INTERNATIONAL AToMICc ENERGY AGENCY
! @ P UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LC.LP, P.O. BOX 586, 34100 TRIESTE, ITALY, CanLE: CENTRATOM TRIESTE

@ ©
UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION \ g

T

INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

/0 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS 3éttd TRIESTE OTALY) VIA GRIGNANG, § (ADRIATICO PALACE} P.0. BOX He TELEPHONE BOINST] TELEFAX 0O2ISTS TELEN #00W APH |

SMR/474 - 8

COLLEGE ON
"THE DESIGN OF REAL-TIME CONTROL SYSTEMS"
1 - 28 October

PROGRAMMING IN C LANGUAGE
{Parts 5 & 6)

A. NOBILE
International Centre for Theoretical Physics
Strada Costiera 11
34100 Trieste
Italy

These are preliminary lecture notes, Intended only for distribution to participants.

Arrays & pointers 1 Arrays & pointers 2

ARRAYS , POINTERS, STRINGS
WARNING: array size must be constant

THE REAL THING !
f(int m){

C intertwins closely arrays and pointers char var_sized_array[m]; /* FORBIDDEN ¥/

C handles strings as character arrays
Like Pascal? (bleah) NOT QUITE

MULTIDIMENSIONAL ARRAYS

ARRAYS
int t_d [2] [3];

collection of variables of same type
[] associates left to right

double ar{1000]; means (t_d [2]) [3]
' can read:
ar is a 1000 elements array; third element of second element oft_d is int
the elements are denoted ar[0),ar{1}...ar[999] therefore
each of them is double second element oft_d is array of 3 int
COMMENT: declaration by example: t_d is array of 2 arrays of 3 int
can read:
1000-th element of ar is double (and the other too!) Valid elements:
WARNING : no way of specifying a range not 1_d[0]{0] t_d[0][1] t_d[0][2] t_d[1][0] t_d[1}{1]t_d[1]{2]

starting from 0
t_d[o] t_d[1]

WARNING : ar[1000] is NOT an element of the
array! ar{999] is the last one !

Arrays & pointers 3

WARNING
No way to refer to a column
Memory storage BY ROWS
- opposite of FORTRAN
- important to remember if using pointers
Seldom used

WARNING
: What is the meaning of t_d[0,1] ?

COMMENT
arrays of anything (arrays of arrays special case)

INITIALIZING ARRAYS
ALREADY MET

inth=1:
int *pi = &b;

ARRAYS
int a[6] = { 1, 0, '4s 4! 2! 7 };

ANSI : OK
Old C : only if static or global array (see later)

Amays & pointers 4
BUT ALSO (QUITE USEFUL)
intafl={1,0,-4,4,2,7}; /* assumed size */
The compiler will make a an array with 6 elements

MULTIDIMENSIONAL

intt df2][3]={{0,1,3},
{'1!416}
}s

OR

intt dij[38]={ {0,1,3},
{'1!436}
}s

/* array of arrays : second dimension required */

ARRAYS AND POINTERS
int ar[5], *ip;

ip = &ar[0]; /* nothing new */

Armays & pointers 5

>>>> pointer arithmetics
FUNDAMENTAL

ip + 1 equals &ar[1]

if ip points to an element of an array of any type,
ip+1 points to the next one, and so on
- pointers are not integers

- pointers are not memory addresses
int ar[5], i;

for (i=0 ; i<5 ; i++) arfi] = 0;
equivalent to

int ar[5], *ip;

for (ip = &ar[0] ; ip < &ar[5] ; ip++) *ip = 0;

* legal: using the address of a[5] is legal even if

* a[5] does not exist

*

Is it better?

IF arrays are accessed sequentially,
pointers faster except if optimizer very good.
(Not true on vector machines, helas)

ONLY way of passing variable size arrays to
functions

Arrays & pointers 6

IN FACT ARRAYS DO NOT EXIST
C recognizes an array only

- in declarations

- as an operand to sizeof

long int arr[4], s;

s = sizeof arr; /* returns 16 */

IN ALL OTHER CONTEXTS,
ar is a pointer to &ar[0]
arfi] is synonimous of *(ar+i)

BUT : array names are not pointer VARIABLES!
float ar[5], *p;

p = ar ; *legal : p=&ar[0] */
ar = p ;/* illegal: array names are "constant

pointers” */

&p = ar ;/*illegal: &p is a pointer value not a
variable*/

ar ++ ;/* illegal: array names are "constant
pointers "*/

ar[1] = *(p+3) ; /*legal*/
ar[1] = *(ar+4) ;/* legal, but crazy*/
p = 5[ar] ; / AARGHHH ... legal means ar[5]*/

Armays & pointets 7

MORE ON POINTER ARITHMETICS

int ar[20], *p1, *p2, br[10], *q;

p1 = &a[10];

p2 = &a[15];

q = &br[5);

p1!=0 Mtrue, legal*/

p1 < p2 Mlegal*/

p1+5 == p2 /* pointer +integer */
p2-5 == p1 /* pointer -integer */
p2-p1 ==5 /* pointer - pointer */
pl1+p2 * illegal */

2*p1 /* illegal */

pl++ ; /* now p1 points to a[11] */
pl <q; /* result undefined */
q-pl /* result undefined */
q = pi /* true, legal */
q!=100 /* illegal */

- No operations between pointers to different types
-< » <= >»>= - allowed only between pointers to
different element of same array or structure

(work anyhow...)

- tests for equality allowed for arbitrary pointers of
the same type

- comparison with int 0 allowed (test for NULL
pointer)

Asrays & pointers 8

PASSING ARRAYS TO FUNCTIONS

- Always interpreted as pointers
- Array notation allowed

int sum_of_elem(int ar[] , int num_of_elem){
inti,s=0;

for(i=0 ; icnum_of _elem ; i++)
s += arfi] ;
returns;

}

int sum_of_elem(int *ar , int num_of_elem){
int *p, s=0;

for(p=ar ; p < ar+num_of_elem ; p++)
S += *p;
return s;

}

int sum_of_elem(int *ar, int n_elem){
int *p, *pend , s=0;

for(p=ar, pend=ar+n_elem; p < pend ; p++)
S +=*p;
return s;

Arrays & pointers 9

OR EVEN

int sum_of_elem(int ar[100] , int num_of_elem){

inti,s=0;

for(i=0 ; i<num_of_elem ; i++)
s += ar[i];
return s;

}

are exactly the same. (Third one different if
compiler inserts array subscript checking)

Moreover

int sum_of_elem(int ar[])}{
int n,i,s;

n = sizeof ar / sizeof(int) ;
for (i=0 ;i < n; i++)

WOULD NOT WORK : sizeof ar is sizeof (int *)
Not even if ar declared with a size

int sum_of_elem(int ar[100])

Arrays & pointers 10

STYLE COMMENT

C ugly style
int sum_of_elem(int *ar, int n_elem){
int*p, *pend, s=0;

for (pend=(p=ar)+n_elem; p<pend; s+= |

PH+) ;
return s;
}
DOES WORK

PASSING MULTIDIMENSIONAL ARRAYS

int f(int a[][5])
/* Note :second dimension requested */

{ ..alilljl..}
or

int f(int (*a)[5])
/* pointer to a[0], which is an array of 5 ints */
{oeee (*a#D)[j] ...}

or

Armays & pointers 11

int f (int **a)
* pointer to a[0], which is an array, therefore
* a pointer to a[0}[0] . COMMON FORM
/
{ ..*((intMa+i*5+])....
/* any information about 5 lost */

or better
int ff(int **a, int size){

-t (intY)a + i*size +) ...
}

WHY C PROGRAMMERS AVOID
MULTIDIMENSIONAL ARRAYS ?

Arrays & pointers 12
Example
Sorting: bubblesort

/* sort an array of ints in ascending order */
#define FALSE 0
#define TRUE 1
void bubble_sort(int ar[], int size){
int j, temp, sorted=FALSE;
while (Isorted){
sorted = TRUE; /*assume it's sorted */
for (j = 0; j < size-1; j++){
if (ar[i]>ar[j+1]) {
sorted = FALSE;
temp = arj];
ar[j] = ar[j+1];
ar[j+1] = temp;

}

}
}

with pointers

Amays & pointers 13

/* sort an array of ints in ascending order */
#define FALSE 0
#idefine TRUE 1
void bubble_sort(int *ar, int size}{
int *pj, temp, sorted=FALSE;
while (!sorted){
sorted = TRUE; /*assume it's sorted */
for (pj = ar; pj < ar+size-1; pj++){
if (*pi > *(pj+1)) {
sorted = FALSE;
temp =*pj ;
*pj = *(pj+1) ;
*(pj+1) = temp;

Arrays & pointers 14

STRINGS

arrays of char
terminated by a null ("\0')

String constants
everything in quotes
" this is a string”

Compiler adds the terminating "\0*

NO specific string constructs
-> hard programming
-> very efficient code

-> library essential
Defining a string variable

char str1[10];

char str2[] = "string"” ;/* compiler makes str2 7
elements , 6 of string + null
*

or

char str2[] = {'s",'t",'r",'",'n",'g","\0'};

char str3[10] = "one" ;/* Ok */

char str4{3] = "one" ;/* wrong, no room for null
*/

BUT ALSO (OFTEN USED)

char *s="new string";

Amays & pointers 15

- creates a string constant containing the vaiue

"new string"
- creates a character pointer (s)
- initializes s with the address of the constant

DIFFERENCE

str1 = p; /* illegal */
s = p; /* legal; the constant string is lost */

STRING ASSIGNMENT

- strings are arrays or pointer to arrays
- arrays take value by filling -> COPYING

- assignment to pointers only

char carray1{10], carray2[10];
char *p1 = "10 spaces";
char *p2;

carray1 = "not ok" ; /*illegal: cannot assign to
array name */

carrayifi] ='a"; /*OK*/

carray1[2] = "\0'; /*now carray contains "a" */

carray2 = carray1; /* illegal */

p1 ="0K"; /* legal; creates new string and
puts its address in p1 ¥

pi[5] = ‘¢’ /* wrong */

p1[1]='N’ /* should transform OK in NK :

could not work, dangerous */

Armays & pointers 16

p2 = "NO" / type mismatch */
p2 = uyesn

STRINGS vs. CHARS

charc ='a’;
char*s ="a";

*s = 'b’;

s = "b"; / illegal */
s="b"; " OK?¥
s="b"; /*illegal ¥/

DO NOT CONFUSE INITIALIZATION
WITH ASSIGNMENT- with any type
float f;

float *pf = &f ; /* OK */

BUT

*pf = &f ; /illegal */

Armays & pointers 17

COMPARING STRINGS

char arr1f]="str1" , arr2[]="str1";
char *s1=arr1, *s2=arr2;

if (s1 == s2)....
if (arr1 == arr2)

test fails, because compares character pointers:
equalt if they point to same object, not if they point

to objects containing same value
if (*arr1 == *arr2)
wrong: compares only the first character

/* function to compare strings
* return TRUE if equal
*
int str_eq(char *s1, char *s2){
while (*s1 == *s2 }{
if(*s1 =="0")return 1;

S1++;
S24+;
}
return 0;

Armays & pointess 18

STRING COPY
char st1{20] , st2[}="wow!";
st1 = st2 ;/* illegal */

strepy(st1 , st2) ; /* library function only way */
void
strcopy(char s1[], char s2[]){

inti;

for(i=0 ; s2[i] ; i++)

s1fi] = s2[i];

s1[i] = "\0';

}

void
strcopy(char *s1, char *s2){

while (*s2) *S1++ = *S2++;
*s1 ="0';
}
- while (*s2) means while (*s2 != 0)
- *$2++ right associative: *(s2++)
use current value of s2, then increment s2

- 81 and s2 are copies of the arguments passed,
can be modified safely

- their values are the addresses of the arguments

Arrays & pointers 19
being passed, that are actually modified

- return not needed if no value returned

BETTER

void
strcopy(char *s1, char *s2){
while (*s1++ = *$2++) ;

}
ARRAYS OF POINTERS

Structyres |

STRUCTURES AND UNIONS
To group heterogeneous objects:

name
social security number
date of birth : month day year

struct vitalstat
{ charvs_name[19], vs_ssnum[11] ;
struct {
short month, day, year;
} vs_birth_date ;
} vs1;

struct vitalstat vs2;

- declare structure tagvitalstat
- declare variables vs1 vs2 of that type

- struct tag name { list of declarations}
- struct components can be other structs

WARNING : but of different types
- tag name is optional

Structures 2 Structures 3

ACCESSING ELEMENTS OF A STRUCTURE
ARRAYS OF STRUCTURES

strepy(vs.vs_name, "John Smith");

strepy(vs.vs_ssnum, "035400245"); Arrays of anything!

vs.vs_birth_date.day=17;

vs.vs_birth_date.month=9; #include <stdio.h>

vs.vs_birth_date.year=1956; /* reads in two complex arrays */
main()

variable name .component name {

typedef struct { float re,im} Complex;
if (vs.vs_birth_date.month > 12 ||
vs.vs_birth_date.day > 31) Complex vi[10], v2[10];
printf ("lllegal date. \n");
for (i=0; i<10 ; i++)
Structure components are normal variables scanf(” %f %f %f %f ",
&v1i[il.re , &vi[il.im, &v2[i].re, &
v2[ilim) ;

OR

Structures 4 Structures 5

#include <stdio.h>

main() POINTERS TO STRUCTURES
{
struct complex { float re,im} ; sinclude <stdio.h>
typedef struct { float re,im} Complex;
struct complex v1[10] , v2[10] ; /* placed here it is GLOBAL for this file */

for (i=0;i<10;t++) /* reads in two complex arrays
scanf(” %f %f %f %f ", _ * and computes their dot product
&v1i[il.re , &v1[i]l.im, &v2[i]l.re, & %/
v2[il.im) ; main()

} {

Complex v1{10], v2[10];
double dotprod(Complex *v1, Complex *v2,
int n);

for (i=0; i<10 ; i++)
scanf(" %f %f %f %f ",
&vifi].re , &v1[il.im, &v2[il.re , &
v2[il.im) ;
printf (" %f ", dotprod(v1 , v2, 10));
}
double
dotprod(Complex *v1, Complex *v2, int n);
{
double d=0;
Complex *vend=vi+n;

for(; vl < vend; vi++ , v2++)
d += (*vi).re * (*v2).re - (*v1).im * (*v2).im ;

return d;

Structures 6

(*v1).re UGLY. CAN BE TERRIBLE
struct b { int data;

}
struct a{ struct b * other;

struct a *pa;
(*(*pa).other).data
NEW OPERATOR ->

p->x IS (*p).x : pa->other->data

dotprod(Complex *v1, Complex *v2, int n);

{
double d=0;

Complex *vend=vi+n;

for(; vl < vend; vi++, v2+4)
d += vi->re * v2->re - v1->im * v2->im ;

return d;

Structures 7

OPERATIONS ON STRUCTURES

- take a component (.)
- take the address { &)
- take the size (sizeof)

ANSI ONLY:

- assignment:

struct complex z1,22;

z1=22;

- passing as argument to functions

double cprod (Complex z1, Complex z2){
return (Z1.re * z2.re - z1.im * 22.im)

}
- being returned by a function

Complex csum (Complex z1, Complex z2){
Complex s;

s.re = zl.re + z2.re;
s.im = z1.im + z2.im;
return s;

}

NOTE : Old C allows passing and returning
pointers to structures !

Structures 8

COMMENT : In Old C very wide use of pointers to
structures.

LAYOUT OF STRUCTURES IN MEMORY
Seldom useful; sometimes, with pointers...;

- Components are in sequential order, but not
necessarily contiguous (holes -padding- possible
to align objects to hardware required positions)

- No padding before first component: address of
structure is address of first component

SELF-REFERENTIAL STRUCTURES

LINKED LISTS

Structures 9
Each node declared

struct list_node{
int data /* or whatever */;

struct list_node *next;

}

- Contains a pointer to itself (allowed)

- list_node known as a structure tag as soon as
encountered in first line , therefore
struct list_node * understood;

- example of partial or incomplete declaration:
declare an tag to refer to a function, then refer
to it through pointers; complete declaration before
declaring any variable

Example:

struct s1 ; *incomplete */
struct s2 {
int something;
struct s1 * cross;
}
struct s2 {
float something_else;
struct s2 *cross2;

Struciures 10

- typedef WOULD NOT WORK
(ONLY place where tags NEEDED)

typedef { int data;
List_elem *next;
*wrong: List_elem unknown */
} List_elem;/* List_elem known only after this */

WARNING:
partial declaration is just obtained by mentioning

name:

struct abe{ struct xyz *p}; /*struct xyz now
partially declared */

NEVER USE, VERY DANGEROUS

Suruciures 11

* this program creates a linked list and
* prints it out following the pointers

*

/

#include <stdio.h>
struct list_ele{
int data;
list_ele *next;
}ar{10];
main()

{

struct list_ele *lp;

ar[0].data = 5;

ar[0].next = &ar{1];

ar[1].data = 99;

ar{1].next = &ar[2];

ar[2].data = -7;

ar[2].next = 0; /* null pointer: end of list */

Ip = ar;
while (Ip) {
printf (" contents %d\n", Ip->data);
Ip = Ip->next;
}
exit(0);
}

- move from one element to the next following
pointers
- array structure not used at all

Structures 12

DYNAMIC OBJECTS
Lists are typical example: array structure not used.

add node to the end of a list:
create a node
put new data in its data component
put a pointer to the new node in the (nuli)
next component of the last element
put a NULL pointer in the next component of
new node

delete a node from the end of a list:
detach the node from the list, putting a NULL
in the next component of previous node
delete the node

CREATING an object
- obtain from the system enough memory
to contain a copy of the object;
- handle that memory as if it was an object

struct list_ele *p;

|_sz = sizeof(struct list_ele);
p = (struct list_ele *) malloc (1_sz);

malloc (size) requires to the system to provide

a block of size bytes, and returns a pointer to this
block (NULL if memory not available)

(struct list_ele *) is a castthat transforms the

pointer returned by malloc int a pointer to list_ele.

p->data = new_value;

Structures 13

p->next = NULL;
last->next = p; /* assuming last points to the
last element
*

COMMENT:

ANSI says malloc is of type void *

meaning a pointer that can be casted to point to
any type;

Old C says malloc is char *, but that it returns a
value that can be casted to point to anything...;

In both cases casting does not cause any change
in the returned pointer.,

p useless:

last->next = (struct list_ele *) malloc(l_sz);
last->next->next = NULL;

last->next->data = new_value;

last = last->next; /* if you need it again */

Deleting an object:
- Only if object created by malloc;
-free (p);

Suructares 14

Deleting the first element of a list

struct list_ele *list;

if (list) /* if list empty, do nothing */

{ struct list_ele *temp;
temp = list;
list = list->next; /*first node unlinked*/
free(temp);

}

Would the above be good as the body of a
function?

WARNING:

struct list_ele *list, *list1;
list1 = list;
if (list) /* if list empty, do nothing */
{ struct list_ele *temp;
temp = list;
list = list->next; /*first node unlinked*/
free(temp);

list1 -> data .../* AAAARGGHHHH */

DANGLING POINTERS problem

Suuciures 15

WARNING 2

while (something{
allocate memory
use it
forget it (without freeing)
}
causes difficult to trace problems
(memory can get exhausted depending from
path in the program ,data, etc.)

Structures 16

MORE EXAMPLES ON LISTS

/* remove last element; if only one element,
* list pointer cahnged to NULL

*/

#define NULL O

void
remove_end(struct list_ele **list){
/* we get the ADDRESS of the pointer to the
* first element, because we could need to
* modify it if there is only one element in
* the list
*
list_ele **previous = list, *curr = *list;
/* "previous” is a pointer to the pointer used
* to arrive to the element to which "curr”
* points: used to modify this pointer when
* we delete *curr
*/

if (! curr)return ; /* list empty, do nothing */

while (curr->next){ /*curr not last */

previous = &curr->next ;

/* "previous"” points to the

* pointer used to access next

* element

*

curr = curr->next ;

/* access next element */
}
free (curr); /* delete last element */
*previous=NULL;
/* make pointer to it NULL */

Swructures 17

/*Assume list is ordered and insert in order

* return NULL if failed

* return pointer to beginning of list if successful
*/

#define LSZ (sizeof struct list_ele)

#define NULL O

struct list_ele *
add_ordered(struct list_ele * list, int newval){
struct list_ele * temp, *curr;

if (list == NULL) { /*empty list case */
if (list = (struct list_ele *) malloc (LSZ);){
/* if allocation successful, fill node */
list->data=newval;
list->next=NULL
return list;
lelse{
return NULL;
}
}

/*normal case */
curr = list;
while (curr->next &&
curr->next->data < newval)
curr = curr->next ;/* skip */
if (temp = (struct list_ele *}malloc{LSZ)){
/* if new node allocation OK
*illit ...
*
temp->data = newval;
/* link with end of list ... */
temp->next = curr->next;

Suuciures 19

/* and link with previous part of list */ UNIONS
curr->next = temp;

Sicuciures 18

Like structures, but components share the same

return list; memory: only one can be active at any time.
} else {
return NULL,; Like Fortran EQUIVALENCE, Pascal variant record
}
} union reint{
float re;
inti;
}

reint.re = 2.0; /* reint.int becomes undefined */

reint.i = 1; /* reint.re becomes undefined */

NORMALLY used inside a struct, togeteher with
another variable holding an indicator,

struct {
int type;
union { float r;
int i;
}v;
} var;

var.type = 0;
var.v.r = 1.0;
var.type = 1;
var.v.i = 7;

if (var.type == 0) x=var.v.r;

Stroctures 20

Bit fields
Not available on your compiler

struct {
a:3;

b: 7;

c:

7,
2:
}s;

s.a is 3 bits wide;
s.b is 7 bits wide, and contiguous to s.a
s.c is 2 bits wide, contiguous to s.a

-- Each compiler can arrange bit fields in increasing
or decreasing order in a computer word:

-- If a bit field would cross the boundary between
two computer words, it is shifted to a new word

-- No bit field can be longer than a computer word
USAGE : sometimes to save memory

often to manipulate bit-sized objects
{ hardware)

Storage classes.Functions 1

SCOPE RULES

#include «stdio.h>
typedef struct {re,im} Complex;
Complex arr[100];

main(){
Complex x,y; /* OK : Complex global */
float modx = 0.0, mody = 0.0;
inti;
for (i = 0; i<100; i++){
scanf(” %f %f", &arr]i].re, &arr[il.im);
if (mod() > modx)
/* wrong: mod() unknown
* assumed int
*/
x = arrfi];
if (mod() <« mody)
=arr[i];

}

float

mod(void){
return(arrfi].re*arr{i].re + arrfil.im*arr{i].im);
/* WRONG : i unknown ¥/

i defined when mod called, but its name unknown
outside function main

SCOPE of identifiers: where a NAME can be used

Storage classes.Fonctions 2

DIFFERENT BUT RELATED PROBLEM

void
f1(void){
inti;
f2();
}
void
f2(void){
printf ("%d",i);/*WRONG */
}

- i created when f1 called
deleted when {1 exits

- when {2 called from main, i NO LONGER EXISTS

STORAGE CLASSES: when are variables created,
deleted, initialized, etc.

SCOPE rules must be consistent with storage
classes: non-existing variables cannot be named
- Pointers allow exceptions { AARGHH)

Storage classes.Funcuons 3

STORAGE CLASSES

1) auto : normal declarations INSIDE compound
statements.

Created and initialized before execution

of the compound statement, deleted at its end;

SCOPE: from the declaration point to the end of the
compound statement;

main(}{
int q[100];
long int s;
long int sum(int arr[], int n);

{
int i=0 ; /* | created and initialized */
for (; i<100 ; i++) scanf("%d", &q[i]) ;
}
* i no longer exists and no longer
* accessible */
s = sum(q, 100);
}
long int
sum (int arr[], int n){
long int s = 0;/* s created and initialized */
inti; /i created */

for (i=0 ; i<n ; I++) s += arr][i];
return (s) ;/* i, s deleted */

Storage classes.Functions 4

NOTE : the body of functions is a compound
statement!

NOTE: the closest definition is the one that is
considered (hides external ones)
Ex.: in the above

{
int s=0 ; /* s created and initialized
* external s hidden
*
for (; s<100 ; s++) scanf("%d", &q[s]) ;
}

Storage classes.Functions §

2) extern : definitions outside any function .
Created when program starts, survive till program
end. Accessible from other files, through suitable
allusions.

SCOPE:

- for a definition, the file in which the definition
occurs, from the definition to the end:

- for an allusion :

-—-if the allusion is in a compound statement, the
compound statement;

---if it outside any function, the file from the allusion
to the end;

WARNING:

storage class -> variable

scope -> name

extern variable can have local name

Storage classes.Functions 6
Eile a.c:
#include <stdio.h>
struct complex {float re,im} ;
defines the tagcomplex : global to the file/
struct complex carr[10];
/* defines an extern array of 10 complex */
extern struct complex big_x;
{* declares big_x as complex , defined in
* another file; allusion
*
main(){

extern int fun(int i);

extern int errcode;

/* allusions */

void test(void);* prototype*/
struct complex 2;

/* struct complex has file scope */
if(carr[1].re==0.0) errcode=1;

/* carr has file scope */

}
void
test(void){
if (carr[0].re > 100.0) {
errcode=2;
/* wrong : errcode has block scope */
big_x.re=carr[0].re;
big_x.im=carr[0].im;
/* big_x, carr have file scope */

Storage classes.Functions 7
Fileb.c

struct complex {re,im};

extern struct complex carr[10] ; /*allusion */
int errcode=0; /definition of errcode */

int fun(int i){

Y*definition of fun */

COMMENTS:

- all the function names are by default extern

- types and tags have no storage associate to
them->no allusions-> can be local to a
block or global to file;
#include to share among files (ALWAYS!).

- allusions are identified by the keyword extern;

Storage classes Functions 8

3) static

Two uses:
3.1) Variables defined inside a block, but created

and initialized at program start and deleted at
program end; keep their value from call to call
(unlike auto)

SCOPE: the compound statement in which
they are defined.

int ff(int n){
static int first=1;

if (first){
/*something to be done on first call */
first=0;

}
auto would not work (WHY)

3.2) Variables AND FUNCTIONS defined like
extern ones, but whose SCOPE is file only (
cannot be alluded)

VERY USEFUL, HIGHLY RECOMMENDED
PROTECTS AGAINST name clashes

INFORMATION HIDING

Storage classes. Functions 9

#include <stdio.h>

/* basic data store not directly accessible

* from outside
*

static struct vsstat *list_of_names:

/* public procedures */
void
addname(char *name){

struct vsstat *
search(char *name){

/* private procedures

* NAME CLASHES impossible !
*/

static void

compact_list(void){

static struct vsstat *
create_node(char *name){

static void
error (int errcode){

Storage classes.Functions 10 Storage classes.Functions 11

4) register TYPE QUALIFIERS (ANSI ONLY)

Like auto, but suggests to the compiler to put the const

variable in a hardware register if possible.

Can improve optimization a lot on old compilers. const float m=4.0;

Can inhibit it with optimizing compilers const int *pci; /* pointer to const int */
- Since registers are limited, the first variable m = 5.0; /*error */

declared register has higher priority for allocation, pci=&a; /legal/

and so on; *pci=a; /error*/

- You cannot take the address of a register variable
- Can be used on function arguments

int arr[100] , k; float sum(const float arr[], const int n);
{ registerint *pi, s=0; volatile
for (pi =&arr ; pi < &arr[100] ; pi++)
s += *pl; A volatile variable can be modified by the
k=s; hardware, outside control fom the program.
} THEREFORE, any store or load operation

requested by the program MUST be actually
performed (no optimiziation allowed)

Memory-mapped |/O: output by
writing to address 500

char a[100] ;

inti;

char *out = (char *) 500 ;

for (i=0 ; i<100 ; i++) *out = afi] ;

most optimizers would translate into

*out = a[99] ;

Storage classes.Functions 12

BUT

char a[100];

inti;

volatile char *out = (volatile char *) 500;
for (i=0 ; i<100 ; i++) *out = a[i];

COMMENT: can be combined

extern volatile const int clock;

Storage classes.Functions 13

FUNCTIONS

Glossary

declaration : the point where a name gets a type
associated with it

definition : a declaration that moreover associates
some memory with the name. For functions, it is the
place where you give a body for the function.

formal parameters
formal arguments : the names with which a function
refers to its arguments

actual parameters

actual arguments : the names or values used when
the function is actually called -> the vaiues that
formal parameters have on entry to the functions.

Storage classes.Functions 14

FUNCTION DECLARATION

Functions must be declared before being called

ANSI style: function prototype

char * isprint(char ¢);
static struct vsstat * createnode(char * name);

-Optional static; if not present, extern storage
class is assumed

- function type (if missing, int assumed)

--- cannot be array

--- cannot be function

--- CAN be pointer to array or pointer to function

- function name

- list of declarations of formal arguments, in
parentheses

--- like other declarations except:

--- only legal storage class is register;(ANSI)

--- an array declaration is interpreted as a pointer
to an object of the same type of the array
elements;

--- a function declaration is interpreted as a pointer
to a function;

--- no initializers

Swrage ¢lasses Funcions 15

IMPORTANT USE:
double sqrt{ double x);
z=sqrt(1);

The compiler recognizes type mismatch and
performs convertion of 1 to double

struct vsstat *add_to_list{ char * nhame);

p = add_to_list(1.0);

The compiler recognizes type mismatch and signals
error

Oid C style

char * isprint();
static struct vssstat * createnode();

No information on arguments
p = createnode (1.0) ; /* AAARRGHHH */

Storage classes. Functions 16

FUNCTION DEFINITION

ANSI style

function prototype as above
function body (compound statement)

int factorial(int n)

{
register long int p=1;
register inti ;
for (i = 2; i<=n; i++) p *= i;
return p;

}

Old C style (accepted also by ANSI)

static (optional)

type name (list of formal arguments names)
formal arguments declarations

function body

int factorial (n)
int n;

{
}

- argument declarations: as in prototypes, plus
--- char and short are treated as int + conversion
--- float are treated as double + conversion

Siorage classes.Functions 17

DEFAULT CONVERSIONS

void a_func(¢, x)
char c;
float x;

is handled as
void a_func(ext_c,ext_x)

int ext_c;
double ext_x;

{
charc;
float ext_x;
¢ = (char) ext_c;
x = (float) ext_x;
}

Storage classes Funclions 18

CALLING FUNCTIONS

- evaluate expressions passed as arguments;

- convert values according to function prototypes if
any or according to default conversions;

- use these values to initialize formal arguments

- henceforth formal arguments behave like other

local variables

void called_func(int, float);

main(){
called_func (1, 2*3.5);
}

void called_func (int iarg, float farg){
float tmp;
tmp=iarg * farg;

CALL BY VALUE : a copy of the value of the actual

argument is passed, not the actual argument itself
-> function cannot modify the actual arguments
(unlike FORTRAN, Pascal var arguments)

Storage classes.Functions 19

called_func(int, float);

main(){
inti=1;
called_func (i, 2*3.5);
}
void called_func (int iarg, float farg){
float tmp;
tmp= iarg * farg;
iarg ++ ; /* no effect */
}
CALL BY REFERENCE

passing the address of the actual argument.
Function MUST be written to accept it

called_func(int *, float);

main(){
inti=1;
called_func (&i, 2*3.5);
}
void called_func (int *iarg, float farg){

float tmp;
tmp= *iarg * farg;
(*iarg)++ ; /* changes i */

Storage classes.Funciions 20
Arrays cannot be passed by value:

void func(int arr[]);

int arr[10];
func(arr);

is identical to
void func(int *arr);

int arr[10];
func(&arrf0));

Functions cannot be passed by value (WHAT?)

EXCURSUS : pointers to functions
Often used !

function name is constant pointer to function
- like array name

int f(int n);

int op(int func()); /* interpreted as
* int op (int (*func) ()
* DEFAULT CONVERSION
*

int (*pf)() /* pf pointer to function returning int */

pf=1£;/* pf = & wrong ;
*pf=1() wrong ;
* pf = &f() wrong ;
*/

Storage classes. Functions 21

op(f); /* same as op(pf) */

Structures are passed by value (ANSI)

Storage classes Functions 22

DEFAULT CONVERSIONS
I no function prototype used

(Old C form of declaration or no declaration at all)
short and char converted to int;

float converted to double;

WARNING : mixing prototyped declarations with
non-prototyped definitions can cause problems

RETURNING FROM FUNCTIONS

void a_func(int i, float *s){
if(!i) return ;
*S +4 ;

}

- return
- flow through the end

RETURNING A VALUE

double squareroot(double x){
double s;

if (X <0.0) return 0;
s =/* compute square root */
return s;

Storage classes.Functions 23
- type of returned expression automatically

converted to type of function;

WARNING : mixing return value ; and return;

mixing return value; and flow through end

Storage classes.Funciions 24

EXCURSUS: COMPLEX DEFINITIONS

What's that

int *(*(*x)()I5];

**(*x)}N[5] is an int

[1 has higher precedence than *

(*(*x)())[5] is a pointer to an int

*(*x)(} is a 5-elements array of pointers to int

() has higher precedence than *

(*x)() is a pointer to a 5-elements array of pointers
to int

*X is a function returning a pointer to a 5 -elements
array of pointers to int

X is a pointer to a function returning

HORRIBLE
USE TYPEDEF

typedef int *PI; /* Pl is pointer to int */

typedef Pl AP[5]; /* AP is a 5-elements array of
pointers to int*/

typedef AP *FP() ;/* function returning pointer to
AP %/

FP *x;

Input-Quiput }

INPUT-OUTPUT

Implemented through macros and functions, but
defined in the standard as part of the standard
library and standard header file <stdio.h>

GENERAL MODEL :
stream : flux of characters

connected to an external file {operating system
dependent)

read or write take place at file position indicator

f.p.i. moved after each read or write (sequential
[-O)

f.p.i. can be manipulated directly

Two basic types of streams : text and binary
(ASCIN

text : sequence of lines, composed of printable
characters. Programs see line separators
as a single newline character (0.S. can
use other conventions)

binary: sequence of non-interpreted
characters.

THEY ARE THE SAME IN UNIX, 0S/9, etc.

Input-Output 2

streams can be buffered, buffering can be

block : data passed to/from O.S. when
buffer full (file copying);

line : data passed to/from O.S. when
end of line met (terminal 1-O);
ANSI

no buffer : data passed to/from O.S.
immediately (screen editing).

I-O operations are syncronous : program waits

until completed

stdio.h

contains the definitions of the required types and
macros, plus the prototypes of the functions, and
the definitions of 3 standard streams.

Of general interest:

FILE the type of an object containing stream
control information.

EOF macro. A negative integral constant, used
to signal end of file condition

stdin stdout stderr 3 objects of type (FILE *),
associated to the standard input {(usually
keyboard), standard output (usually
screen) and standard error (usually
screen). Open at program start.

NULL (char *) 0. ANSI moved it to stddef.h

Input-Output 3

ERROR HANDLING

- 1-O functions return error codes ;

- error and end-of-file on read are also recorded
in a member of any FILE object;

- tested through feof() and ferror(), reset through
clearerr

Ex.

/* this function tests error status and resets it
* it returns 0O if no error

* 1 if end-of file

*2iferror

* 3 if both

*/

#include <stdio.h>

#define EOF_FLAG 1
#define ERR_FLAG 2

char stream_stat(FILE *fp){
char stat =0;

if (ferror(fp)) stat [= ERR_FLAG ;
if (feof(fp)) stat |= EOF_FLAG ;
clearerr{fp) ;
return stat ;

Input-Output 4

DIRECT FILE MANIPULATION
ANSI

int remove (const char *filename);
deletes the file. Returns 0 if success.

int rename (const char *old, const char *new);
changes file name. Valid file names are
implementation dependent.

char * tmpnam(char *s);
create a file name that is unique. On your
compiler, analogous to mktemp.

FiLE *tmpfile(void);
opens a temporary file which will be
automatically deleted at program termination
and has no name.

OPENING AND CLOSING
associate a stream with a file
fopen (file_name , access_mode)

returns a pointer to a FILE object or NULL

FILE * fopen(const char * file_name, const char

* access_mode);

Input-Output 5

MODES

for text streams

'r" read only
"r+" read-write
"w' write only. If existing, truncated to zero,

else created
w+" write and read. If existing, truncated to 0,
else created
"a" append. Write only, but at the end of
existing file. Created if not existing.
append and read.

a+
binary streams (ANSI)

“rb", "r+b" etc.

Input-Output 6

Ex.

/* open with error message */
#include <stdio.h>
#include <stddef.h> /*ANSI: NULL */

FILE *
openfile(char *file_name, char *access_mode){

FILE *fp;
if ((fp=fopen(file_name, access_mode))
== NULL)
fprintf(stderr, "Error opening file %s "
" with access mode %s",file_name,
access_mode);
return fp;

}

- WARNING : (fp = fopen()) == NULL
parenthesis required! common mistake

-"a" "b" is "ab" (ANSI only)

- fprintf : like printf on a stream different from
stdout

Ex:

Open file "pippo" for reading and writing; if it does'nt

exist, create, if it exists, do not truncate

if ((fp = fopen("pippo”, "r+")) == NULL)

fp = fopen("pippo”, "w+");

Input-Oulput 7

OTHER

reopen: associates an open stream with a different
file and/or with a different mode

FILE *

freopen(const char *filename,
const char *mode,
FILE * stream);

often used with standard streams
/* if flag, send output to disk file */

mt disk_flag;
if (disk_flag &&
freopen("outfile"”, "w", stdout) == NULL)
fprintf (stderr, "Error reopening”);

IMPORTANT WARNING
Streams open for read and write:
between a read and a write you MUST insert

a fflush, fseek or rewind
- - exception: write after read that hits End of File

Input-Output 8

close: disassociates a stream from a file.
int fclose(FILE *stream);

NOTE : files are automatically closed at program
termination

READING AND WRITING
formatted
unformatted : 1 character at a time

1 line at a time
1 block at a time

FORMATTED READ
int scanf(const char *format, ...);
int fscanf (FILE * stream, const char *format,...);

int sscanf (const char * in_string, const char *
format, ...);

Input-Output 9

NOTE : scanf IS fscanf(stdin, .-)
sscanf does conversion but not input,
using in_string as the source of characters
(FORTRAN INTERNAL FILE)
NOTE : ...is the new ANSI form to specify
functions with a variable number of arguments.

NOTE : arguments must be POINTERS to variables
INPUT FORMAT STRING

can contain three types of objects:

white space: skip input until next non-blank
ordinary character : next character in input MUST

match that character (seldom used)
conversion specifier:

LOOK IN THE MANUAL

function returns : EOF if EOF encountered
before any conversion, OR
number of successful conversions

ferror or feof to check for status

Input-Cutput 10

FORMATTED WRITE

int printf (const char *format, ...);

int fprintf (FILE * stream, const char *format,...);

int sprintf (const char * in_string, const char *
format, ...);

NOTE: printf is fprintf(stdout,..)

NOTE : arguments must be VALUES

OUTPUT FORMAT

can contain two types of objects:

ordinary character : copied to output
conversion specifier:

CHECK THE MANUAL

Input-Ouiput 11

UNFORMATTED INPUT-OUTPUT
ONE CHARACTER AT A TIME
Already met

int getchar(void) ;
int putchar(char c);

-refer to stdin / stdout
GENERAL

int getc(FILE *fp) ;
int putc(charc, FILE*fp);

special:
int ungetc(int ¢, FILE *stream);

- RETURN EOF if error or end-of file on read
- - otherwise return the character read or written

- Macros (defined in stdio.h)
-- expanded by preprocessor
--- FAST

- putchar(c) is putc(¢ , stdout)
- getchar() is getc (stdin)

input-Output 12

--- WARNING
putc ('x', fplj++]) ;

Macro expansion : more than one occurence of
fplj++] -> RESULTS UNDEFINED

For these cases, FUNCTION VERSION

int fgetc(FILE *fp) ;
int fpute(char c, FILE *fp) ;

Ex.:

Input-Output 13

#include <stdio.h>
#include <stddef.h>

#define FAIL O
#define SUCCESS 1

int copyfile (char *infile,char * outfile){
FILE *tp1, *fp2;
intc;

if ((fp1 = fopen (intile , "rb")) == NULL)
return FAIL;
if ((fp2 = fopen (outfile, "wb")) == NULL)
{ fclose (fp1);
return FAIL;
}

while (c=gete(fp1) , ! feof(fp1))
putc(c, fp2);
fclose (fp1);
fclose (fp2);
return SUCCESS;
}

- note cleanup in case of failure
- feof needed in binary mode:
getc returns EOF at End of File

EOF is <0 -> not a letter, jf in text mode
COULD BE 8-bit pattern (often -1)

Inpur-Output 14
- why ¢ needed? why not
while (! feof (fp1)) putc (ggtc(fp1), fp2);

---- Beware of off-by-one errors !
- how to protect against output error (disk full?)

ungetc:

pushes back the last character read
Ex.:

*skip until first non-blank */
#include <stdio.h>
#include <ctype.h>

void
bskip(FILE *fp)}{
intc;
while (isspace (c =getc(fp)))

ungétc(c , fp) 3
}

- only one character

- only after read

- it's not I-O: external file not changed

- rewind and other f.p.i. manipulations will cause
the pushback to be forgotten

Input-Quiput 15

ONE LINE AT A TIME
MEANINGFUL ONLY IN TEXT MODE

char * fgets (char * s, int max_length ,
FILE *stream);
int fputs (const char * s, FILE *fp);

- and their stripped down versions (stdin-stdout)

chargets(char*s);
int fputs (constchar*s) ;

fgets

- reads until EOF or newline or max_len-1
characters

- puts them in s

- adds a nuii at the end

- returns s or NULL if read error or EOF before
anything read

- WARNING : input newline is included in s |

gets
- almost like fgets on stdin , but discards the

newline (history...)

fputs
- writes § (as it is!) to stream, discarding the
terminating null
- returns 0 if successful, non-zero on error

Input-Output 16

puts
- almost as fputs on stdout, but adds a

newline

NOTE: often implemented through calls to
fgetc/tputc -> slower than direct use of
getc/putc. CHECK

Input-Output 17

ONE BLOCK AT A TIME
MAINLY BINARY

ANSI

#include <stdio.h>

size_t fread(void * block, size t size,
size_t nelem, FILE *stream);

size_t fwrite(const void * block, size_t size,
size_t nelem, FILE *stream);

- size_t is a typedef in stdio.h:
usually unsigned int or unsigned long int
- nelem elements of size size are transferred
-- WARNING : this is not the same as transferring
nelem * size bytes |
- return number of elements transferred
-- if < nelem on output, error
on input, EOF or error (feof);

NOTE : implementation dependent. Can be very
fast, or use fgete/fpute and be very slow.

Input-Output 18

RANDOM ACCESS

Getting the current f.p.i.
Setting f.p.i. to beginning-of-file
Setting f.p.i. to an arbitrary value

Getting the current £.p.i.

long ftell (FILE *stream);

- returns the current £p.i. as a long int.

-- binary: number of characters from start

-- text: "magic" (o be used only with fseek)
- -1L if failure

Setting f.p.i. to beginning-of-file
void rewind (FILE *stream);
Setlting f.p.i. to an arbitrary value

int fseek(FILE * stream , long offset,
int base_sel);

- positions the £.p.i. at a distance offset from a
base:
--- base_sel selects the base:
base_sel == SEEK_SET
base is beginning of file

Input-Output 19

base_sel == SEEK_CURR
base is current {.p.i.

base_sel == SEEK_END
base is end of file

--- SEEK_SET, SEEK_CURR, SEEK_END macros
defined in stdio.h (in old compilers, 0, 1, 2)

--- offset can positive or negative

--- if in text mode, base must be SEEK_SET
and offset must be the output of ftell

--- in binary mode, SEEK_END could give strange
results if system pads bynary files

COMMENT

could not work if file length cannot be encoded in a
long int

for general case, 2 other functions ANSI only
int fgetpos(FILE *stream, fpos_t *pos);

int fsetpos (FILE *stream, const fpos_t *pos);

Input-Ourput 20
FILE BUFFERING
unbuffered : minimum latency
if file 1-O used for device control (?)

buffered : maximum I-O efficiency

WARNING : no buffer = data passed to O.S.
NOT to device (O.S. dependent)

By default, files buffered (implementation
dependent)

stderr unbuffered
#include <stdio.h>
charc_arr [BUFSIZE];
main(}{

FILE *fp;
/* declarations */

setbuf (stderr, c_arr);

/* stderr becomes buffered, ¢_arr is buffer */
setbuf (stdout, NULL);

/* stdout becomes unbuffered */

Input-Output 21

- BUFSIZE defined in stdio.h
- must be used after fopen and before any 1-O

operation
int fflush(FILE * stream);

- if stream is buffered, write content of buffer to
0.S.

- if stream == NULL, applies to all open streams:

- returns 0 (success) or EOF (failure)

ANS| ONLY

int setvbuf (FILE * stream
char *buf , int mode , size_t buf_size);

- arbitrary size of buffer and buffering mode
- mode can be
_IOFBF Full buffering
_IOLBF Line buffering
_IONBF No buffering
- setbuf (stream, buf);
is (almost)
setvbuf (stream , buf, IOFBF, BUFSIZE);
and
setbuf (stream , NULL) ;
is (almost)
setvbuf (stream , NULL, IONBF, 0);

SELDOM USED, BUT IMPORTANT

Input-Output 22

WARNING :
cannot replace operating system calls

Preprocessor. Library 1

THE C PREPROCESSOR

Already met:
#include
#define

ANSI greatly expanded it.
Here only elementary usage

- -

Takes code containing preprocessors directives
Transforms it into legal C without them

Works line by line (C does not care newlines)
Does not obey scope rules:
definition holds from definition point to
end of file

--> USE SPARINGLY
Introduces C-specific things

—--> NOT A GENERAL-PURPOSE MACRO
SYSTEM

Preprocessor. Library 2

#define
2 versions : function-like and not

#define EOF (-1)

if (¢ == EOF)
is translated into
if (c==-1)

#define FMAC(a,b) a * b /*poor, see later*/
FMAC(p->data, q[4])
is translated into
p->data * q[4]
#define max(x,y) ((x)>(y)?(x):(y))
#define UPPER(c) ((c)-"a'+'A") *ASClI only */
RESCANNING

#define EOF (-1)
#define readc(c) ((c=getchar())!=EOF)

PRACTICAL RULE :

macro names (not function macros)

are all uppercase, C identifiers are lower case or
mixed case

Preprocessor. Library 3

#define A a,b

#define strange(x) x-1
strange(A)

strange should be replaced
it has one argument , A
A should be replaced
A becomes a,b
strange now has 2 arguments?
ANSI says no; try yours
and what if
#define strange(A) something
Etc. : DON'T TRY

WARNING

#define PA (a)

This one defines PA to be (a), not PA(a) being
nothing. SPACE BETWEEN NAME OF MACRO
AND (

WARNING

#define FILENAME myprog.c
printf ("compiled from FILENAME\n");

Does not work : strings are a single object to
preprocessor

Preprocessor. Library 4
#define FILENAME “myprog.c”
printf ("compiled from %s\n" , FILENAME);

'ANSI has defined specific operators for this kind of
situation.

WARNING

FMAC (p+q, |+m)
becomes

p+q*l+m
probably wrong.

#define DOUBLE(x) x+x

3* DOUBLE(x)
becomes
I*X+X
wrong

Correct format
#define DOUBLE(x) ((x) + (X))
#define FMAC(a,b) ((a) * (b))

WHY TO USE FUNCTION MACROS ?
- increase readability
- faster to evaluate than real functions

Preprocessos. Library §
#undef identifier

Causes the definition to be forgotten

Ex.

#include <stdio.h>
#undef BUFSIZE
#define BUFSIZE 1024

#include <file>
#include "file"

#define NAME "file"
#include NAME

Includes can be nested

Conditional compilation

#ifdef identifier

#itndef identifier

#if constant expression
#else

#endif

- To select pieces of code that are machine
dependent
- To turn on-off parts of code used for debugging

Preprocessor, Library 6

#define M6809
#ifdef M6809
typedef long int Int;
#endif

#ifdef M68020
typedef int Int;
#endif

or (UNIX 1983 Source)
typedef struct {
#if vax)| u3b
int _cnt;
unsigned char * _ptr;
#else
unsigned char * _ptr;
int _cnt;
#endif
unsigned char *_base;
char _flag;
char _file;
} FILE

- vax || u3b is a constant expression. If defined and
not 0, expression not 0, etc.

WARNING

#define NULL O
#if NULL

would fail.

Preprocessor, Library 7

C LIBRARIES

DEFINED BY ANS| STANDARD

NOT REQUIRED:
- required in "hosted” systems
- can be missing in standalone systems ("bare" C)

STANDARD HEADERS: contain macro names and
typesused by standard libraries

WARNING:
- identifiers defined in standard headers are
reserved . Should not be redefined or reused
(like all the C keywords)
- hames starting with _ are reserved

<assert.h> <math.h> <stdio.h>
<Ctype.h> <setjmp.h> <stdlib.h>
<float.h> <signal.h> <string.h>
<limits.h> <stdarg.h> <time.h>
<locale.h> <stddef.h>

Sections of the library:

Preprocessor, Library 8

I-O <stdio.h>
String handl. <string.h>
Debugging: <assert.h>
Character handl.: <ctype.h>
Time, date: <time.h>

General utilities <stdlib.h>
Implementation <limits.h>

<float.h>

<locale.h>
Exceptions <signal.h>

<setjmp.h>
Var. num. of arg. <stdarg.h>
Math. <math.h>
ASSERTION CHECKING

#inciude <assert.h>

assert (a>b);

if a>b nothing;
else

print text of expression (a>b in this case)

, file name, line number

abort
If NDEBUG defined, expression not evaluated and
test performed
#define NDEBUG
#include <assert.h>

all assert turned off

Preprocessor, Library 9

EXCEPTION HANDLING AND NON-LOCAL
TRANSFER

EXCEPTION: occurs unexpectedly or infrequently
(error conditions)
can be originated outside program control

- hardware exception: division by 0
- user exception : interrupt key

In C : signals

-can be generated by the hardware or by the
software

-cause the execution to be transferred to a signal

handler

-programs can establish their own signal handlers

-a default signal handler (implementation

dependent) is always available
-program can send a signal to themselves

NOTE : sending signal to another program is
an O.S. problem

Preprocessor, Library 10
ANSI defines a minimum of 8 signals: more are
implementation dependent.

They are int, defined in <signal.h>

SIGABRT calling abort library function

SIGFPE illegal fioating point operation

SIGILL illegal instruction

SIGINT interrupt (from keyboard?)

SIGSEGV illegal memory reference

SIGTERM software termination (sent by another
program?)

Default signal handler, called SIG_DFL,
defined in <signal.h>, typically aborts the program

Alternative signal handler, called SIG_IGN,
ignores the signal.

User defined signal handler:

void handler(int sig_number){

}
NOTE : SIG_DFL has type void (*SIG_DFL){int);

Pointer to function returning void

Handlers associated to signals calling signal

Preprocessor. Library 11

#include <signal.h>

void fpe_handler{int sig_number);
main()

{

signal(SIGFPE, fpe_handler);
}

signal returns a pointer to the old handler
#include <signal.h>

void int_handler(int sig_number);

{
void (*old)(int) ;
/* install handler only if signal not ignored */
if ((old=signal(SIGINT, SIG_IGN)) !=
SIG_IGN)
signal(SIGINT,int_bandler);
}

Later, old can be used to reinstall the original
handler.

Preprocessor. Libwary 12

COMMENT
full prototype of signal is
void (*signal (int sig, void (*func)(int))) (int);

or (better)

typedef void (*func)(int) HANDLER;
HANDLER signal (int , HANDLER);

HANDLER STRUCTURE

- First, call signal again (usually, signals go back
to default handler every time raised)

- Do whatever needed

- Either return (execution continues from point of
exception

-- or jump somewhere else with longjmp

Example:

Preprocessor. Library 13
#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

#define PR putchar(’:")

void float_err(int), keyboard_intr(int);/*handlers*/

float a,b, result; char opr; /*global ->visible from
handlers*/
main(void)
{
signal(SIGFPE, float_err);
signal(SIGINT, keyboard_intr);

while(PR,scanf("%f%c%f",&a,&opr,&b)!=

EOF)
{
switch(opr){.....
/* calculator as in lect. 1 */
}
}
}
void closing(char *message, int exit_code){
}

void float_err(int i){
signal (SIGFPE, float_err);
printf(" Floating point error\n");
a=b=1.0;/*safe value*/

Preprocessor. Library 14
void keyboard_intr(int i}{
signal(SIGINT, keyboard_intr);
printf("Do you want to quit? Y or N:");
switch (getchar()) {
case 'Y':case'y':
closing("Regular end”, 0);
default: printf{"continue\n");

}

- handlers can exit, or return; return resumes
execution from exception point

- problem : scanf returns EOF if interrupted.
resuming execution within scanf
is not continuing.

-- > continue from a safer location

Preprocessor, Library 15
longjmp, setimp

#include <setjmp.h>
/* defines type jmp_buf */
jmp_buf env;

int setimp(jmp_buf env);

- stores in env all the information to resume
execution from the point it is called
WARNING : not a checkpoint!

- returns zero

void longjmp(jmp_buf env, int val);
- if env filled by setjmp, jumps to the return point of
setjmp, but returning val, if val == 0, returns 1.

Ex.
#include <setjmp.h>
jmp_buf env; /* global 1*/
main(}{

int v;

if (v=setjimp(env))

printf(" Coming from longjmp "
" value = %d", v);

other_function(){

longjmp(env, 1);

Preprocessor, Library 16

FINAL EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

#include <sethuf.h>

#define PR putchar(':")

void float_err(int), keyboard_intr{(int);
/*handlers*/

float a,b, result; char opr; jmp_buf env,
/*global to be visible from handlers*/
main(void)

{
signal(SIGFPE, float_err);

(void)signal(SIGINT, keyboard_intr);
(void)setjmp(env);

while(PR,scanf("%f%c%f",&a,&opr,&b)!=
EOF)
{

switch(opr}{

}
}
void closing(char *message, int exit_code){

Preprocessor. Library 17
void float_err(int i){
signal (SIGFPE, float_err);
printf(" Floating point error\n”);
a=b=1.0;/*safe value*/
}
void keyboard_intr(int i){
signal(SIGINT, keyboard_intr);
printf("Do you want to quit? Y or N:");
switch (getchar()) {
case'Y':case'y':
closing("Regular end”, 0);
default: printf("continue\n”);
longjmp(env,1);

