INTERNATIONAL ATOMIC ENERGY AGENCY
‘ @ , UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

L.CI.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

@ UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

m

INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

c+0 INTERNATIONAL CENTRE FOR THEORETICAL PRYSICS 300 TAIESTE (TTALY} Y1 GRIGNANO, 5 IADRIATICO PALACE) PO. BOX 3 TELEFHONE O 2MINL TELEFAX MO NS TEEENX 4t APH 1

SMR/474 - 4

COLLEGE ON
*THE DESIGN OF REAL-TIME CONTROL SYSTEMS"
1 - 28 October

PROGRAMMING IN C LANGUAGE
{Lectures 1 to 4)

A. NOBILE
International Centre for Theoretical Physics
Strada Costiera 11
34100 Trieste
Italy

These are preliminary locture notes, Intended only for distribution to participants.

OVERVIEW OF THE LANGUAGE 1

C Language:

- Very popular

- Widely used

- Hated by computer language theorists
--- as FORTRAN, BASIC...

--- unlike Algol, Pascal, Ada...

WHY?

- Complex syntax (lois of cparators, symbols etc.)

- More serious: no strict rules: allows writing horrible things;
aflows playing with hardware;

allows writing incredibly unreadable code
{(annual prize for most cryptic C program...);

REQUIRES PROGRAMMER'S DISCIPLINE

SOME HISTORY

Originated from Brian Kernighan and Dennis Ritchie, ATT Bell Labs,
about 1972, as systems programming language-used to implement
UNIX({TM) since then.

Their book(1977) the only reference for many years.

Slow expansion (void data type, enum)

Many minor variants.

ANSI standard : started 1983, ready from 1988, but many compilers
not compliant are yet around (this course uses one).

OVERVIEW OF THE LANGUAGE 2

THE C SYSTEM

1) macro processor ("C preprocessor”)
2) language/compiler

3) standard include files

4) standard library

+

syntax checker ("lint")

- THE STRUCTURE OF A C PROGRAM

Multiple source files

Each file is composed of functions (and other things...)

functions cannot be nested {(unlike Pascal)

Subdivision in files is part of the language (unlike
FORTRAN)

OQOVERVIEW OF THE LANGUAGE 3

OVERVIEW OF C

/* Two penny calculator */
#include <stdlo.h>
#define PROMPT putchar(:")

main(void)

{
float a, b;
char opr;
float resuit;

vold bye(char message(], int exit_code);

while(PROMPT, scanf("%{%c%f",&a,&opr,&b) != EOFY{
switch (opr) {
case '+": result = a+b; break;
case -' : result = a+b; break;
case '™ : result = a*b ; break;
case /" : resuit = a/b ; break;
default: bye("ERROR, bad operatorin”,1);

}
printf {"" result is %fin", resuit);
}
bye("Normal exit\n",0);
}
void

bye(char messagel[], int error_code)

{
printf ("%s",message);
exit (error_code);

OVERVIEW OF THE LANGUAGE 4

COMMENTS:
/* anything */

Can span many lines;
Cannot be nested: warning when "commaenting out”

* a=1;
/acomment* AAAARGHHH!
b=1;%

Compiler treats them as 1 space (ANSI)
(undefined in Cid C)

a/* something */b is the same

as
ab (ANSI)
ab (usually, in Old C)

PREPROCESSOR STATEMENTS

#include <standard header file>
#include "local header file"

standard header file stdio.h:

Required in (essentially) every grogram;
contains all the I-O related definitions, macros, efc.;

#define MACRO definition

ends with newline

OVERVIEW OF THE LANGUAGE 5

MACRO will be replaced by its expansion in every occurrence,
then rescanned for further substitutions, etc.

PROMPT replaced by putchar
putchar is macro, defined in <stdio.h>

WARNING : infinite recursion
MACRO will not be replaced again in its own
expansion (ANS] ONLY)

#tidefine A A+B /* VERY UNWISE; but would work in
ANSI , would hang your compiler*/

WARNING: common mistake

#define MACRO=definition /wrong; = part of MACRO*/
#define MACRO = definition wrong; same*/

FUNCTIONS

analogous to FORTRAN subroutines-functions:
- encapsulate an operation

- give it a name

- call it from anywhere

2 functions in this example

main
bye

main required in each program
bye : user function.

OVERVIEW OF THE LANGUAGE 6

FUNCTION DEFINITION:

header
body

body :

{
0 or moredefinitions and declarations
1 or more statements

} /* this is a compound statement */

header is very different in ANSI and Old C
ANSI

lype returned by the function
(optional ; default : int)
(void means no value returned
(FORTRAN subroutine))
name of the function
(
argument lype argument name, argument type
argument name eftc.

)

or
(void) meaning no arguments

OVERVIEW OF THE LANGUAGE 7

OLDC

type returned by the function
(optional ; default : Int)

name of the function

(

argument name, argument name etc.

)

argument type argument name;/* please riote {he ; */
argument type argument name ;
etc. for all the arguments

or

() meaning no arguments

Example:

int sum (n1,n2) /*"int" can be omitted, it's the
default*/

int n1,n2;

To run on your compiler, example above must be written

OVERVYIEW OF THELANGUAGE 8

bye(message,error_code)
char message[];
int error_code;

FUNCTIONS RETURNING A VALUE

returnvalue; /* value should be of the type of the function */

int sum(int n1, int n2}{

ints;
s =n1l1 + n2;
return s;
}
INVOKING FUNCTIONS

Simply by naming them, followed by the appropriate argument list;
Functions without arguments must be followed by an empty
argument list;

bye("this is a message”,27);
bye();* WRONG: ARGUMENT LIST MUST MATCH
THE ONE IN FUNCTION DEFINITION.
ERROR DETECTED BY ANSI C
*

OVERVIEW OF THE LANGUAGE 9
Functions can be recursive:

int fac(int n)

{if(n ==0)
return(1);
else

return (n*fac(n-1));/* note recursive call */

VARIABLE DECLARATION

Each variable has to be declared before being used
(and before any "ordinary" statement):

type variable name ;/* possibly other names,
separated by ",” */

type :
int, float, char

int i1,i2;

FUNCTION DECLARATION (PROTOTYPING)

- Required if function defined after being used (like
bye);

- Can be omitted : function in this case assumed to
return type int;

- ANSI : should be identical to the function header;
compiler uses it to check call;

OVERVIEW OF THE LANGUAGE 10

- Old C: should declare only type returned:
int bye();
-- often omitted if type int or neglected

THE while STATEMENT

while (expression)
statement

Loops repeating statement until expression becomes
0

THE *," OPERATOR

expression1 ,expression2
evaluate expression1

discard its value (71l)

evaluate expression2

return its value

Example:

PROMT -> putchar(:)

standard I-O function
puts a character on output

value : error code
BUT

side effects | (in this case, display :)
scanf(....) != EOF

relational expression

its value retained and tested by while

OVERVIEW OF THE LANGUAGE 11

RELATIONAL OPERATORS

== test for equality

I=test for unequality

> Qreater

>= greater or equal

< less

<= less or equal
return 1 if satisfied
return 0 if not satisfied

C has no "logical" ("Boolean").
ALL CONDITIONALS TEST FOR 0 (false)/ NON 0
(true)

why C is dangerous?

if(il=])i=i+1;
can be written
izi+(il=j); MLEGAL (AAARGHH)*/

ARITHMETIC OPERATORS
+, -, %,/ as usual
%: remainder (for int only)

int a,b;
(a/b)*b+a%b == a /*(careful if a <0)*/

OVERVIEW OF THE LANGUAGE 12 OVERVIEW OF THELANGUAGE 13
while (expression) {.....}

THE switch STATEMENT AND break
WHAT DOES THIS MEAN?

switch (expression) {
case constant 1 :statements ; while(i<10);i=i+1 ;/*AAARGHH!"/

case constant 2 :statements ;

default : statements ;

}

- execution jumps to the label whose constant value is equal to

expression, or to default;
- execution does NOT end at the next label, but continues to the

end;
-the break statement interrupts the flow of execution and jumps to the
end of the switch.

THE ASSIGNEMENT STATEMENT
As usual:
variable =expression ;

THE SEMICOLON ;

- Every statement must be terminated by
- except COMPOUND STATEMENTS (thatis { })

- Daclarations and definitions must be terminated by ;
- Function headers must NOT be terminated (why?)

WARNING

while(expression) is not a statement by itself -> no ;
while (expression) a=a+1;

OVERVIEW OF THE LANGUAGE 14

CHARACTERS AND STRINGS

'a’ is a character constant
char a; /*character variable */
a='a’;

NON-PRINTABLE CHARACTERS:
n' is the newline character
\t' is the tab character

STRINGS
“this is a string"” is a string constant

- C has no basic string type

- a string variable is an array of characters

-- char message|]; -

- a string is always terminated by "\0' (ASCil NULL)
-- the compiler adds the "\0' to string constants
char s[4];

s[0]="b";

s[1]=y";

s[2]="e’;

s[3]="0'";

/* Now s is a valid string */

I

OVERVIEW OF THE LANGUAGE 15

THE BASIC I-O LIBRARY

C has no bult-in I-O operations

All 1-O performed through library calls

Basic |-O macros and functions declared in <stdio.h>
STANDARD HEADER FILE

EOF : macro defined in <stdio.h>
an int that would not be a valid char
WARNING : never use -1. EOF is implementation dependent

int
putchar(char c)

puts the character ¢ on the standard output
If it succeeds, it returns the value of ¢;
i it fails, it returns EOF

int
printf(char format]],...)

-A function with a variable number of arguments.

-The values of arguments from 2 on are converted according to the
format (argument 1) and placed on standard output.

-If successiul, returns the number of characters printed;

otherwise, a negative value.

format: a string. It is copied on the output, except the
conversion directives, thal have the form
%d (integer conversion) or %f (floating conversion)
or %s {string conversion) or %¢ (character conversion)

A

OVERVIEW OF THE LANGUAGL 16

Example:

printf (" These are %d things",2);

prints

These are 2 things

printf(" Pl is %t",3.14);

prints

Plis 3.14

printf (" These are %d %s",2,"things");
prints

These are 2 things

\n in format prints a newline

int
scanf(char format[j,...)

-A function with a variable number of arguments.

-The arguments from 2 on must be ADDRESSES of variables.

-The input is scanned and converted according to format, and values
are placed, one after the other, in the other arguments. White spaces
in format indicate skipping of whites and tabs in input.

OVERVIEW OF THE LANGUAGE 17

Example

float a,b;
char opr;
scanf("%f%c%f",&a,&opr,&b);

input line:
32.5"12.0\n

%f converts 32.5 to a float (stops at *, illegal for float)
and puts in a

%c reads 1 character ™ to opr

%f converts 12.0 to a float (stops at \n) and puts inb

float a,b;
char opr;
scanf("'%f %c¢ %f",&a,&opr,&b);

input line:
325 * 12.0\n

%f converts 32.5 to a float (stops at ' ', illegal for float)
and puts in a

blank skips all blanks up to *

%oc reads 1 character "' to opr

blank skips all blanks up to 1
%f converts 12.0 to a float (stops at \n) and puts inb

THE & OPERATOR

Takes the address of its argument

OVERVIEW OF THE LANGUAGE 18

C functions receive the VALUE of their scalar TYPES TYPES1

arguments ("call by value"): that is a copy of them. if TYPES AND DECLARATIONS
they have to modify them, they must receive their

addresses. inti;

/*declares the identifier i to refer to a variable of type
int ; creates the variable*/

All variables must be declared

An identifier can be up to 31 characters long(ANSI)
longer can be accepted, but maybe truncated
BUT GLOBAL SYMBOLS ...
contain letters,digits and _, starting with a letter
or _
upper and lower-case letters are distinct

int a,A,VeryLongldentifier;
char AToolLongldentiflerAsYouSeeUsedHere1,
AToolLongldentifierAsYouSeeUsedHere2;
/* these could be considered the same
by many compilers */
float x_3;
float 3x/*ILLEGAL!"/;

GLOBAL SYMBOLS :

ANSI: are distinguished on the basis of their first 6
characters, case indipendent.

WHY? Limits of system software

TYPES TYPES2 TYPES TYPES 3

main (void)
ELEMENTARY DATA TYPES WARNING : Old C's main{) ---
| --- to specify pointers to objects of any type
Data types: - set of values (Old C uses pointers to chars, but...)

- possible operations

Elementary data types provided by the language
Structured data types created by the programmer

C has very many to closely fit the hardware
-- possible portability problems
-- possible avoidance of portability problems (1}

- void (ANSI)
-scalar types
- arithmetic types
- integral types
- floating types
-pointer types
-enumeration types(ANSI)

void
- no values
--- to specify the type of a function that returns
no value
void bye(...)
--- to specify a function without arguments

TYPES TYPES4

ARITHMETIC TYPES
Floating types

3 floating types (Old C : 2 only)
float

double _
long double (ANSI only)

NOTE: float : basic floating provided by hardware

(32 bits almost everywhere, FORTRAN REAL)
double : at least the same precision and range than
float, or better (REAL*87?)

long double : at least the same precision and range
of double, or better (REAL*16)

- floating types are hardware: their behaviours and
properties are implementation dependent (description
in standard include file <float.h>, ANSI only)

- when mixing types in operations, obvious
conversions:
-- float a;
double b;
... b*a
means:
convert a to double; perform product;
return double
and so on;

19

TYPES TYPES S
-- a=b;
means:
convert b to float; assign result to a

WARNING: -

conversion of double to float can be impossible
or an operation can yield a non representable
result (Example: maxfloat+rmaxfloat) ->
UNDEFINED BEHAVIOUHR

FLOAT CONSTANTS

3.1.33 3e2 5e-5 3.7e12
have type double

ANSI ONLY
3.5f has type float
3.5e2L has type long double

TYPES TYPES 6

ARITHMETIC TYPES
Integral types

char

short int 'or just short
long int or just long
int

each of the above can be modified by
signed (ANSI ONLY) or unsigned

char

- must contain (the numeric representation of) any
character in the alphabet;

- must be at least 8 bits long (ANSI).

Excursus : the alphabet

ANS! defines the minimum alphabet of C

- Source alphabet (to write programs):

a-z A-Z 0-9 space tab form-feed newline

"' # %200, .;+-"/\|~?:<=>_ &

- Execution alphabet

Source alphabet + null alert(bell) backspace carriage
return

Trigraphs:
Source alphabet is ASCII

TYPES TYPES?7
ISO standard alphabet misses some characters
(national characters instead)

ANSI| defines frigraphs to represent these missing characters in the
source programs on computers not using full ANSI character set.
Ex. : ??= can take the place of #

?7%(can take the place of]
trigraphs are a single character from any point of view, but only in
source programs.

Again on char:
BUT IT IS A (smal) INTEGER!
8 bits, CAN be longer(implementation dependent)

signed char: range from -127 to 127 (7?)

unsigned char: range from 0 to 256

char: whatever hardware prefers ("natural”

representation) BUT(ANSI)

- guaranteed minimum range 0-127

- atleast 8 bits

- value >0 if content is a real character of the
alphabet

CHARACTER CONSTANTS

lg' ‘A'

TYPES TYPES S8
n' "\t
\0',\107'
“octal number"'
"x47'
"xhexadecimal number' ANSI ONLY
'G' is \107" is "x47'

Because they are integers

=='9' - '0'; /*common trick, good only for ASCII

machines*/
‘a' =="A' + 32; /* as above */
How to print a list of numeric values of letters?

#include <stdio.h>
main()
{ charc="a';
while(c <= 'Z'){
printf("%c %d" , ¢, C) ;
C=C+1;

}

Why getchar() is int and not char ?

short int and long int

short int : at least 2 bytes

TYPES TYPES®

long int : at least 4 bytes

int: "natural® hardware integer, at least 2
bytes

-short int used mainly for saving memory
-long int used mainly for range

TYPES TYPES 10

unsigned and signed

unsigned short k;
unsigned long int j;
unsigned int |;

- Range from 0 to 2'®-1 or from 0 to 221

- Never overflows (arithmetic moduio 2'° or 2%)
WARNING : integer overflow gives undefined results!
Ex.:

short i = 256 ;

unsigned short n = 256;
n=n*n+1;/* nbecomes 1*/

i =i*%i +1;/*anything can happen?*/

- Used for : -- exploiting all bits
-- representing positive-only objects
-- getting definite results with shifts
- Arithmetics can be slow

signed (ANS| only)
useful only for char (couid ve same as unsigned

char)

Integer constants

10 int, 10 decimal

TYPES TYPES 11

50000 long int if int is 16 bits, else int, decimal
010 int 10 octal (8 decimal)

0x10 int 10 hex (16 decimal)

0x8000 int if int is 32 bits, else unsigned int

-1 int decimal

<035 int octal (-29 decimal)

RULE:

decimal take the type int, long int or unsigned long
int (the smallest that fits)

hex and octal take the types int, unsigned int, long
int or unsigned long int (the smallest that fits)

Explicit sizing:
101 long int
10u unsigned int (ANSI ONLY)

WARNING: DON'T BE TOO CLEVER

-1 is represented by Oxffff (16 bits)
BUT

int n;

n=0xfff; /* is not -1/

Oxffff is a positive constant;
of type unsigned int (does not fit into an int)
assigned to an int -> UNDEFINED

TYPES TYPES 12

EXPLICIT TYPE CONVERSION (CASTING)

(scalar type) expression

Ex:

floatf=3.5;
inti,n=2,m=3;

i = (int)f; *i=3*

f = m/n; * £=1.0*/

f = (float)m/n; /*f=15"/

MIXING TYPES IN ARITHMETICS
AND ASSIGNMENT

intm,n;
floata,b;
char c ;
short q ;

a=m+n/a-b+c*q*b;

Most reasonable:

short types converted to defauit
(short, char to int)
(float to double, Old C only)

TYPES TYPES 13
if operators involves different types,
convert to "most powerful"
(int + long, convert to long , return long)
(int + float, convert to float, return float)
(int + unsigned, :
convert to unsigned, return unsigned) (ANSI)
convert to int, return int (old C)

)

Convert result to the type of the variable
on the left of =, and assign.

IMPORTANT WARNING

int m = 256;
longintn;

n =m*m ;/* UNDEFINITE RESULT*/
/* if intis 16 bits */

m*m is computed as int, but result overflows
result is converted to long int, but {oo late

n = (long)m*m ; *works*/

K{i

TYPES TYPES 14
WARNING: mixing unsigned and signed

unsigned int n=10;
int m;

m = n-15; *UNDEFINED, overflow */

ENUMERATED TYPES
(ANSI only)

Like in Pascal: a set of names, holding costant values
assigned by the compiler

enum { red, blue, gree, yellow }
LightColor,PaperColor;

enum Brightness{bright, medium, dark} ;

enum Brightness Bulblntensity, Screenintensity;

Brightness is a lype tag
LightColor = red;
Bulbintensity = bright;
enum { constant_identifiers }

or .
enum tag { constant_identifiers}

TYPES TYPES 15

- constant identifiers bring integer values from 0 on
- a good compiler would issue a warning but never
an error for a conflicting enum:

/* the following should cause a warning message
*

BulbBrightness=red;

PaperColor=2;

- there is nothing specific to enum to go from one
value to the next; adding 1 works;

enum day {sun, mon, tue, wed, thu, fri, sat };
enum day d;

for(d=sun; d<=sat; d=d+1)...
- enum can be used to give names to arbitrary
integer constants, as follows:

enum{ Minimum=-12,
DangerLow,Hot=98,Maximum=100}stat;
/* Dangerl_ow becomes -11%/

USAGE:
- Give names to constants:

essential to improve readability. Important !
- To check against unreasonable type mixing

TYPES TYPES 16

Old C style: use
#define MINIMUM (-12)

- Ok for readability
- No protection for type mixing (all integers!)
- Valid for a whole file (SCOPE problem)

TYPES TYPES 17

POINTER TYPES

C uses extensively pointers : ESSENTIAL TO
USE THE LANGUAGE

variables are memory cells

each one has an address

this address is some kind of integer

| can store the address of a variable in another
variable

this one becomes a pointer to the first one

Ex:

variable i IS memory cell 2347

contains the value 35
variable j IS memory cell 1398
j contains the value 2347

jis a pointertoi

TYPES TYPES 18

C approach to pointers

Similar, BUT
- variables of different types use different "memaory
cells”
- addresses are not int
- addresses of objects of different types are of
different types;

If a is a variable of type T, &a is a pointer to it and
has type "pointer to T"

If p has type "pointer to T" and is not null, *p is a
variable of type T

Example:

inti,j=15;

float a, b=1.4;

int *pi1, *pi2; /* pil1,pi2 are pointers to int */
float *pf1; /* pf1 is a pointer to a float */

pf1 = &a; /* store the address of a in pit1 */
pf1 = b; / is the same as a=hb */

pf1 =b; /* illegal */

b = *pf1 -0.25;/* is the same as b=a-0.25 */

pft = &b;

b = *pf1 - 0.25;/* is the same as b=b-0.25 WHY*/
pi1 =pf1; /*isillegal : type mismatch */

pi1 = &i;

TYPES TYPES 19
pi2 = pit;
pi2 = |; / is the same as i=] ¥/

NULL POINTERS

A pointer containing a zero value does not point to
anything.

int *p;
p = 0; /* ugly but legal */
p = (int *)0;

- &anything never returns 0;
- memory allocation facilities never return 0;

CONSTANT POINTERS

On most machines:

(char *)100 points to "memory position” 100
NOT STANDARD

require byte-addressed memory
(int *) would not work

TYPES TYPES 20

COMMENT : declarations

C declarations are "by example®.

int*p; .

means :

"*p ié an int", therefore "p is a pointer to an int”
For this reason:

int *pit, *pi2, i, |; /* i,j are int, pi1, pi2 are pointers
*to ints */

typedef

USER DEFINED TYPES

/* type definitions®/

typedef unsigned int size ;
typedef int * P_to_i ;
typedef size * P_to_s ;

/* variable definitions */

size array_size, |;

P_to_i pi;

P_to_s ps;

TYPES TYPES21

typedef declaration type-name

afterwards ,fype-name can be used as any
predefined type

Can be used to parametrize programs:
size could be unsigned long int on 16 bits machines

Almost essential for complex type declarations

(structured types)
IMPORTANT WARNING : difference with #define

#define Plint *
Pl pi1,pi2;

expands to

BUT

typedef int* P_i;
P _i pi1,pi2; /* both are pointers to integers */

-

OPERATORS 1

OPERATORS

C has many

C treats as operators things that other languages

do not
Contribute significantly to the complexity of the

language

ALREADY MET
Arithmetic operators
+ -1/
- apply to arithmetic types; if types mismatch,
arithmetic conversions
- actually, + - apply alsc to pointers (later);
%

- applies to integral types only

Meaning is obvious, except one WARNING

OPERATORS 2

intn=-10,m=3,p,q;

p=m/n;
q = n%m;

can yield either

p=-3 g=-1

or

p=-4 g=2

Relational operators
< > >= <= == I=

- apply to all scalar types

- operand must be of the same type

- return int 1 (true) or O (false); no Boolean-

LOGICAL type in C!

- testing pointers for greater-less meaningful only
if pointers to different elements of the same array
or structure

-comparing pointers for equality with 0 legal (ugly:

use cast)

- warning : written without intermediate spaces
(== not = =)
- WARNING: careful about checking floating types

OPERATORS 3

for strict equality:
float a;

a=1.0/3.0; -
1.0 == 3.0*a /*usually FALSE */

Address operator
& identifier
- applies to any variable except bit-fields and

register variables
- returns a pointer to its operand

Dereferencing operator

* pointer

Comma operator

exprl, expre

- applies to expressions of any type

- evaluates both its operands, and returns the value

of expr2 (expr1 evaluated only for side effects)
- WARNING : this is NOT the comma that appears

in function calls
int f(int *n1, int *n2);

f(&n1, &n2) /* it is not the comma operator*/
f((n1=1, &n1), &n2) /*the first , is an operator*/

OPERATORS 4

GENERALITIES ON OPERATORS

1)Precedence Level

a+b/c is a+(b/c)
a<bh-c is a<{(b-c)
2)Associativity

if same level of precedence

2.0/3.0/4.0 is (2.0/3.0)/4.0
LEFT ASSOCIATIVE

az=b=c¢ is a=(b=c)
RIGHT ASSOCIATIVE

Highest precedence (precedence level 1)

Postfix operators
Associativity: left to right

- Array reference []
-- if a is an array, a[1] is an element of it

- Function call ()
-- if f is a function, f(...) calls it and returns its value

- Component selection . ->
-- discussed with structures

OPERATORS 5

Precedence level 2
Unary operators

Assaociativity: right to left

- Address operator &
- Dereference operator

*
- Minus -

applies to arithmetic operands
changes the sign of its operand

-Plus +
ANSI only
applies to arithmetic operands
forces immediate evaluation of its operand

--- mathematically, a+(b+c) == (a+b)+c
--- in these cases, associativity rules do not apply
--- compiler authorized to reorganize even
removing unneeded parentheses
--- + can be used to force an order of evaluation
+a+b)+c
or
a++b+c)

- Logical negation !
any scalar operand
returns int 1 if operand is 0, else returns 0

- Bitwise complement ~
any integral operand
returns bit complement of the operand

OPERATORS 6

- Increment and decrement operators ++ --
VERY MUCH USED
HAVE SIDE EFFECTS
apply to any scalar operand

m++ returns the current value of m AND
modifies m adding 1 to it

++M modifies ihe vaiue ot m adding 1 to it
returns the modified value

-- Example

intm,n=3;

m = n++ ; /* is like m=n; n=n+1; */
m = ++n ; /* is like n=n+1; m=n; */

-- WARNING

intm=2;
m + m++ *UNDEFINED :4 or 5*/

: NEVER use twice in the same expression
a variable subject to side effects of an

operator
-m++ /* right associativity: means ~(m++) */

--m++ /* illegal */

OPERATORS 7
- sizeof operator
applies to a name or expression of any type

returns the size of its argument in bytes
has two forms : operator and function

double f;

sizeof f /*applied to variable or expression*/
sizeof (double) /* applied to a type */

ESSENTIAL when dealing with dynamic
objects (memory management)

Level 3
Associativity: right to left

- Cast operator ()

Level 4,5
Arithmetic operators
Associativity : left to right

Level 4: multiplicative operators * / %
Level 5: additive operators + -

OPERATORS 8

Level 6
Shift operators
Associativity: left to right

- Left shift <<
-apply to integral operands
-right operand must be >=0 and <= number of
bits of the left operand
-filling with O

inti=0x3;
i = ice<d 3/* is Ox30 */

- Right shift >»
as above, BUT
- if left operand is unsigned or >=0, zero filling;
else, implementation dependent (zero or sign
extension)

Levels 7,8

' Relational operators

Associativity : left to right

Level 7 Comparison > < >= <=
Level 8 Equality ==!=

Levels 9,10,11
Bitwise operators
Associativity: left to right

Apply to integral operands

OPERATORS 9

Level 9 Bitwise and &
Level 10 Bitwise exclusive or A
Leve! 11 Bitwise inclusive or |

Ex:

short int i1=0x0180 , mask=0x00c0;
short int masked _i1;

masked_i1 = i1 & mask | 3; /* masked_i1 0x0083

*

Levels 12,13
Logical operators
Apply to scalar operands
Evaluate second operand only if needed

Level 12
- Logical and &&
returns 1 if both operands non-zero
EXACT:
if optis O return 0
else if op2is 0 return 0
else return 1

Level 13
-Logical or Il
returns 1 if one operand non-0 else return 0
EXACT:
if opTnon 0 return 1
else if op2 non 0 return 1
else return 0

OPLRATORS 10

Example:
int *p;
if (p && (*p = getchar()) && *p != EOF)...

getchar called only if p non NULL (non 0)
check for EOF only if getchar called

ONLY operaiors wiih guaranteed order of
evaluation;

therefore

ONLY case where repeated use of variable
affected by side effects is safe

Level 14
Associativity right to left
- Conditional Operator ? :

expr1 ? expr2 :expr3
evaluates expri;
if exprftis not 0, evaluate expr2 and return
its value;
else evaluate expr3 and return its value

expr1 must be a scalar
expr2 and expr3 must have compatible types

Example
max=x>y?x:y;

OPERATORS 11

Level 15
Assignment operators

Associativity: right to left
WHY OPERATOR?
variable = expression
evaluate expression
convert its value to the type of variable
assign to variable
return the value assigned to variable

HAS SIDE EFFECTS

int p;
float a=3.5,b;

b=p=a; /* means b=(p=a)
p=3
b=3.0
*/
int p1, status();/* Old C style*/
if (p1=status(something))...
COMMENT: relation with assignment statement

Most language have assignement statement
In C, statement is any expression followed by ;

OPERATORS 12

a=b; /*assignment statement */

From Example 1
while ({ c=getchar()) |= EOF)

c=getchar() assignment expression
modifies ¢
returns the value of ¢

(c=getchar()) parentheses needed because
precedence of = lower than
precedence of !=

(c=getchar())!=EOF relational expression,
evaluatesto 1 0or 0
leaving useful value in ¢

Compound assignment operators

+= -z *= /= %= <<= >>= &= A=z |=
binaryoperator=
int j,k;

j+=K; /*'same as|j=j+k*
Same operands as corresponding binary operator
VERY USEFUL (safer than simple assignment)

WARNING : not exactly same as simple
assignment

OPERATORS 13

Left operand evaluated only once
afi++] = 3; /* a[i] is element i of array a */
meahs

afi] = 3;
i +=1; /*in this order */

afi++] += 3;
means

a[i] = a[i]+3;
i = i+1; /* in this order */

BUT

ali++] = afi++] + 3;

is undefined { two occurrences of i++ in the same

expression)

Level 16

- Comma operator

CONCLUSION

great power at your fingertips
easy to make mistakes

OPERATORS 14

relational and logical operators returning
integers
if(a&b == c) /*legal : means a&(b==c) ¥
side effects: use sparingly
never use twice in an expression a
variable affected by side effects, except if
expression is "logical” one (&&, ||)
b + (b=c) /*undefined:
not even b + +(b=c) */
i-- && afij=b /* OK because && */
multiple unary operators
precedence problems : use manuals and
parentheses

STATEMENTS |

STATEMENTS
SIMPLE STATEMENTS
expression ;
mean:

evaluate expression

discard the result
USEFUL ONLY FOR SIDE EFFECTS

inti,;

i=];

i++;

i-j; /* legal but useless : no side effects®/

func(i,j); /* legal, even if func returns a value
useful or not 2 */

empty statement

Ex:

if (i==1})

else
j++;

GREAT OPPORTUNITY FOR MISTAKES

COMPOUND STATEMENTS

STATEMENTS 2

{
definitions and declarations;
statement list;
}
{ inti,;
for (i=1,j=n ; i<=n/2 ; i+3,J-H
float temp;
temp = a[il;
ali] = af];
a[j] = temp;
}
}
/* NOTE : compound statements terminated by
* } not by ;
*/

- Compound statements can nest;

- Variables defined in a compound statement hide
definitions of variables of same name outside;

- Functions bodies are a single compound
statement;

COMMENT: definitions in compound statements
should be used to keep variables
definitions close to the place where
they are used: readability

R

STATEMENTS 3

FLOW CONTROL

- conditional (2 statements)

- loops (2.5 statements)

- transfer of control (3 statements)

THE if STATEMENT
if (expression) statement 1

if (expression) statement 1
else slatement 2

expression : must be of any scalar type.
If non 0,statement 1 is executed
If 0, statement 2, or nothing if else
missing

statement 1 and statement 2 must be

one single statement possibly a compound
one) .

)]
){j=1;k=n}/*noteno;*

STATEMENTS 4

WARNING
intk=0,j=1;
floata=1.0;

if (k)
if{ja=3.0;
else
a=20;

WHAT IS THE VALUE OF a
associativity:

if (e?) if (e2) s1 else s2
means

if(e7) { if (e2) s1 else 55} YES
or

if (en) {if (e2) s7} else s2 NO

USE COMPOUND STATEMENTS EVEN IF NOT
NEEDED, TO BE SURE;

or
ALWAYS USE else, POSSIBLY WITH A NULL
STATEMENT

STATEMENTS 5

THE switch STATEMENT AND break

switch (expression) {
case constanty :statementst;

case constanto :statements? ;

default : statements ;

}

- constant labels must be constant (known to the
compiler)

- expression must be of any scalar type;

- execution jumps to the label whose constant value
is equal to expression, or to default if none
matches;

_if there is no default and expressiondoes not
match any label, nothing happens (poor style);

- execution does NOT end at the next label, but
continues to the end;

_the break statement interrupts the flow of
execution and jumps to the end of the switch.
Normal way of ending a case

WARNING: flow from one case to the other is

dangerous. Should be used ONLY when many

cases require the same action

_switch (expression) {
case constanty :

case constanto :statementsy ;break;
case constant3 :statementsg ;break ;

default : statements ;

STATEMENTS &

THE while AND do STATEMENTS
while (expr) statement

means:

loop:
evaluate expr
if non O perform statement
goto loop

- expr any scalar
- statement a single (possibly compound)
statement

WARNING : common mistake
while (expr); statement;

. do statement while (expr);

/* please note the final ; */
| ike while, but statement executed before
testing
USUALLY NOT NEEDED

Example: refer to lecture 1

o~

STATEMENTS 7

THE for STATEMENT

/* read 10 elements from input and copy them
* on output, summing them in the meantime
* stupid problem with stupid solution
*

/
main()

{

inti,n,s;

for(i=0 , §=0 ; i<10 ; i++, S+=n) {
scanf("%d",&n);
printf("%d"”,n);

}

printf ("Sum is %d",s);
}
In general

for (expri; expr2 ; expr3) statement
means (almost)

expr1 ; /* evaluate as statement */
while { expr2) {

statement

expr3 ;

STATEMENTS &

Not like FORTRAN DO or Pascal for
(fixed number of iterations with constant
increment of the loop control variable)

for (i =/nit; i <= end ;i += incr)
is same as FORTRAN
DO label 1=init,end,incr

WHY NOT USING while?
Concentrates in a single place all the loop
control information.

/* this function computes the factorial of
* an integer; it uses for as a FORTRAN DO

*/

long int factorial(int val)

{
int j, fact=1;
for(j=2 ; je=val ; j++)

fact *=j;

return fact;

}

BUT ALSO

STATEMENTS 9

/* this function reads a string of digits and
* converts them to an integer. Stops at
* first non-digit
*
#include <stdio.h>
#include <ctype.h>

int make_int(void)
{

int num = 0, digit;
for(digit = getchar() ;
digit != EOF && isdigit(digit) ;
digit = getchar())
num *= 10;
num +:= digit -'0';
}
return num;

}

FINAL REMARK
equivalence with while broken only in the following
case

for(;;)
means
while (1) /* while() would be incorrect */

Both used for infinite loops

STATEMENTS 10

COMMENT
each of the above is a single statement:
for{...;.ccien)
while(....)
if (...)
a=b;
else {
b=c; d=e;
}

BUT DANGEROUS: what if you add a statement
before the above if ?

Usage of {} recommended for clarity and
robustness if depending statement is complex.

for(...;eeeejee{
while(....){
if (...)
a=b;
else {
b=c; d=e;
}
}
}

STATEMENTS 1t

TRANSFER OF CONTROL
Theoreticians say : don't use it (PASCAL)

Dangerous
To be used only in anomalous situations

(leave processing in case of error)

C needs it also to jump out of switch cases
CONTROLLED JUMPS :break AND continue
break;

already met. Jumps outside the surrounding
switch or for or while

for { expri ; expr2 ; expr3 {

if (error condition) break;

}

WARNING : exits from the innermost only

STATEMENTS 12

continue;

for (i=-10; i<=10; i++){
statement1;
if (i==0) continue;
statement2,/* skipped if i==0 */

When executed, jumps to the end of the
surrounding tor or while, and starts next
iteration

UNCONTROLLED JUMPS : goto

float a[100][100];
/* filt a */
/* take square roots */
for (i=0;i<100;i++)
for(j=0;j<100;j++){
if(a[i][j] < 0) goto error,
} afi](j] = sart (a[i]{il);

error: printf("%s %d %d", "negative at", i,j);
exit (1);

break would not work because exiting from 2 loops

STATEMENTS 13

",n

labels: any string followed by ":

- do not need to be pre-declared
- must be part of a statement
---at end of compound statements
label_at end : ; /* ; required®/
}

- visible only from inside the function where
they are used

ALMOST NEVER USED

