions are
used (DEC, Motorola).

¢ Direct Memory Access is done entirely
by the controller. The transfer is set
up by software. Data do not transit
through the CPU. The completion of a
block transfer usually generates an
interrupt.

Real time College. Trieste + — 27 Oclober 1990 |

Seplember 19. 1930 Real lime Coliege, Trieste 1 —27 October 1990 79 Seplember 19, 1990

3

{(d M 3 ¥d Md 3d § Q) - @3Ad SpoW a3

"12Ae| ydea JO suoNduUNj uewW Iy} pue WASAs O/) JO SIKeT ‘9-¢

l
| | INTBA XO03Yd DHD H
{ | |
| e ——————— . uonesado (/| Wioiag aiempiep
| | _
I | Apog STNPON | h y
“ r . | Palajdwiod (/| uaym saaip dnaxem s1a|puey 1dnusau|
| [234g 2poW | aos «
_ B e . = = ————— - . o — o — *
| | ! 208 sniels yaayd siaisibial saiaap dnjag SIBALIP 321A3(]
| | -—= 927§ 3be1o3s JuUlLRWIAI —--| ! 1 3
“ | _ g0 ¥
e .) , , , alemyjos
| _ | VoS uonedo|e ‘buiiajng ‘buiya0|q ‘uonoaicid ‘Buiwep ~cwtcmnuv:~_-uu_>wo
i |=—- 3ASJJQ UOTINDIXT --—| | j-ad L
_ I I 608 . Y N
1 e . Buyoods (/) 1eWI04 {122 (/) Bxew L s5assa00.d Jas(
o : to] | %23yYyd A3vied iepeay | 803
arnpowl ———mooo St ———— .
i i | uoystaay | $aINQTIIIV | 0% Ajdaa jaAe
I { e ——— . suonauny O/| o/
| i ! abenbue | adAL [90¢
] | e . .
J A311ed | _ S0
| iapeay | =—- I253J0 SsweN ITNPOW -
! | | [vos
~ h A T e e = = = =y = -
| | | | t0s
| I |-—- (s234q) szr1s arnpow -—-|
| I | | 20s . - . .
“ " [T s _ _ -21eM1JOS /1 Juapuadapui-3d1Aap Ay jo suonduny §-¢ 34
108
i _ |--- (@dLg$) sa34a oudg adl
I I I | 00% Buniodas 10413
saoirap pajeaipap buiseajas pue bunesoly
SSaippy
abuey yoayp abesp 2AI3PRT1aY $321A2p %20|q UO UOKeI0|je abeing
Buiiayng
LYW30d ZT0COW MIATHA FIIAIA azis ¥20|q Juapuadapui-adIA3p & Buipiaciy
uonaaioud anasQ
wa31B4s O/ PUTITUD YL buiseu adnaQg
1 20 -
VONYW S, 4INNVTEO0Ud NALSAS 6-S0 SiALIP 201ABP 3y} J0} Buidepialul wuoyuN

- - & 8 - A AsA s

- - -,

% m =R _ &2 &84 i

tntroduction to real time operating systems.

I/0 Software.

® |/O software should fulfill two goals:
- hide the peculiarities of the
hardware
. present a nice, clean and regular
interface {0 the user.

® This leads naturally to a layered
structure:
. interrupt handlers
- device drivers
. device-independent operating
system software
« user-level software.

Seplember 19, 1930

Introduction to real time operating systems.

Real time College Trieste 1—27 Gctober 18990 81

11O software. .

e This means: translating the request
into commands to the controller { start
motor, move arm, set up DMA, etc,,
etc.) and issue them. if the execution
of the command takes time, the driver
must block {go to sleep), until an
interrupt will cause it to be woken up.
Finally errors are checked and status
information passed back to the caller.

Seplember 19, 1990

Real lime College, Triesie 1 —27 Qetober 1990 B3

9

introduction to real time operating systems.

110 Software.

Another responsibility of 1/0 software
is to handie errors.

I/0 software should also take account
of the type of device: sharable (disks}
or dedicated (printers, terminals).

device independence means that the
user should see no difference between
writing to a file on a hard disk or
writing on a printer.

The device driver's task is to receive
abstract orders from the software
above and then to see to it that the job
gets done.

Seplember 19, 1990

Real lime College. Triesie 1—27 Oclober 1930

Introduction to real time operating systems.

110 software.

The device-independent 1/0 software

is responsible for:

- uniform interfacing to the drivers

. translating device names into
selection of the appropriate driver

. protection

- buffering

- storage allocation on disks

. allocation and release of dedicated
devices

- error reporting.

Seplember 19, 1990

Real fime College, Triesie 1 —27 October 1990

Introduction to real time operating systems. Introduction te real time operating systems.

; r
; 1
? 110 software. 1 Deadiocks.
| ® Library functions, which are linked into ® In a multi-programming system, where
i user-programs, do the remaining part non-sharable resources are allocated
. of the input-output. Some library to processes, deadlock situations may
routines simply pass parameters on to ' occur.
a system call (e.g. read, write), others
do more work (e.g. printf, scanf). ® Deadlocks have been extensively
i o studied, but the subject is not very
® A final part of IO software is a important for real-time control or
spooling system. Files to be printed embedded systems, where dynamic
are put in the spooling directory. A altocation of non-sharable resources is
printer daemon is the only process rare.
allowed to access the printer.
Seplemtier 19 1891 Real time Colteoe. Trieste 1 - 27 Gclioher 1930 8> September 19. 1990 Real lime Coliege. Trieste 1 - 27 Oclober 1990 £
introduction to real time operating systems. Introduction to real time operating systems.
' Deadlocks. f ’ Input/Qutput in 0S-9.
! L T i : .
f
. & Different aspects of the problem are: ® Device independence is obtained by
. detection and recovery splitting into four levels:
. prevention (by imposing rules on . IOMan manages all input/output
the processes) . File Managers handle a class of
- avoidance {using an algorithm to devices, without regard to device
make the right choice when characteristics.
resources must be allocated (the
Banker’'s algorithm). EXAMPLES: WANDOM BLOCK FILE MANAGER (rEF)
SEQUENTIAL BLOCK FTILE MANAGER (SBF)
SEQUENTYIAL CHARACTER FILE HAR {scF}
PIPE MANAGER {PIPEMAN)
L Y

Real lime Coliege, Triesie 1 — 27 October 1980)
Septernper 131930 Real lime Collage, Triesie 1 —27 Oclober 1990 87] September 19, 199¢

A MR _ A &4 a Rl

Introduction to real time operating systems.

Input/Output in OS-9.

. Device drivers for doing low-level
I/0 transfers from/to a specific type
of hardware controller {disk
controller, ACIA)

- Device descriptors specify

* File managers are re-entrant and can
handie a whole class of devices with
similar operational characteristics.

e Responsible for buffering of data,
mass-storage allocation and directory
services, processing of data stream.

characteristics of individual devices.

September 19, 1590

Introduction lo real time operating systems.

Real ime Ccliege. Triesle 1 — 27 Oclober 1930 89

Device Drivers in 05-9,

¢ Device drivers are re-eptrant and can
control several hardware controllers
of the same type.

Byt: ACIA FOR THE MoToRroLa 6850 CHip AND

ACIA51 ror THE SiGNETICS 6551

September 19, 1990

Real time College, Triasie 1 — 27 Dclober 1990 91

Y

introduction to real time operating systems.

input/Output in 0S-9.

* A file manager has many entry points:
« Create
« Open
« MakDir
« ChgDir
« Delete
« Seek
« Read
= Write
« ReadlLn
« Writet.n
- Getstat
» Putstat
» Close

September t9. 1990 Real iime Coliege, Triesle 1 —27 Delpbar 19390

Intreduclion to real time operating sysiems.

Device Drivers in 0S5-9,

® Device driver has six entry points:

- Initialize
« Read
- Write

. Get device status
» Set device status
« terminate

e Parameters passed and precise
actions depend on the file manager
and the hardware controlier.

® We wiil treat in more detail later the
synchronisation problem.

September 19, 1990 feal iime College, Trieste 1—27 October 1990

e ———— v

QL
mt-t-—-l-l-q—--'«---oﬂ-ow-----c-—.-pw—.--—l—n — E—p g ey
&)

I[npou

e i B B R R L I I,

——f e —— —————— - - et e i et e e

. -— - -

]
Ajtied
Iapeay -~ QWeN I3TNpOW 03 38$3J0 —-*

i

et it e e e sy

1 ®ZYS 3[4YelL UOTIRZTTEIITUT ;

t-- (319 ¥7) -
i §S21ppy TedT1sAyd ajnyosqy |
- I3T10I3U0D adTAaQ -

-

a34d apon i

burijls awey i
-~ 219AT1Q &2YAdQ 03 3JISIIO --°*

" - -

i butiag auey i
*-- 13beuey a(Td 03 335J30 ---

} %¥094yd A3rIRg 193pesy i

i UOTSTA3Y | S33INGIIIIY |

TS R e 0 e s e ey - —

i (ONVT) 1S {ddidl) 4as i

o

- -
- —

-

-~ (adL8s) seo34g oudg -

-

|||||||| === e e e e o

L¥WHOJ T'INAOW AOLAI¥ISIA A31A3Q

wajeks O/I pP*TIFua ayg

TYONYH S.HAWNWYYOOUd WALSAS 6-50

N 2Is°Z1s
118
0Ts
ds
as
as
a8
g3
vs
65
8s
LS
93

. 83
¥s
£s
A
I3
0s

LIASJ40
377040

Jabeuey 2174 1er3uanbss jo azis 4 nbas azis

Q4D ainpoy powa

! 1o0118=(g) ‘1eyo=(y¥) uiniyai ad‘n’'A‘’x sind
937IM/pROI I3AaTIp 23ndaxa x‘p asl
(9372m 103} JeyDd 9103831 +5‘ epy

85921ppw

Ai1jua ojntosqge x‘p xeafl

ayyam/peas Aq 3983Jo s’ pppe

53TA3U3 UOTINDIXa 3JO
sga1ppe arnpouw
1aat1p 103} aberiols
s1a3s7baz

3883J0 pue x’JIXAsH PPI
1aaT3p 3I9b x’ATHASA XPT
37336 319D x'LvyisSsa npl

aaes n’‘L/x‘e gysd D3XIO0I

22'd skoizsag

103318 JT 338 D3 ‘Ip00 10113=(d)
{(pea1) 1eyo Indul=(y) :suUIN3yay

(93TIM$Q ‘PEAYSA) 2ur3INOI

3o 388330=(n)

13d 103d110B9Q Y3jed=(X)
13d A1jue eyqel IoTaaqg=(X)
(d3734) 1eyp 3ndjno=(y) :passed

aurT3Inol a3fiM/pead S,92TA3d 3INDIXI

wdIsis 0/1 PITITUD YL

23X301

s

»
'y
¥
L
¥
L]

»
3

AR RS SRR S Y]

TVONVN S, HIWWNVD0Yd WALSIS 6-50

PD.RGS
PD.BUF
PD.FST
PD.OPT

The 2
each type

The 32 byte section called "“PD,OPT" j "
dynamically-alterable operatin s tor ehe o

variables

initialization table
be altered later by
System calls. -~

"PD.OPT" and "PD,FST" sections are defined

Universal Path Descriptor Definitions

Addr Size Description

:gg i Path number T
Access mode: l=read 2=write l=update

ggg 1 Number of paths using this pp P

i3 2 Address of associated device table entry

S0 1 Requester's process ID

4 g Caller's MPU register stack address

: Address of 256-byte data buffer (if used)

Sgs g% Defined by file manager

Reserved for GETSTAT/SETSTAT options

2 byte section called "PD.FST" is
; ; . reserved for and defined
of file manager for file pointers, Permanent varjables, etg. by

9§ parameters f the fil option" area for
i i i 1 or e ile o <
are initialized at the time the path is opene r device. These

contained in the device descriptor module a
+ and can
user programs by means of the GETSTAT and SETSTAT

for each file manager in

the assembly language equate file (OS9SCFDefs for SCFMAN and OS9RBFDefs

for RBF)}.

MODULE
OFFSET

$12
513
£14
$15
$16
$17
sis
$1%
$1Aa
S1B
$1cC
51D
S1E
S1F
$20
$21
$22
$23
$24
$25
$26
s$27
s$28
s2a
$2B
$2C
$2E

ORG %12

TABLE EQU beginning of option table

IT.DVC RMB device class (0O=scf l=rbf 2=pipe 3=sbf)
IT.UPC RMB case (0O=both, l=zupper only}

IT.BSO RMB back space (0O=bse, l=bse,sp,bse)

IT.DLO RMB delete (0=bse over line, l=cr)

IT.EKO RMB
IT.ALF RMB
IT.NUL RMB

echo (0=no echo)
aute line feed (0= no auto 1f)
end of line null count

1

1

1

1

1

1

1
IT.FAU RMB 1 pause (0= no end of page pause)
IT.PAG RMB 1 lines per page
IT.BSP RME 1 backspace character
IT.DEL RMB 1 delete line character
IT.EOR RMB 1 end of record character
IT.EOF RMB 1 end of file character
IT.RPR RMB 1 reprint line character
IT,.DUP RMB 1 dup last line character
IT.PSC RMB 1 pause character
IT.INT RMB 1 interrupt character
IT.QUT RMB 1 guit character
IT.BSE RMB 1 backspace echo character
IT.OVF RMB 1 line overflow character (bell)
IT.PAR RMB 1 initialization value (parity)
IT.BAU RMB 1 baud rate
IT.D2P RMB 2 attached device namestring ofiset
IT.XON RMB 1 xon character :
IT.XOFF RMB 1 xoff character
IT.STN RMB 2 offset to status routine

1

IT.ERR RMB initial error status

4a

Introduction to real time operating systems.

Device Descriptor Modules.

Non-executable: contain tables.

¢ [nformation in a device descriptor:
- name of device
- name of device driver
- name of file manager
» hardware controller address
- initialization parameters

& The initialization parameters are
copied to the path descriptor when a
path to the device is opened. They can
be changed using 1$Getstt and
13SetStt. (For instance, you may
change control characters for terminal,
or turn page pause on or off, etc.).

Sepleruber 1¢ 1530

Infroduction to Real time operating system.

Reat ime Coliege. Triesle 1—27 Oclober 1990 43

Memory management.

- & Multiprogramming is more

complicated:

. p = probability of process being
idle (waiting for {/O). With n
processes in memory p" is
probability that CPU is idie. For
p=10.8 (not unusual at all!) , n must
be 10 for idle time to be less than
10%.

e A multiprogramming system without
swapping will need a large memary,
which can be divided into fixed size
partitions (not necessarily atl of the
same size) or variable size partitions.

Seplember 19, 1990

Real lime coliege. Triesie 1~ 27 Oclober 1990 95

Introduction to Real time operating system.

—

Memory management.

¢ The aim of memory management is to
make best use of available memory
and te keep the CPU busy.

® Two classes:

. without swapping or paging: a
process stays in memory until
finished.

- with swapping or paging:
processes are moved between
memory and disk, during
"execution” of the process.

¢ The simple mono-programming case is
of no interest,

Seplember 15, 1980

Introduction to Real time operating system.

[_
| Memory management.

¢ In all cases programs must be
relocated as the memory address
where it will run is not known at
compile-time.

e Also, the partitions should be
protectes, to avoid that a bug in
program # destroys program B in
memory. Protection needs special
hardware (base and limit registers for
instance).

Saplember 19, 1990

Real time coliege, Trieste 1 - 27 October 1950 &

Reasl time collage, Triesle | — 27 Oclober 1990 -

Introduction to Real time operating sysiem. Introduction to Real time operating system.

Memory management. Swapping.
¢ Fixed partition schemes may * Some of these problems may be
under-use memory, variable partition aleviated if processes may be
schemes will ieave "holes” in memory swapped from memory to disk {(when
when processes finish. they have to wait for I/O for instance)

and brought back into memory later.
¢ The hotes will be filled only partially

by new processes. Memory ¢ Variable partitions may again be used.
fragmentation may occur, where all To keep track of where things are and
holes are too small to receive a of free memory space, different
reasonable program. Memory techniques are used:
compaction combines all holes into - bit maps. Each bit in the bit map
one large hole. represents a fixed size of memory.
- linked lists. The list is sorted by

® An extra complication is that data and address and links processes and
stack areas may grow during holes.
execution (think of malloc{}). So a - buddy system.

process may grow out of its seams.

Seplember 191990 Real lime coliege. Triesle 1 - 27 Ociober 1990 97 Sepiemoer 19, 1990 Real time college. Triesle Y — 27 Oclober 1980 9¢

Introduction to Real time operating system. Introduction fo Real time operating system.
Swapping. Virtual Memory.
® When a process must be brought info ® Total size of program, data and stack
memory, the memory manager must may exceed size of memory. Keep
find a hole where to put it. Four those parts needed now in memory
algorithms: and the rest on disk. When a piece
« first fit now on disk is needed, bring it into
. next fit memory, throwing out (maybe) a piece
- best fit no longer needed.
« worst fii.
¢ When these things happen without the

user being aware of it, we have a
virtual memory system.

¢ Virtual memory and multiprogramming
go very well together: when process
A is swapped out, because it is waiting
for I/Q, angther process may run.

Seplember 19, 1930 Real fime college. Trieste 1—27 Oclober 1990 B89 September 19, 1990 Real time college. Triesie 1—27 Ociober 1890 1

Le

Multiple
Iinput queues

EH:}— Partition 4 Partition 4
700 K)
Partition 3 Single Partition 3
Input queue

400 K

[} Partition 2 Partition 2
200K

[CH HF Partition 1 Partition 1
, 100 K

Operating Operating

system 0 system
{a) {b)

Fig. 4-4. (a) Fixed memory partitions with separate input queues for each parti-
tion. (b) Fixed memory partitions with a single input queue.

Time e——

7777 W4 8 (722

C C c C C

7
_

%

A
D
Operating Qperating Operating Operating Operating Operating Operating
system system system system system system system
(&) (b) (c) {d) (e {f) {g)

Fig. 4-5. Memory allocation changes as processes come into memory and leave
it. The gray regions are unused memory.

{

- &= A . aA.4a s o

- N

- A A

A A i

& B a .

(b)

{c)

7 B c D E [!
] IAI 1 /// L1 11 L1l [L W {
8 16 24 !
{a)
11111000 Plo|s — Plals - P |14] 4
11111111
11001111
=f11111000$ H|18]2 — ~ P l26[3 | o Hl20l3]| X
Hole Starts Length Process
at 18 p

Fig. 4-7. (a) A part of memory with five processes and 3 holes. The tick marks
show the memory allocation units. The shaded regions (0 in the bit map) are
free. (b) The corresponding bit map. (c) The same information as a linked list.

_

B

A

} Room for growth
}Actually in use

} Room for growth

Actually in use

Operating
system

{a)

B-Stack
IR
4

B-Data

8-Program

Y77

A-Stack

——
Y S
A-Data

}Room for growth

}Hoom for growth

A-Program

Operating
system

(b}

Fig. 4-6. (a) Allocating space for a growing data segment.
for a growing stack and a growing data segment.

b

(b) Allocating space

Introduction to Real time operating system.

Virtual Memory.

¢ Most virtual memory systems use
paging Virtual addresses (the
addresses the program uses) are
transiated into physical addresses by
a Memory Management Unit.

* A page fault occurs when the program
issues a virtual address in the range
of an unmapped page (e.g. for which
no physical address exists). This page
is now brought into memory. If it is
necessary to make room, another
rarely used page is written to disk.

Seplember 19 1980

Introduction to real time operating systems

Real e coliege, Trieste 1 - 27 Octaber 1990 101

e e

!
Memory Management in 05-9. ‘

- ® Memory is allocated when:
a module is loaded

- a new process is created (forked)

- a process reguests more memory

» 0S-9 needs more /O buffers or
needs to expand its data structures.

* Memory is de-allocated when the link
count of a module goes to zero.

September 18, 1390

Real lime College. Triesie 1—27 QOclober 1990 103

»

[

Introducticn to Real time operating system.

Virtual Memory.

® Several page replacement algorithms
exist to choose the page to be thrown
out.

® The ideal, but unrealisabie, algorithm
would throw out the page that will not
be used before long in the future.

* Realisable algorithms are:
= not-recently-used page replacement
{NRU) : '
« first-in first-out replacement (FIFO}
- least recently used page
replacement (LRU).

September 19 15890

Introduction to real time operating systems

Memory Management in 0S-9.

® |evel l| makes use of hardware MMU.
® | evel | uses a first fit algorithm.

s Memory fragmentation is a potential
problem in a multi-user system. For a
single user fragmentation is less of a
problem. it can often be avoided by
loading device drivers first!

® Modules in memory have a link count.
A module can be removed from
memory only when its link count is
zero.

September 18. 1990 Real lime Celliege, Triesie 1 —27 Otlober 1990

Real ime college. Triesie 1—27 DOclober 1990 1

-~ -

a MM a . A BMd =

iad =B

Initially
Reqguest 70
Request 35

Request 80

Return A
Request 60

Return B
Return D

Return C

Fig. 4-9. The buddy

)

Memory |
128K 256 K 384 K 512 K 640 K 768 K 896 K 1M Holes
LI I | S i l 1 1 1] 1 3 I] 1 |] 1 LI] | 1 1] r ot T

1
A 128 256 512 3
A B | 64 256 512 3
A B | 64 c 128 512 3
128 B | 64 c 128 512 4
64 | B | 64 Cc 128 512 4
64 128 C 128 512 4
256 Cc 128 512 3
- 1024 1

The numbers are the sizes of unallocated blocks
represent allocated blocks of memory.

Virtual
address
space

0-4K

4K-8K
8K-12K
12K-16K
16K-20K
20K-24K
24K-28K
28K-32K
32K-36K
36K-40K
40K-44K
44K-48K
48K -52K
52K-56K
56K -60K
B0K-64K

N

—_

X XXX |“Y ([XU X|X|W|[&|O|®

system. The horizontal axis represents memory addresses.

of memory in K. The letters

Physical
memory
addresses

0-4K

4K-8K

8K-12K

12K-16K

16K-20K

20K -24K

24K -28K

} Virtual page

) 28K-32¢
\

Page frame

Fig. 4-11. The relation between virtual addresses and physical memory ad-
dresses is given by the page table.

/.o

tntroduction to real time operating systems.

Introduction to real time cperating systems.

Path Descriptors

64 byte structures allocated and
deallocated by IOMan when a path is
opened or closed.

First 10 bytes have same meaning for
all paths.

Then 22 bytes defined by file manager
(see OS9rbfdefs and OS9scidefs).

Finally 32 option bytes, copied from
device descriptor and alterable with
1$SetStt. (see OS9rbfdefs and
0OS59scfdefs)

September 16, 19530

introduction to real time operating systems.

Logical and Physical disk structure.

® A disk is divided into 256 byte sectors,
with Logical Sector Numbers (LSN).

¢ rbf uses LSNs, which are translated by
the device driver into physical
location: side, track, sector.

¢ entire sectors are transfered.

® Track 0, side 1 on a disk is (nearly)
always single density and 10 sectors.

® All other tracks are usually double
density and 16 sectors.

® LSNO(side 1, track 0, sector 0) is the
identification sector.

Real fime College. Trieste 1 — 27 October 1990 105 September 19 1990

Introduction to real time operating systems.

. Logical and Physical disk structure.

LSN1 and usually also LSN2 contain
the sector allocation map. One bit per
sector: "1”= in use, "0"=free.

The root directory immediately foliows
the allocation map. Usually LSN3.

Every file starts with a file descriptor
sector, followed by the necessary
number of sectors to contain the
information.

First byte of FD sector contains the file
attributes:

Sepiember $9. 1990

Real time Coliege. Trieste 1 =27 October #9901t

Logical and Physical disk structure.

* A directory is like any other file, only
difference is that D is set.

® An entry in a directory file is 32 bytes:
29 for the name, and 3 for LSN of the
FD sect~r of the file.

® The RAM disk is set up by copying 4
sectors (LSNO—3; 1D, map, FD of root
directory and root directory} into RAM
on the ROM-RAM disk board.

® These sectors are copied from the top
of the ROM memory {(capacity of the
ROM = 2560 sectors, of a floppy disk
= 2554 sectors).

Reat ime College, Trieste 1 ~ 27 October 1990 107 September 19, 1990

Resl fime College, Trieste t— 27 October 1990

el

- A s 2 - A

L& -

6.1.1 1Identification Sector

Logical sector number zero contains a description of the physical and
logical characteristics of the volume which are established by the
"format" command program when the media is jnitialized. The table below
gives the 0S5-9 mnemonic name, byte address, Eize, and description of each
value stored in this sector.

name addr size description

DD.TOT $00 3 Total number of sectors on media
DD.TKS 503 1 Number of sectors per track

DD.MAP 3504 2 Number of bytes in allocation map
DD.BIT $06 2 Number of sectors per cluster

DD.DIR S08 3 FD sector of root directory

DD.OWN S$SOB 2 Owner's user number

DD.ATT $OD 1 Disk attributes

DD.DSK $OE 2 Disk identification (for internal use)
DD.FMT §10 1 Disk format: density, number of sides
DD.SPT $11 2 Number of sectors per track.

DD.RES §13 2 Reserved for future use

DD,.BT $15 3 Starting sector of bootstrap file
DD.BSZ $18 2 Size of bootstrap file (in bytes)
DD.DAT §$1a S - Time of creation: Y:M:D:H:M

DD.NAM S$1F 32 Volume name

DD,.OPT S$3F 32 Path descriptor options

Page 6-2

£.1.3 Pile Descriptor Sectors

i i i "file descriptor”, which
Th first secter of every file is cal%ed_a fi :
contafns the logical and physical description of the file. The table

Lelow describes the contents of the descriptor.

name addr size gescription
FD.ATT SO 1 File Attributes: D 5§ PE PW PR EWR
FD.OWN 51 2 Owner's User ID

FD,DAT $3 5 Date Last Modified: YM D H M
FD.LNE $8 1 Link Count

FD.5I2Z 59 4 File Size (number of bytes)
FD.Creat sD 3 bate Crea?ed: ¥YMD

FD.SEG 510 240 Segment List: see below

mhe attribute byte contains the file permifsiOn bits. “BiF 7 iglieg E:
indicate a directory file, bit 6 indicates a nonsharable" file, bi

public execute, bit 4 is public write, etc.

Introduction to real time operating systems.

Anatomy of a device driver.

¢ When we want to use 0S-9 for a
real-time control application, it is very
likely that we have to add one or more
device drivers for a special device.
Hopefully we will not need a special
file manager.

* The nature of the special device has to
be studied, in order to decide which
filte manager (rbf, sbf, scf) is best
suited.

® The interrupt service routine is
. physically part of the device driver, but
. logically it is an independent entity.

Seplember 19. 1930

Introduction to real time operating systems.

Anatomy of a device driver.

® Disabling interrupts may be too
dangerous if the application is highly
time-critical. Other mechanisms (TAS,
semafhores) must then be used, which
disable interrupts for very short
periods only, or not at all.

¢ The Getstat and Putstat entry points of
the driver merit attention. They allow
to implement special, device
dependent functions), which can be
enterely user-defined.

September 19, 1990 Real ime College, Trieste 1 — 27 Qclober 1990

Real time Collage Trieste 1-27 October 1990 109

i1

Introduction to real time operating systems.

Anatomy of a device driver.

® If the driver wili receive only kill ar
wake-up signals, no signal intercept
routine is needed.

* |f one wants to send other messages,
such as “"keyboard abort” or menu
choices, an intercept routine is
needed.

¢ |t is extremely important to identify the
critical sections, not only of the
driver(s), but of the entire application.

Seplember 191990

Introduction to real time operating systems.

Real tirne College Trieste 1—27 October 1990 11

Anatomy of a device driver.

® The file manager will pass the function
code and the register stack to the
driver when an [$SetStt or 1$GetStt
system call is executed.

* Note that the C-functions Getstat and
Setstat are limited: they perform
1$GetStt and 1$SetStt for a few function
codes only.

* Microware’s C library contains the
flexible functions:

059 ("sySTEM CALL NAME”, "ADDRESS DF REGISYER
ARRAY"
FOR ExAMPLE!

059 (1_GeTSTT, &RES)

Septernber 19, 1990

Real time Coliege. Trieste 1 ~ 27 Ociober 1990 -

e MR- ARA s

a a . A4 & -

- A

A 2 i

Introduction to real time operating systems.

Anatomy of a SCFdevice driver.

A SCFdevice driver in OS-9 follows the
client-server model (in fact two: one
for read, one for write}.

Remember the six entry points of a
device driver. Init and Term need no
particular comments.

GetStat and Putstat open many
possibilities, particularly for special
purpose drivers.

Read and the interrupt service routine
form the client-server. Two
asynchronous processes inside the
driver.

Seplember 191930

Real lime Coliege . Triesie 1- 27 Octeber 1990 113

F

Introduction {o real tima operating systems.

Anatomy of a SCFdevice driver.

® Read is the client; interrupt service
routine is the server. (Similarly Write
is server, interrupt service routine the
client).

¢ Read and Write use circular buffers,
separate for Read and Write.

¢ Synchronization and mutual exclusion
obtained with the OS-9 mechanisms:

« when stuck, go to sleep (and not
busy-wait)

- wake-up of suspended process
provoked by interrupt service
routine, by sending a signai to
suspended process

. signal received by intercept routine.

Seplemper 9. 1990

Real lime Coilege, Trieste 1 - 27 October 1990 11

7.4 SCF DEVICE DRIVER STORAGE DEFINITIONS

An SCF-type device driver module contains a package of subroutines
that perform raw 1/0 transfers toc or from a specific hardware controller.
These modules are reentrant, so one copy of the module can simultaneously
run several different devices that use identical 1/0 controllers. For
each "incarnation” of the driver, IOMAN will allocate a static storage
area for that device driver. IOMAN determines that a new incarnation of
the device driver is needed when an attach occurs for a device with a
different port address, The size of the storage area is given in the
device driver module header. Some of this Storage area is required by
IOMAN and SCF, the device driver is free to use the remainder for
variables and buffers. This static storage is defined in 0S9 IODEFS and
059 SCFDEFS as:

OFFSET : ORG 0

S0 V.PAGE RMB 1 port extended address

$1 V.PORT RMB 2 device base address

$3 V.LPRC RMB 1 last active process id

$4 V.BUSY RMB 1 active process id (0 = not busy)
$5 V.WAKE RMR 1 process id to reawaken

V.USER EQU ., end of 0S9 definitions

$6 V.TYPE RMB 1 device type or parity

$7 V.LINE RMER] lines left until end of page
$B V.PAUS RMB 1 pause request (0 = no pause!
59 V.DEV2 RME 2 attached device static storage
$B V.INTR RMB 1 interrupt character

$C V.QUIT RME 1 quit character

5D V.PCHR RMB 1 pause character

SE V.ERR RMB 1 . error accumulator

SFP V.X0ON RMB 1 _X-on character
$10 V.XOFF RMB 1 X-off character
11 V.RSV RMB 12 reserved

$1D V.S8CF EQU . end of scf definitions

05-9 SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: INIT

address of device descriptor module
address of device static storage

INPOT: (YY)
{v)

nh

OUTPUT: NONE

ERROR QUTPUT: (CC} = C BIT SET
(B) = ERROR CODE

FONCTION: INITIALIZE DEVICE AND ITS STATIC STORAGE

Usually this routine has three basic operations to do:

1. Initialize the device static storage.

2. Place the driver IRQ service routine on the IRQ polling list

by using the 089 FS$SIRQ service request,

3. TInitialize the device control registers (enable interrupts

if necessary).

NOTE: Prior to being called, the device static storage will be clea;gd
{set to zero} except for V,.PAGE and V.PORT wplch will contain thg 2: t;t
device address. There is no need to initialize the portion of static

storage used by IOMAN and SCF. —_

- As-a -

A MR . A BRa 4. . =

L4 A

| ‘:"'.‘-ﬁ}f-_‘l“\{

0S-9 SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: READ

address of path descriptor

INPUT: (Y)
address of device static storage

(0)

character read

OOTPUT: (A)

ERROR OUTPOT: {CC) = C bit set
{B) = error code

FUNCTION: GET NEXT CHARACTER

This routine should get the next character from the input buffer.

there is no data ready, this routine should copy its process ID from
V.BUSY into V.WAKE and then use the FSSLEEP service reguest to put itself

to sleep indefinately.

Later when data is received, the IRQ service routine should put the
data in the buffer, then check V,WAKE to see if any process is waiting
for the device to complete I/0, If so, the IRQ service routine should

send a wakeup signal to it.

NOTE: Data buffers for queueing data between the main driver and the IRQ
service routine are NOT automatically allocated, If any are used, they

are defined in the device's static storage area,

05-9 SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: WRITE

IRPOT: (A} = char to write
(¥Y) = address of the path descriptor
= address of device static storage

OUTPUT: NONE

ERROR OUTPUT: (CC) = C bit set
(B) = error code

PONCTION: OUTPUT A CHARACTER

This routine places a data byte into an output buffer and enables the
device output interrupt, If the data buffer is already full, this
routine should copy its process ID from V.BUSY into V.WAKE and then put

jtself to sleep.

Later when the IR0 service routine transmits a character and makes
room for more data in the buffer, it checks V.WAKE to see if there is a
process waiting for the device to complete I/0. If there is, it sends a

wake up signal to that process.

Note: This routine must ensure that the IRQ service routine will start up
when data is placed into the buffer. After an interrupt is generated the
IRQ service routine will continue to transmit data until the data buffer
is empty, and then it will disable the device's "ready to transmit"

interrupts.

Note: Data buffers used for queueing data between the main driver and
the TIRQ routine are NOT automatically allocated. If any are used, they
should be defined 'in the device's static storage.

g

NAME: TERM

INPUT: (U) = ptr to device static storage
OUTPUT: NONE

ERROR ODTPUT: (CC)
(B)

C bit set
Appropriate error code

PUNCTION: TERMINATE DEVICE

whe:hlftsrogglne is called when a Qevice is no longer in use, defined ag
Syotens o e tcoupt in the Qev1ge table becomes zero. 1In Level One
e dr" g ermination routine is not called until the link count of

iver, descriptor, or file manager also reaches zero, and the module

is bein remov i
f0110wing: ed from the system memory directory. It must perform the

1. Wait wunti
routine! ntil the output buffer has been emptied (by the IRQ service

2, Disable device interrupts.

3. Remove device from the IRQ polling list,

NOTE: LI ~ Modules contained in the BOOT file will NOT be terminated.

LII - An i . :
terminated. Yy I/0 devices that are not being used will be
nMno; VLLIOLH

SETSTA
INFOT: (A) = function code
(Y} = address of path descriptor
(U) = address of device static storage

OUTPUT: Depends upon function code

PUONCTION: GET/SET DEVICE STATUS

This routine is a wild card call used to get (set) the device
parameters specified in the ISGETSTT and ISSETSTT service requests, Most
SCF-type requests are handled by IOMAN or SCF. Any codes not defined by

them will be passed to the device driver.

In writing ocetstat/setstat codes, it may be necessary to examine or
change the register stack which contains the values of :he 6809 registers
at the time the 089 service request was issued. The address of the
register packet may be found in PD,RGS, which is leocated in the path
descriptor. Note that Y is 2 pointer to the path descciptor and PD.Rgs
is the offset in the path descriptor. The following offsets may be used
to access any particular value in the register stack:

OFFSET MNEMONIC MPU REGISTER

$0 RSCC RMB 1 condition code reaistar
$1 RSD EQU . D register

$1 RSA RMB 1 A register

$2 RSB RMB 1 B register

$3 RSDP RMB 1 DP register

54 RSX RMB 2 X register

$6 RSY RMB 2 Y register

S8 RSU RMB 2 U register

SA RSPC RMB 2 program cocunter

Sample access:

13x PD.RGS,y
1dd RSY,x

A = kE . &£ &4 -+

step s e g I L e «ddlT Pl el e Vi e llen se b g BN e e m s sl

the IRQ polling seguence via an FSIRQ system call.

1dd V.Port,u get address to poll

leax IRQPOLL,pcr point to IRQ packet

leay IRQSERVC,pcr point to IRQ service routine
0S9 FSIRQ add dev to pell seguence

bcs Error abnormal exit if error

Step 2: Whenever a driver program must wait for the hardware, it
should call a sleep routine, The sleep routine will copy V.Busy to
v.Wake, then it will go to sleep for some period of time,

Step 3: When the driver program "awakens®™, it will check whether
it awakened because of an interrupt or a signal sent from some other
process. The usual way to accomplish the check ig with the V.Wake
storage byte. The V.Busy byte is maintained by the file manager to be

the process ID of the process using the driver. W . i

into V.Wake, then V.Wake becomes a fgag byte and an gﬁgogﬁnggnigyizpieg
non-zero Wake byte indicates there is a process awaiting an interzﬁpt
The value in the Wake byte indicates what process should be awakened b§
the sending of a wakeup signal, The following code will indicate a
technique to accompligh this:

lda V.Busy,u get prec ID

sta V.Wake,u arrange for wakeup

andcc #°IntMasks clear the way for interrupts
Sleep50 1dx $#0 or any tick time desirgd. ’ P

0S89 FSSleep await an IRQ

ldx D.Proc get process desc ptr (if signal test)

1db P§Signal,x is signal present? (if signal test)

bne SigTest bra if so (if signal test)

tst V.wake,u IRQ occur?

bne SleepS50 bra if not

Note that the code labelled "if signal test™ is only necessary if the
driver wishes to return to the caller if a signal is sent without waiting
for the device to finish. Also note that IRQs {(and FIRQs) must be masked
between the time a command is5 given to the device and the moving of
V.Busy to V.Wake. If they are not masked, it is possible for the device
IRQ to occur and the IRQSERVC routine to become confused as to sending a
wakeup signal or not,

Step 4: When the device issves an interrupt, the routine address
given in the F$IRQ will be called. This routine is called as if it were
a portion of the interrupt handler in the system. The interrupts are
masked, the routine should be as short as possible, and the routine
should return to the caller via RTS, since the system poller has called
it wvia JSR and will do the RTI when done. The IRQSERVC routine may want
to verify that an interrupt has occurred for the device, It will need to
clear the interrupt and retrieve any data in the device. Then the V.Wake
byte is used to communicate back to the main driver routine. If V.Wake
is non-zere, it should be cleared (indicating a true device interrupt),
and its contents used as the process 1ID for and F$Send system call
sending a wakeup signal to the process. Some sample code follows:

1dx V.Port,u get device address

tst ???? is it real interrupt from this device?
bne IRQSVC90 bra to error if not

1da Data,x get data from device

sta 0,y store data in buffer (simplified example)
l1da V.Wake,u get process 1D

beq IRQSVCE0 bra if none

clr V.Wake,u clear it as Flag to main routine
1db #S$wWwake get wakeup signal

059 F$Send send signal to driver

IRQSVCBO clrb clear the carry bit (this indicates all is well)
Its

57

Sequential (Character ri4c AclEdTL

NAME: IRQ SERVICE ROUTINE

PORCTION: SERVICE DEVICE INTERRUPTS

Although this routine 1is not included in the device drivers branch

2 table and not called directly from SCF, it is an important routine in
device drivers. The main things that it does are:

1. Service the device interrupts (receive data from device or
send data to it). This routine should put its data into and
get its data from buffers which are defined in the device
static storage.

L 2. Wake up any process waiting for I/0 to complete by checking
to see if there is a process ID in V.WAKE (non-zero) and if so
send a wakeup signal to that process.

3. If the device is ready to send more data and the output
buffer is empty, disable the device's *ready to transmit”
interrupts.

4. If a pause character is received, set V.PAUS in the
attached device static storage to a non-zZero value. The
adéress of the attached device static storage is in V.DEV2.

5. If a keyboard abort or interrupt character is received,
signal the process in V.LPRC (last known process) if any.

When the IRQ service routine finishes servicing an interrupt,
it must clear the carry and exit with an RTS instruction.

5&

-

ElE E IR 3

T

i ' a4

