INTERNATIONAL ATOMIC ENERGY A.GEN(‘Y
UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION ‘m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
L.CTP, PO. BOX 586, 34100 TRIESTE, ITALY, CagLE: CENTRATOM TRIESTE

L) ,)
@ UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION *,gg,él Structured De&gn

INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

<o INTEANATIONAL CENTRE FOR THEORETKAL PHYSKS WI00 TRIESTE UTALY) V1A GRIDNANG. ¥ (ADRIATICO PALACE) PG BOX 586 TELEPHOME (M0213'1 TELEFAX MMOJMSTS TEIIN 44BH APH |

ISy

Paul Bartholdi
Observatory of Geneva
SMR /474 - 10 CH-1290 Sauverny
Switzerland

Preliminary notes - Trieste - october 1590

COLLEGE ON __ College on “Design of Real-Time Control Systemns”

*“THE DESIGN OF REAL-TIME CONTROL SYSTEMS"
1 - 26 October

Contents
1 Introduction 1
1.1 Comparision Software/Hardware ., 1
2 Some Precepts 3

STRUCTURED DESIGN

3 Design fundamentals 4
3.1 Developmenteycle 4
3.2 Methods i e e e e e e e e 6
33 Program structure o . ..o e e e 6
3.4 Datasbruchul® . . . o o v o v b b a e n e e s e e e e e 7
P. BARTHOLDI 3.5 Stepwiserefipement o 7
Observatory of Geneva 36 ModulaTity v e e e e 7
CH-12900 Sauverny 3.7 ADBBEIACHION e e e e e e e e s 8
Switzerland 38 Information hiding 8
4 Data Flow Design 8
5 Data Structured Design 12
8 Object Oriented Design 13
B.l Overview L et e e e e e e e e e e e 13
6.2 Object descriptiono e e 13
6.3 Methodology0 13
6.4 Graphical representation for OOD: Booch diagram 14
6.5 Packl3ge v i i i e e e e e e e e e e e e e e 14
6.6 Remarka i e e e e e e e 15
6.7 SUMMALY . . o« o o v v v ot e v e e e e 16
7 Design for Real Time Systems i7
7.1 Synchronization and Communication« oo e e 17

These are preliminary lecture notes, intended only for distribution to participants.

bartho@obs.unige.ch bartho@cgeuges4.bitnet 20579 jugobsa: :barthe
tel +41 22755 26 11 fax +41 22 755 39 83

1 INTRODUCTION 1

1 Introduction

data O [@]

Comnlral

I sheument]s //

—| { RT) Pr‘ogr‘aw\ /A\OFW\S
7 | ™

eror\'

Acrchives

User
nterfoce

Structured Design encompass all aspects of the figure above, and not only the program box.

The model we wiil follow is Top Down Design Analysis with Stepwise Refinement for both
Data and Algorithms.

A good design should avoid that the final product loak like a patchwork with all sorts of pieces
loosely linked to each other, many holes and no possibility left Lo grow with time.

Before stazting any design, the problem should be analyzed with both the originator and the end
asers, to define carefully and precisely :
1. What is (are) the problem{s), which goal{s), keeping a global overview of the situation,

2. What are the data, both incoming and outgoing, how are they related, arranged, where are
they.

3. What is available for testing, what are the foresecable futur changes and enhancements, how
the maintenance will be done

1.1 Comparision Software/Hardware

1t is interesting to compare hardware and software getting older, that is how a single product ages.

1 INTRODUCTION 2
Fouilute [wfant
rate mo ﬂ'ali"}l .'
weacouk
‘l’iw\c.'

A typical hardware has a large failure rate due to “infant mortality” when new, that gets rapidly
smaller. Then the failure rate remains constant for quite long, up to the time some parts get broken
again because of age. Parts can be replaced giving new youth, without much interaction to the rest
of the systemn. Infant mortality is caused both by design and construction errors.

M lnfant

mot’falu'lr\,

Failute |
r‘a‘c

No
wencouk

Time

Software presents & very similar curve in the early phase, but we would expect the absence of wear
out, getting constantely safer as time goes on.

Yoilure '\\ 1“4"::. \/Jf:! o!
¥ -
fate . ‘t!l;o.qurowd'

TN . .-./{»«545 - impoewent s

e e S 3

What is observed is quite different. For various reasons, most software are constantely updated,
and each change brings a new spike of erzors thal decays slowly. Evea worst, the “background
level” increases with time.

I the software by itself does not wear out, there are also no spare parts.

While most modern bardware are made of standard components and copied in a very large number
of pieces, many software are still custom built from scratch.

2 SOME PRECEPTS 3 7 DESIGN FUNDAMENTALS 4

2 Some Precepts 3 Design fundamentals

This is & summary of the lectures on Programming Technics and Tools given during the previous
Colleges on Microprocessors. :

information domaln
requiremants

¢ Don't lose sight of the forest for its tree

Program in haste and debug forever

. . . ta
o Starting afresh is usually easier than patching an old program Data design

Consider together both data and operations oo them

Each subprogram should do only one task, but do it well

Funcllona!

and performance
requiremants

Each subprogram should hide something Procadurst

design
o Use “drivers™ to simulate (lower level) subprograms

Keep ioput and output a2 separate modules

' Program modules
» Make program reading easy to do

» Keep documentation concise but deacriptive
o Always name varisbles and subprograms with greatest care

~ self explanable, in particular for subprograms and global variables
~ short for locals, do-loops, indexen

_ use common/systematic prefauffix) Integratad
— avoid meaningless words and misspellings snd valldated

_ avoid error proae names {1 (“El"), 1 {one), O (“0O), O(sero), .. 3 poltware

The quality of test data is more impoztant than quantity The design should:

Do not ignore the illegal, waprobable, impossible values, check them always

1. exhibit a hierarchical orgaaization that makes intelligent use of control among the elements.

If is too slow, find the 10% where you & end 90% of the time
o If your progeam is too Fow, B you i ' 3. be modulaz, logicaly partitioned into elements that perfortn specific functions and subfunc-

tions, or are related dats

3. contain distinct and separable tepresentation of dats and procedures

4. lead to modules that exhibit independent functional characteristics

Data ctures 5. be designed by informations obtained during the requirement analysis

1.1 Development cycle

Workdng
D [> ¢ . [> Any project, any system, should be considered in & wider circle than just program design. It starts
9 with requirement gathering, and end many years later, after many updates, impravements etc, when

Plan Requiremants Design thsting fully replaced by a oew product. The following figures show how all phases may have feedback into
spec previous ones. Even the requirements gathering never cads, aor does denigning, coding, refining,
testing and maintening.
The last figure is taken from a book by Galileo Galilei {1638) concerning a test bed for measuring
the bending of a bearn under weight.

3 DESIGN FUNDAMENTALS

Requiremants
gathering

o

Evaluals
& refine
requirements

L E'
l product

Figure }: Global product cycle

Syslam
enginesring

Figure 2: Software cycle

3 DESIGN FUNDAMENTALS 8

The last figure is taken from a book by Galileo Galilei (1638) concerning a test bed for measuring
the beading of & beam under weight.

Figure 3: From Discorsi ¢ Demonstrasionioni matematiche intorno a due nuove acienze, Leiden
1638

3.2 Methods

The following elements are various methods developed to help organize a well structured desgin.
They should usualy be combined using more intelligence than mechanical obedience.

3.3 Program siructure

Duild s static representation of the link between all modules, that is which modules call which
module, which are called by which module.

This is necessary for testing, debugging, updating ...

It will Jock like a tree, with the main program at the top (the root), and the modules that stand
alone at the bottom as leaves.

It could also be presented as a cross-reference table.

J DESIGN FUNDAMENTALS ?

1.4 Data structure

1t represents the logical relationship among individual elementa of data, possibly on many levels.

It will dictate the organization of data, the access methods, their degree of associativily, and
posaibly processing alternatives.

If the data are numerous, then it is worth building x data dictionary with definitions, relations
among them, constraints on elements, operations on them etc.

If applicable, build a data structure Lbrary with definitions (declarations) and operations for
complex structures like lists, FIFO, stacks, tables, tree elc.

3.5 Stepwise refinement

This is probably the key that should be applied to all aspects of the program developpement,

The program in developed by successively refining levels of procedural (and data) detail, by decom-
posing a macroscopic statement of a function in & stepwise fashion until programming statements
are reached. As tasks are refined, so the data may have to be refined, decomposed or structured.
Both procedure and data specification should be refined in parallel,

o —

Figure 4: Module refined into substeps

3.6 Modularity
A module should

» be intellectually manageable

3 DESIGN FUNDAMENTALS 8

o do a single task, with single entry and outlet

be complete by itsell

e hide 2ll unnecessnry information (both procedures and data) to higher levels

s be casily testable

Use Stepwise refinement to reduce all large modules to more manageable ones.

Note: Their is a tradeofl between the size and the total number of modules. 1 the total number of
modules becomes too large, the relations between the modules become unmanageable.

Total software cost

. \ ‘

\ ,’ Cost 1o Interface

Reglon of minkmum cost
~ —— -~
\"'-._‘__ u _ -
It §
1 1

-
| |

Cost or sffort

= ! Cost/madule
1

i

Nixnber of modules

1.7 Abstraction

Do not specify the detailed structure of both data and procedures while it is not necessary. Keep
them for the lowest level possible.

3.8 Information hiding

Highet levels should see only WHAT not HOW the procedures and data structures are.

4 DATA FLOW DESIGN

4 Data Flow Design

This emphasises the dynamical aspect of the data processing.

It is best for sequential processing of not too complex data ltmcturu; including resl-time etc.

The main ides is to follow the successive transformations, spread and aggtutination of data, from

the external sources to the external sinks.

ey
1

O Process:

77, Dats flow:

j f Dats store:

—_==

Entlty

Dats store

External antity: A source of system inputs, or

sink of system outputs

Perioims some transformation
of Its Input data to yleid
ks outpul dais

Used 10 connect processes (o
sach other, i sourcas or sinks;
the ammrowhead Indicates
dirsction of data transfer

A reposiiory of data, the
arrowheads Indicate net
Inputs and outputs to the
s\ore

Use stepwise refinement to go from the simplistic overview (i-n-—) to fully detailled model.

Whez we move from the data flow to the program design, we will have to do three levels of

factorization:

1. identify all input controllers, all output controllers and the transform center as the three main

modules.

2. map each individual node of the data flow into corresponding modules. Begining at the
transform center, and moving outward along incoming, then outgoing paths, map transform

into subordinate levels of procedures.

3. Apply common sense and good design strategy to cleaa up the final desiga, mostly regrouping

or refining some modules.

Note: Transforms are usually of two kinds

1. Pure transform: each individusl set of data is successively transformed into its final form

4 DATA FLOW DESIGN 10

2. Transactional: s single element trigger information gathering and spreading that is not di-
rectely related to the original data.

Figure 5: From datafiow to modules

A distributed, microprocessor based patient monlioring system
Is to be devslopsd for a hosplial.

Patient log

Figure 6: Example of successive refinements of the data flow for a patient monitoring aystem, global
view

4 DATA FLOW DESIGN 1 5 DATA STRUCTURED DESIGN 12

Pallent bounds

5 Data Structured Design
Vital signs

Vital signs bounds Data Structured Design emphasizes the {complex) atatic relations between the elementary data.

It is best applied when the data have & well defined, hierarchical structure.

Patlant data

Use a structure that maps the real world.

Cenirsl

monitoring Formatted Separate the logical structure from the software implementation that is language dependant.

patient data

Postpone any unnecessary detail to the lower levels, hide them to the higher ones.
Waming message

Use stepwise refinement to go from global to atomic data.
Updala

\ At each level, associate the possible operations like
og

file open, close, rewind
record read, write, modify, lock
Raport ! element compare, 3ero . ..

generalor
Raquest
for reporl
Log data

| Patient log

Patlent

data Patlent bounds

ey

Evaiuate
bounds

violation Blood pressurs,
lamp, and puisa

Blood
prassure

Produce
waming
message

Formatted patlani data
Warning message

Figute T: Two successive refinemnents

6 OBJECT ORIENTED DESIGN 13

6 Object Oriented Design

6.1 Overview

Object Oriented stuff is one of the latest invention in the trend of better software developments.

Aa object is a component of the real world mapped into the software domain with both data and
operations.

An object is made of three components:
1. Data structure
2. process on the dats (operation, manipulation)
3. invocation — message passed to the object to get something done

o The data structure and the algorithms used for the operations are both completely hidden to
the user.

The user knows only the name of the operations, and can only send “messages” about what
should be done and not how ar any further detail.

o All objects belong to a class of similar objects and inherit the data structure and operations
defined for that class. An individual object is an iostance of the larger class, for which we
need only specify how the new object differs from the class.

So we can build a catalog of “software [C*, objects created by reusing more general classes and
adding refined data structures and operations.

6.2 Object description

1. Protocol description (for the user) establish the interface by defining each message the
object can receive, and the related operation the object should perform when it receives the
message. This is made of the message name (= procedurs name), with the formal list of
parameters, and carefully documenting comments that describe informally the message.

2. Implementation description (for the implementar=vupplier) show the implementation
detrails for cach operation, including data structure and procedures.

This produce so called encapsulated data structure.

6.3 Methodology

Note: This applies to any level of the design, including the whole system.

1. Define the problem precisely, but informaly
2. Develop an informal strategy for the software realization of the warld problem
3. Formalize the strategy:

{a) identify objects and their attributes {data, procedures etc)
(b) identify operations that ¢an be applied

& OBJECT ORIENTED DESIGN 14

{c) establish interfaces by showing the relationships between objects and operations
{d)} decide on detailled desiga that will provide an implementation description for the objects

4. Reapply steps 2,3 and 4 recursively until a complete design is created (- inheritance)

Note:

use the same word for similar messages, example: READ for diak, tape, keyhoard, switch, ADC
elc,

e common nouns in iaformal strategy correspond generaly to classes, proper nouns to instance
of a class.

verba, predicates, correspond to procedures {messnges)

objects can be made of data but also of processes. Example of message to process: START,
STOP, WAIT, DIE etc.

if two or more objects are required for an operation, then determine which object’s underlying
implementation (private part) must be known to the operation (example: ADD a record to
a file, add belongs to the file, not to the record).

o if an operation requires the knowledge of more than one type of object, then the operation is

not functionally cohesive and should be rejected ...

6.4 Graphical representation for OOD: Booch diagram

Dala oblect(s)

L~ body

Operations T

6.5 Package

A Package in 2 coherent set of data objects and operations. This concept was introduced in modern
languages Lke modula? and Ada. Then the only thing available to the user are the Lists of messages
to create instances of objects and manipulate them.

For example, & package for vectors and matrices will provide tools to define, read, write matrices,
add, substract, multiply, invert, transpose them, calculate eigenvalues and vectars, perform singular
value decomposition etc.

An other package for strings will provide similar toohs to define, read and write them, concanate,
truncate, trim, search ...

A third package could help with histogrammes, clear them, add new values, print them, send them
to an other graphic package ...

§ OBJECT ORIENTED DESIGN 15

NC « software

Commands

Opaerator - command

NC - blocks

NC - block - butier

Origination - paint

\—' NC - program - flle

I
| Nc.prognmmn.struclunj

Controt - words
Control - words

8.8 Remarks

The first computer languages (algol, fortran, cobol) put alf their effort on algorithms and program
structures. The next generation (pascal, etc) introduced the notion of data structure into the
language, but would not provide the tools to bind together dats and operation on them. The
latest ones (algoi68, moduls2, Ada etc) have added the notion of package as seen above, whithout
specifying the entity of objects. C++ and ObjectC are preprocessor implementation of objects for
C leaving available all the power {and pitfall) of the underlying language. NEON (a forth extension
dialect with objects) coutd be a nice experimental system to work with the notion of objects,

The MACH operating system from the Carnegie Mellon University, » unix derivative used for the
NEXT workstation, is entirely based on objects.

In = other ares, Objects with their data and operations are now recognized 22 basic elements in
relational data bases (Ingress}.

A lot of discussion is still takizg place concerning inkeritance of procedures. Should they take place

8 OBJECT ORIENTED DESIGN 16

at compile time (early binding) or at exccution thme (late binding)?

While Object Oriented Languages may not be available, Object Oriented Design methodology can
be used manually for all the implementation on any langusge.

6.7 Summary

An object is a nice way to do data abstraction and procedure hiding.

An object lets you see only WHAT (what is the object, what can be done with it) and not TOW
(how it is implemented, how the operations are done).

At the same time, it clearly separates data and operations on them, and explicitly defines the
interface between the varicus objects.

Tha main advantage of 00D, if it is done in & clean way, is that both the data structurea with their
attributes, and operations can be changed, updated, adapted to vew extended conditions without
impairing the reat of the program. This is certainly a key advantage when the external conditions
(real world, bardware) are changing much mare rapidly than the programs themselves.

? DESIGN FOR REAL TIME SYSTEMS 17

7 Design for Real Time Systems
Real Time Systemn are chazacterized by:

o parts of the opezations are drivan by incoming events {dats, interrupls, alarms ...}, that
must be served in time,

s the whale aystem is made of many tasks that run concurrently, synchroniting themselves with
others, starting new tasks, killing others atc.

‘ » data must be exchanged rapidly between tasks, with locks when necessary.

All the methods described earlier can be used for Beal Time, providing one adds timing informations
to dats flows, data structusres that can be shased or exchanged between tasks, and synchronization
operations.

7.1 Synchronization and Communication

Synchronization and communication use generally variants of the following tools: semaphores,
mailboxes, messages.

Semaphores have been introduced very early by Dijketrs for THE operating system. The idea is to
have a set of global variables, aad two "atomic* (that is when started, the operation will aiways be
termipated before any other operation is started) operations on them: procure and liberata.

procurs(av) looks at vasiable av. If it is zero, it is set to one and the operation is terminated.
If is is not zero, the calling task is suspeaded up to the time it becomes sero agin.

libarata(ev) reset sv 1o sero.

Suppose » task T1 wante to write into a buffer X, sa other T2 to work with X when it is ready,
without being disturbed by T1 or any other.

Then wa create » global varinble of, initialized to cne. T2 will try to get X with procura(eX),
but will be suspended. T1 will write on X, thea liberate(eX) and T2 can work on X. T1 may
waat now X again, using procure(sX), but it is locked, and it will have to wait for T2 Lo execute
liberata(eX) etec.

A mail box is just what we have bullt above, the associstion of a semaphore and & buffer in-memory.

Note that both semaphores and mailboxes can be done in scfiware or in hardware, in particular
whes many processors need to be synchronised.

In the third case, one process sends a message to another one. The later is automatically activated
by the operating system to process the message. The first may wait for an answer or continue in
parallel with the others.

“Mesanges™ can be real buffers, or just pointers.

Finally, all the previous tools ate very effective to handle task synchronisation dynamically, in an
asynchronous way. This may not be the mont efficient if the system ls predominantly cyclical, with
few or no asynchronous events. Thea & careful analysis of the flow, with good timing inlormations,
can produce s very efficient static system without any synchronisation. Such a system is of course
very rigid aad very sensitive o jitter or glitches in the events.

