INTERNATIONAL ATOMIC ENERGY AGENCY | g
UNITED NATIONS EDUCATIONAL, SCIENTIFIC AN CULTURAL ORGANIZ ATION @

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LCT.E, P.O. BOX 586, 34100 TRIESTE, ITALY, CaBLE: CENTRATOM TRIESTE

UNITED NATIONS INDUSTRIAL DEVELOPMENT GRGANIZATION ‘-:.,::
INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

0 INTERMATICNAL CENTRE HIR THEORETICAL PHYSICS MI00 TRIESTE (ITALY) Vid GRIGNAND, 9 (ADRIATICO PALACE} PO BOX %6 TEIEPHONE 0812472 SELERAN B4 I0H1C (ELEX sy 4FH |

SMR/474 - 8

COLLEGE ON
"THE DESIGN OF REAL-TIME CONTROL SYSTEMS"
1 - 28 QOctober

UNIX

U. RAICH
C.E.R.N.
E.P. Division
CH-1211 Geneva 23
Switzerland

These are preliminery lecture notes, intended only for distribution to particlpants,

[TR

theme: 'The Unix System Calls

8lide no: 1 .1

ropic: Lecture Overview

theme: Course Introduction slide no: 1.2

ropic: Advantages of Unix

Architecture of the Unix System

0!#0!"!":‘\.",
OO0

1
e LA "Q':!I
5 o .
-on"‘l‘!"!’vvit»
5 RN

awe
Ceewe

LR
DOOCOOORON)
Cereas ety

"
RIS
DR

ot

AN

O ALK R)
R

Ty "
T o ¥
¥, T XA OOBIOOO0 ¥
e
AR LAY eOEER e b e b At iy ertariietrndabtbbesers
o ++v‘¢‘# & e, .ﬁ‘h‘tﬁv ,ﬁ Y AARN .{ﬁ# X ‘0’1_"0: KEARKEAN X A 5 ‘o’%t'q ’i A
G Q':‘t‘ A% Jahenihe o’\:'::.v.:‘v GO :"’o‘: o, ey
00
CRED CHELARAEAE bR R Ap R Ereiheresy ¥ ¢
A AR AR AN
ey e
AR AN AR A N AR A
oy 00 e

What makes Unix Systems so popular?

o Jystemis written in high level language, thus portable.
{Less than 3% of the kemel in assembly)

e Simple yet powerful user interface

® Hierarchical file system allowing easy implementation
and maintainance

® Consistent file format (the byte stream)

® Simple consistent interface to peripheral devices

® Multiuser, multiprocess system

® Provides primitives to permit complex programs
to be butlt from simpler programs

® Hides machine architecture

neme: The Unix Kernel

8lide no: 1 .3

theme: The Unix Kernel (Internals) Slide no: 1.4

opic: Qverview of Internals

Topic: '1he Unix File System

user programs
trap libraries
user level
PA sysiem level
\ system call interface A
Y |inter-process
file system process communication
control
scheduling
memory
f \ management
A
]
buffer cache
character | block
devices devices
h

hardware control

Steps to be executed when reading/writing a file:

Opening the file

generate entries into tables
® allowing a process to reference the file

e and allowing the kernel to know which file in the
system ts open for read, write or both

® convert the filename into a more easily accesstble
structure describing the file (inodes)

® allocate new inodes

® callocate data blocks on disk

Writing/Reading a file

® Convert the user's view of a file into a systems view

® Convert location inside the file to disk block numbers

Thane: The Unix Kernel (Internals)

Blide no: 1.5

Theme: The Unix Kernel (Internals)

S8lide no: 1.6

topic: The Unix File System

Topic: The Unix File System

Boot block:

Super block:

Inode list:

Data blocks:

Boot block

Super block

fnode list

Data blocks

Needed to load and start vmunix
(the operating system image)

Describes the file system on a disk partition

An inode describes a file.

The length of the inode list detennines the
maximurn nutnber of files in the file system

Space available for user data

Reading/writng a Unix file
Theinode structare: data
blocks
ownerigroup ids direct N
pernmissions direct
hmodificari block!
o
access/modification . 255
dates : block
file size numbers
disk block addresses 4
direct —> ——
block 9
) single |
max file sizes: indirect
direct: 10Kbytes
single indirect: ~ 256Kbytes t'iou:ble + =
double indirect: 64Mbytes | indirect l
tnple indirect: 16Gbytes | wriple .
ndirect
if 1 block 1024 bytes narec
-

hemea :

The Unix Kernel (Internals) Slide no: 1.7

Theme :

T

he Unix Kernel (Internals) g 440 no: 1.8

opic: The Unix File System

Topic:

The Unix File System

Writing or reading a Unix file

—nt _ 5

buffer

user's view

user's file

..

system's view

logical file
block 0

ode

block 2

block 1

J

26542 26542

Disk

data

example:

wnite buffer of size 1850
starting from file pointer at 2740

Converting a filename to an inode
The layout of a directory file
/
SN
bin usr vinunix
/N N

grep Is cc philip uli

s

trieste2 <« trieste

link

example: get inode of fusriuli/trieste

inode | filename (14 chars)

17 absolute reference:

17 - ! isknowntothe

207 | vmunix system in a global
~— 1 118 usr vanable

34 bin

relative reference:

—> 1 118 The current dirvectory

17 "[i can be found in the
—— | 204 | descri

a1 process descriptor
— | 23 | philip

— } 204 — | 23

118 - 118 -

193 | trieste 193 trieste2

Jv—

theme: The Unix Kernel (Internals)

8lide no: 1.9

Theme: The Unix Kernel (Internals)

Topic: The Unix File System

topic: The Unix File System

The Super Block
Allocating inodes (when creating a new file)

file system size

no of free data blocks
list of free data blocks
tndex of next free block
size of inode list

no of free inodes

list of free inodes

index to next free inode
Tock fteld Jor free block
and free inode lists
modified flag

allocation of disk blocks

allocation of inodes

Algorithm: @ read free inodes from disk
@ build a free inode table in memory
(type field = 0 means free,
remember last free inode on disk)
@ allocate inode from memory list until
exhausted, then read inodes from disk
starting a remembered position

Descriptor tables of "open" files
fd = open("myfile.dat”,0_RDONLY)

Slide no: 1.10

user file _
descriptor tables file able _ tnode table
(system wide)
proc A
0 sdin
1 stdout
2 sederr count] Read
3 \
? count (fetc/passwd)
3
count I Rd-Wnrt
proc B
0 sedin count 1 Read count trieste
1 stdout 1
2 stderr
- count
3 count 1 Write 1
4 /
5 count 1 Read

fd is the index into the user file descriptor table

- A -

neme: The Unix Kernel (Internals) 440 no: 1.11

opic: Process Management

theme: The Unix Kernel (Internals) slide no: 1.12

Topic: Process Management

Process State Diagram

user running

return to user
sys caii
mtenupt return

kernel
@ running
exit preempt
Zombie reschedule
sleep process

¥

s Preempted

ready to nin
in memory
Ieep enough memory
Created
mory swap f,:ﬁ}a
. «— fork
(”/:;t:n:;;h memory

@ wakeup
_—

eep, Swapped Ready to Run,

Swapped

Layout of system memory
Possibility: ~ Compiler generates
absolute addresses kernel
but: impractical
process 1
process 2
process 3

Solution adopted: Compiler generates virtual addresses
which a memory management mechanism
transforms into (real) physical addresses

The virtual address space is subdivided into regions

o @

data

stack

text / @
,-——'—v——'—‘—‘"'}

data

stack — :

Thame :

The Unix Kernel (Internals)

8lide no: 1.13

thene: The Unix Kernel (Internals) s, a0 w0 1.14

Topic:

Process Management

Topic: Process Management

The paging system

Physical memory is divided into equally sized pages

A virtual address is converted into a page number and an offset

offset

page 1
page 2

page 3

The region tables contain pointers to page tables

virtual address
text SK > 132
data | 32K |—> 98
stack | 64K 264 =
201
24 297
138
207

Memory management policies
The entire process is copied > Trodess
from memory to disk ETOCESS swapped
When brocess 2 // oy
e creating new process
e increasing process region
e increasing stack space
® swapping in q process

€ Demand Paging

Machines whose memory architecture is based on pages and
whose CPU allows to rerun failed instructions can support a kemnel
with demand paging

Accessing a virtual address | ierger -
whose page is not resident process 1

in memory generates a page] 5 pages
page fault of process | page

. . or process |
The missing page is read /

from memory and the
faulty instruction is rerun.

® Hybrid systems

Both, demand paging and swapping.
When the kernel cannot allocate enough memory pages a complete
process is swapped out.

~ A%~

.)]q.

The Unix Kernel (Internals) slide no: 1.15

The Unix Kernel (Internals) g4 no: 1.16

Theme :
Topic: Distributed Unix Systems
® Satellite systems

One main processor containing CPU, memory and peripherals
and several satellites with CPU and memory {+ communications)

only.

Programs and a (stripped down)
operating system are downline loaded.
Each satellite has an associated

stub process running in the main
processes treating requests for

system calls

T l CPU
peripherals memory \ |

systemn calls

downline
loading

memaory

Theme :
Topic: Distributed Unix Systems
The Newcastle connection

Each machine runs the full kernel (including treatment of
system calls. File sharing is implemented trough an extension

to the file name:
triestel fusriuli/course

spectfies file fusrhuli/course on machine "trieste”
Needs special Clibrary in order to parse file names

Transparent distributed systems (example: NFS)

Aremote file system is mounted on a mount point
of the local file system

local file system remote file system

/ /
RN //f:.j/ ™~

jin usr docs physics
AN A
matl ult src 7N
- wire chambers cherenkov
dogin

tusr/srciphysics/cherenkov accesses the file on the remote

file system

thame: The Unix System Calls

8lide no: 2.1

theme: | he Unix System Calls

ropic: Introduction

topic: An Overview of the system calls

Generalites on system calls

System calls form an integral part of the Unix kemel and are

therefore

@ executed in supervisor mode

® cannot be preempted

They are accessed through a "trap mechanism”
(software interrupt)

Access to system calls

Application
program

Unix kernel

\b - Trap
Standard . %

Lbrary

e Access to the file system:

open,creat
close
read,write
Iseek
unlink

e Process handling
fork

exec
exit
wait

& Interprocess communication

signals
signalkill,alarm
pipes.fifos

IPC package (Inter Process Communication)
messages
semaphores
shared memory segments

Slide no: 2.2

neme: The Unix System Calls

S8lide no: 2.3

theme: T he Unix System Calls

Slide no: 2.4

opic: Systemn Calls for File System Access

topic: System Calls for File System Access

The same routines allow to access

® disk files
e pipesffifos
® specialfiles” (device dnvers)

open opens a file for reading or wniting
creat creates an empty file (shrinks an existing file to size zero)
{in earlier versions of Unix "open” worked anly on existing files)

fildes = open(pathname, flags, [mode])

flags: O _RDONLY O_CREAT
O _WRONLY O_TRUNC
O_RDWR O_EXCL
O_APPEND ..

mode: access permissions
fildes = open("myfile”,0_WRONLY/ O _CREAT/O_APPEND ,0644)

opens "myfile”,
if non existant:
creates with permission

user group world
rwx rwx Iwx
110 100 100
else

sets file pointer to end of file.

Writing and reading data to and from files

n_written = write(fildes,buffer,bufsiz)
n read = read(fildesbuffer.bufsiz)
eof is detected by n_read = 0
increments file pointer by bufstz

for efficiency reason use use
@ rather big buffers (limits the number of system calls)

® buffers sizes being multiples of the natural disk
blocking factor (mosdy 1024 bytes)

Random access to files

newpos = lseek(fildes,offset,direction)

long offset: specifies new position in file
int direction: 0: offset=nr of bytes from start

of file

1: offset added to current position

of file pointer
2: offset added to pos. of last

byte in file

example:
filsiz = Iseek(fildes,01,2)
returns size of file

~0e

theme: The Unix System Calls
Topic: Process Control

§1ide no: 2.5 theme: The Unix System Calls

Slide no: 2.6
Topic: Overlaying the Child Process with "exec"

Process Creadon The "exec" family of system calls
All new processes are created through a fork system call
exarnple: main()
{

The exec calls load a new program into the calling process

o memory space. The old program is oblitered by the new

int pid;

printf("Before fork \n"); ret = execl{path,*arg0,*argl....(char *)0)

pid = fork() ; ret = execv(path,argy)

if (pid == 0) ret = execlp(file,*arg0,*argl,...(char *)0)
printf("child process\n”); ret = execvp(file,argv)

else if (pid > 0) path: must be a true program
printf("'pavent process\n”);

else

file: may be a true program or a shell script
perror("Fork retumed error\n”);

Sequence of fork,exec,wait,exit calls
Fork creates a second instance of the same process. The program

program a
code as well as the variables are identical in both processes.
fork
before fork after fork " usage of wait and exit:
program a capy of
program a pid = wait{é& status)
wait .
exec exit(status)
] program b
prograin a exit
t | continues
R after exit of
program b
parent pavent process
process pid = child’s pid With this knowledge we are able to create a shell $1¢(CLI)

EYE - -

Theme: | Ne Unix System Calls glide no: 2.7

theme: The Unix System Calls

Slide no: 2.8

Topic: Signals

Topic: Pipes

Sending and receiving signals

On exception events (*C,illeagal instr. floating point exception etc.)

the kernel sends a signal to the process. This normally exits the
process. However a process may decide to catch the signal and treat it.
Processes may also send signals to other processes.

SIGINT SIGQUIT user interrupt
sendby SIGILL illeagal instr.
kemel SIGKILL forced exit (cannot be caught)
SIGPIPE write to pipe without end
SIGALRM tume elapsed
send by SIGTERM terminate child
process SIGUSRLSIGUSR2 for free use by process
Catching a signal:
int catchit(); define an exception handler;
signal (SIGUSR 1, catchit) ; connect the handler with the
signal

Each time the signal SIGUSR arrives "catchit” will be executed.
Sending a signal:
kill{pid, SIGUSR1) since pid is needed signals can
only be sent to parent or offspring

(getppid returns pid of parent)

Apipe is a one way communications channel which couples
one process to another and is yet a generalisation of the Unix

file concept.

prdoc/ lpr

proc A

stdout —> — stdin

/% pipe implementat
#include <stdio.h>
#Hdefine MSGSIZE=16

char *msg="Hi Tries
main()
{

char inbuf[MSGSIZ

lon */

tel™;

E]:

int pi2l.pid; /* plpe file descriptors */

/% open the pipe */
if (pipe(p) <0} {

perror{("pipe call "};

exit(t);
};
if ({(pid=fork())

< o) {

perror{” fork call ");

exit(2);
i
if {pid == Q) { /

close(p[1]): /* close write section %/ —3

read(p[0], inbuf

printf{"Child read \"%e\" from pipeiwn

3

* child process %/

,MSBSIZE);

if (pid » 03 { /* parent process ¥/

closet(plo]): /% close read section */

write{pl1],msg.MSGBSIZE);

3
exit(0);

A'EJE}B

AT B

Y, inbuf);

Theme: The Unix System Calls 8lide no: 2.10

Slide no: 2.9

theme: The Unix System Calls

Topic: PipE‘S

Topic: Plpes

Here is the writing program:

/* pipe implemsntation */
#include <fcntl.h>
#include <atdio.h>
#doefine MSGSIZE=16

char *msg="Hi Trieste!";
main()
{
char inbuf[MSGSIZE]:
int fd,pid; /* pipe file deacriptors »;
if ((Fd-open("FiFu",O_MRONLY)) <0y {
perror(“pipe call ");
exit(1);
Y
write(fd,msg,MSGSIZE);
close({fd);
exit{0);

and the result:

$ fifla

2898

$ Fifz2&

2899

$ Child read "Hi Trieate!" from plpe

Fifos or named pipes

Pipes can only be used between strongly related processes
(e8. parent child) because the pipe id is needed for reading
and writing.
Named pipes remedy this problem:
A named pipe can be generated using the mknod programn.
The pipe is the opened as any nonnal file

$ mknod fifo p

$ 1s -1 fix

pru-r--r-—— 1 ujli
$

0 Dct 12 1B:47 fifo

We have two entirely separate programs one opening the fifo
for writing the othe one for reading:

/¥ pipe implamentation */
#include <fentl.h>
#include <stdio.h>
#define MSGSIZEw16

reading program

main()
i
char inbuf[MSGSIZE];
int fd,pid; /* pipe file descriptors x/
/¥ open the pipe */
if ((fd= open("fifo",0_ROONLY)} < 0O) f§
perror("pipe call ");
exit(1);
¥
read(fd, inbuf,MSGSIZE);
printf("Child read \"%s\" from pipesn", inbuf);
tlose(fd}):
exit{0):

~96-

heme: The Unix System Calls slide no: 2.11

theme: The Unix System Calls

‘opic: IPC Facilities

ropic: {PC Facilities.

Inter process communication facilities (IPC)

3 IPC constructs are provided by the kernel:

® Message passing
® Semaphores
® Shared memory

IPC facilities are identified by unique keys just as files are
identified by file names

A set of similar routines is available for each of the 3 mechanisms

| The IPC get operation :|

takes the user specified key and returns an id

(similar to open/creat) If there is no IPC object with the
specified key it may be created.

example: msg_qgid = msgget({key t)0100,IPC_CREAT)

[The IPC op calls:|They do the essential work

example: err_code = msgsnd(msg_quid,&message,size,flags)

| The IPC ctlcalls: | get or set status information for the
IPC object specified or allow to remove it

example: err_code = msgctlfmsg qid IPC_ RNMID,d&msq_stat)

Sending and receiving messages

A message has the form:

struct my msg {

long mtype;
char mtextfLENGTH];
}

Such @ message can be sent to a message queue who's
wdentifier has been determined by a msgget call:

retval = msgsnd(msg_qid,&message,sizeflags)
it can be read by:
retval = msgrev (msg_gid,&message,size,msg type, flags)
msg type=0: firstentry in queue

msg type > 0; first entry of this type
msg type< 0; firstentry with lowest msg_type

slide no: 2.12

theme: The Unix System Calls 8lide no: 2.13

Theme: The Unix System Calls slide no: 2.14

topic: [PC Facilities

tropic: IPC Facilities.

Shared memory segments

Normally data regions of different processes are separated.
The IPC shared memory facility allows several processes to
share a section of physical memory.

shmid = shmget((key.size,permflags)

creates such a shared memory section in physical memory

memptr = shmat(shm_id,daddr,shmflags)

attaches the shared memory section to the process.
memptr is @ pointer in virtual addresses where the pracess
can access the section

*memptr = "hello Trieste”

will write this memory section.

err_code = smctl(semid,IPC RMID, &shm_stat)

removes the shared memory section from the system

Shell commands supporting IPC fadlities

There a two shell level commands treating IPC facilities:

ipcs: showing the state of all IPC objects in the system

IPC status from /dev/kmem as of Sat Oct 13 17:31:18 1990
Massage Queuas;

T 10 KEY MODE OWNER GROUP

q 0 64 =-ru-ru-rw- uli usars

Shared Memary

T 10 KEY MODE OWNER GROUP
m 0 QO —~rp—ece—m—— uli usersa
Semaphores

T 1D KEY MODE OWNER GROUP

¥*¥*¥ No semaphores ares currently defined *%x*

iprm: allows to remove an IPC objecy from the system

-39 -

_50 -

heme: The Unix Shell slide no: 3.1

Theme : The Unix Shell slide no: 3.2

opic: [ntroduction

topic: Simple Shell Commands

What is a shell ?

A shell is @ command string interpreter reading user input from
stdin and executing commands.
However shell commands may also come from a file.

The standard Unix shells (ex. Boumne shell) provides:

{0 statements

10 redirection

pipes

vanables & assignment statements
conditional statements

loops

subshells

~—> Full blown programs may be written using only
shell commands (shell scripts)

Simple commands;

Single word, no parameters

who: prints all login processes
ps: pnnts all processes started by the user
on the standard output device (stdout)

newline or ”;” are separation characters

$ who
uli ttypo Cct 4 08:08 (:0.0)
uli ttypi Oct 4 08:08 (:0.0)
uli console Oct 4 08:07
$ ps
PID TT STAT TIME COMMAND
22692 co I 0:80 /uar/bin/X11/mum
22693 po S 15:29 /usr/bin/dxterm -l=
22697 p0 I 0:06 (csh)
24984 po S 0:00 (=h)
24986 pO R 0:00 (pa)
22694 p1 I 19:06 /usr/bin/dxterm -ls -n dxtermi
22698 p1 I 0:09 (csh)
24966 p1 I 0:52 (dxpaint)
s —
Pipes

Stdout of one program can be connected to stdin of another one

through a pipe

Example: We want ta know the number of login processes on
our system . This can be found by counting the

nurnber of lines output by who

$ who Jwc -1
3
$

a8

theme: The Unix Shell Slide no: 3.4

ropic: Shell Scripts.

theme: The Unix Shell glide no: 3.3
Topic: Simple Shell Commands
The tee command:
process a process b
stdin
stdout oy > std
3
file
$ (date;who) {tee save |uwc
4 23 133

$ cat save
Tue Dct 9 17:23:05 MET 1990

uli ttygpo Gct 9 16:23 (:0.0)
uli ttypl Oct 9 15:23 (:0.0)
uli console Oct 9 15:21

$

Running commands in background:

$ (date;who) |tee save |wc >count &
923

$ cat save

Wed Oct 10 11:47:688 MET 1990

uli ttypo Oct 9 16:23 {(:10.0)
ull ttupl Oct 9 15:23 {:0.0)
ulj cansole Oct 9 15:21
$ cat count

4 23 133

$

—

Creating new commands

The shell is a user program as any other one provided by the
system or written by you. It's name is sh

Since sh accepts input from stdin and we can redirzct thput
to it from a file we execute shell commands from a file:
$ cat no_users this is the contents of file
who |Jwe -1 no_users
$ sh <no_users here we execute it

3

If the shell is given an argument it interprets it as the file
from which commands are to be read:

$ sh no_users
3

We can even make the text file executable and cali the shell
implicitly:

$ chmod +x no_users
$ Nno_users

3
$

%3

iy 5

rmeme: The Unix Shell 8lide no: 3.5

Theme: The Unix Shell Slide no: 3.6

lopic: Shell Scri ptS

ropic: Simple Shell Commands

Passing parameters into shell scripts

Write a shell script that adds execute permission to a file:

$ 1= cx

CX! Mo such file or directory
$ echo “chmod +x $1’' >cx

$ ls -1 ¢x

“rw-r-—r-- 1 ull 12 Oct 10 12:27 cx
$ sh cx cx

$ 1= -1 cx

~rwxr-xr-x 1 uli 12 Qct 10 12:27 cx
$ echo 'echo Hello fans !’ >hello

$ hello .

hello: cannot execute
$ cx hello

* hello

Hello fans !

$

30 : seript name

In: contents of nth parameter

$#: number of parameters

3*: all parameters

37 exit status of last command executed

Program output used as arguments

The output of programs can be used as arguments into other
programs:

$ echo 'echo At the tone "Gthe time will be exactly ‘date‘’ >tim
$ cat tim

echo At the tone the time will be exactly ‘date’

$ chmod +x tim

$ tim

At the tons the time will be exactiy Thu Oct 11 16:29:;64 MET 1990
$

Shell variables and environment variables

Variables can be defined and assigned strings
The environment variables are known to the shell

§ myvar=whatever
$ echo $myvar
whatever

$ echo $PATH
.r/usr/iocal/bin: fuserl/uli/bin: fusr/ucb: /bin; fusr/bin: Zusar/bin/X11

local/unix: /usr/new: fusr/hosts: /usr/local/unix: /usr/local/priam
$

theme: The Unix Shell

8lide no: 3.7

Theme: The Unix Shell

Slide no: 3.8

Topic: Filters

Topic: Filters

Programs that read input, perform some sumple transformation
and produce some output are called filters

examples: grep,tail,sort,wc,sed,awk...

grep: searches files for a certain pattem and prints out
lines containing it

$ cat telephone

philip 2687
mark 3860
evelun 1276
peter 6630
$ grep mark telephone

mark 3860

$

special meanings in grep:

4 beginning of line

a single character
[...]1 anycharacterin .., ranges allowed
(*...]1 any character notit..,ranges allowed

e* any occurences of e
grep [J* " letclpasswd
passwd entry:

name:password:other information
name::other information means: no password was set/

The stream editor sed

Takes a stream of characters from stdin or from a file, wansforms it
using line editor commands and outputs it on stdout.

sed 'list of editor commands’ filenames

example: sed "siMr Miller/Miss Smith/g’ letter >new letter

$ cat lestter

pDear Mr. Brown,

after the Trieste coursse I would like to invite you for a drink
at Mr., Miller's home, I think we all earned it. Mr. Miller

will be glad to weslcome you all.

Best regards, the Trissts course organizers.

$ sed ’'s/Mr. Miller/Miss Smith/g’ letter >new_letter

$ cat new. letter

Dear Mr, Brown,

after the Trieste course I would like to invite gou for a drink
at Miss Smith’'s home. I think we all sarned it. Miss Smith

will be glad to welcome you all.

Best regards, the Trieste course organizers.

$

Even more tricky: The list of editor commands may come

from a file:
sed —f cmdfile

- %% -

58

Theme : The Unix Shell Slide no: 3.9

theme: The Unix Shell

Slide no: 3.10

topic: Klow of Control

topic: Flow of Control

Loops in shell programs

There are 3 loop constructs in the shell:

Theforloop forvar in list of words
do
commands
done

The while loop while command
do

loop body executed as long as command
returns true
done

The untl loop until command
do

loop body executed as long as command
returns false
done

example :
unti! who/ grep uli
do
steep 60
done

Condidonal statements

case word in
pattern 1) commands;;
pattern 2} commands;;

esac

The case is very often used to check the syntax of a command
and to assign default values to optional parameters

$ cat asm
incl=‘echo $1 Ised ‘s/\., . %//'"
out=%incl.o
incl=¢incl.m
case $# in
0) echo usage: $0 infile ‘[macro file\] ‘[outfile\]
exit 2;;
2) incl=$2:;
3) out=3%$3;;
*} 3
esac
echo ms809 $1 $incl sout
exit O
$ amm
usage: asm infile [macro filel [outfile]
$ asm z.a
m6EB809 z.a z.Mm 2.0
$ asm z.a d.m
m6809 z.ad.mz. 0
$

[X ¢

<ho-

theme: 'The Unix Shell glide no: 3.11 theme: The Unix Shell §lide no: 3.13

Topic: Flow of Control Topic: Signals
Catching signals
if ... then ... else Esn
if command Typing *C sends an interrupt signal to all processes run from
then cmds your terminal. This will normally will terminate the processes.
else cmds
fi The shell protects processas started in background from
being terminated through *C.
The if statements tests the exit status of 'command’ (3?)
and if successful {(exit status = 0) executes the then clause. Shell scripts working with temporary files which are remaved
_ _ at the end of the script should do this cleanup also when
In if statements the test program is often used terminated by *C.
test —r file tests if file is readable] , .
test —f file tests if file exists We can trap signals and execute a "trap handler
test —w file tests if file is writable or we can ignore signals
testsl=sl tests if two strings are equal)
testnl —eq—n2 tests if two numbers are equal rap sequence of commands signal number
new=ftinpftemp.$3 signal numbers:
) cat >3new)
g:est -l trap 'vmn —f Snew; exit2°2 15 0 s.hell exir
en _ 2 nterrupt
do something 9 kill (cannot be caught)
else 15 | terminate
echo Cannot find file 31
fi

-4 -4y

rheme: The Unix Shell §lide no: 3.14 Theme: The Unix Shell slide no: 3.15
ropic: Workstations topic: Good Bye

si:$l:lg
WS 1 Ws 2 Ws 3

) if test -r $2
Ethernet | grep then “‘echo $1 | sed ’s/...

File Kel'nel
Server
file %tem

On startup the workstation sends a boot request down the
ethernet containing the requesting node's hardware
address. {t's server recognizes the request and downline
loads the kernel image corresponding to the workstation’s
hardware configuration.

The workstation's file systems are mounted on the file
server (transparent distributed system) The swap space
may also be remote {diskless workstation).

The system starts up a window system (X—Windows/Motif) designed by
and allows login. Jacques Redard

On login a terminal emulator window is brought up and
allows the user to comrnunicate with the shell.

That’s all folks !

4. L4

