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1.  INTRODUCTION

The state of the atmosphere is adequately characterised by the
ambient pressure, temperature, humidity, wind direction and speed
at various heights above a large number of fixed observing etatione
all over the world. These 'field variables' are assumed to have
unique values at each point. Furthermore, their derivatiwes are
also assumed to be continuous functions of gymce and time. The
fund-mentsi laws of fluid mechanics and thomcs which govern
&timospheric motions can then be expressed in terms of the partial

differential equations involving these field variables.

The fundamental laws are embodied in the phylic.al pringiples of
conservation of momentum, mass and (heat) energy. The form of the
equations 1s such that there exiamts no general sclutions to them.
Nonetheless it iz possible to obtain solutions to them for gll time
by the values of the variables at any instant and at every point in
the atmosphere. In principle therefore, this provides the basis for
‘mathematical' weather prediction, for the system of differential
equations only need to be integrated in time, etarting with known

initial conditlons.

However, because the set of equatione governing atmospheric motions
is very complex, it is necessary to develop models which are based

on systematic simplifications of the fundamental equations., Thus,

once a closed set of prediction equations relating the field variables

are known, the two other types of information required to predict

the future state of the atmospheric circulation are:

{a) the jnitial state of the field variables
(b} a method of integrating the equations in time
to obtain the future distributions of the field

variables.

In the following series of lectures, we shall therefore be concerned
with the development of ihe various complete sets of equations
contai!;ing the scalar field variables. The complete system of
scalar equations contaln the six unknowns p, T, u, v, o¢ and w

and represent the so-called Primitive Equations. An introductory
preview of the requirement for an initial state of the variables
will aleo be given, as a background to the Objective Analysis

lectures.

2, TEE _PRIMITIVE EQUATIONS

For dry air, the primitive equation set in the (x, ¥, 2, t)

coordinate system way be written as:
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¥ is the total wind vector, with components (u,v,w) in the east-
west, north-south and vertical directions respectively, 0(('-: #) is
the specific volume, Q the rate of heat addition (which depends

on the physical processes of absorption, radiation, condensation

and eddy heat conduction), Cp the specific heat of air at constant
pregsure, f the coriolis parameter ( = 2S1sin8, @ 1s the latitude)
and F is the frictional force, Fquations (1) - {6) comprise aix

independent equaticns in six pcalar unknowns u, v, Ty p, o and w,

In the full primitive equation met, some inertial terms also appear
on the right hand gides of {1) to {3). They arige ms a result of
the curvature of the earth but are negligibly small. The full

derivation of these equations are given in Holton (1979).

Aa expreseed, the primitive eguaiions represent a aynthesis of
(a) Newtons second Law for horizontal motion
{b) the ideal gam equation
{¢) the First Law of Thermodynamics, and

{4} the Law of Conservation of Mass

The diabatic heating ¢ and friotion F may either be specific as
(known) external parameters or expressed im terms of the dependent
(field) variables. If latent heat of condensation is important as
a heat source, then modifications are necessary in the equationsof
state and the Firat Law of Thermedynamica. Also, an additional
equation for the congervation of moisture would need to be

incorporated into the equation system.

3. THE BQUATIONS IN OTHFR COORDINATE SYSTEMS

The primitive equation set (1} - (6), expressed in geometrically
fized (x, ¥, z) coordinates make physical interpretations easy.
Nevertheless it is mathematically more convenient to express them in
other coordinate systems for reasons which will be enumerated in due
courge. The assumption, which is generally true of course, is that
large-scale motions are in hydroetatic equilibrium, that is, vertical
accelergtions and the vertical component of the coriolis force are

negligibly small,

Consider then a generaliged vertical coordinate T(» vhich is a singlee
valued menotonic function of pressure p or height z (Kasahara, 197h).
In the geometrically fixed ccordinates, IC = T((x, ¥, z, 1) but in terms
of T{ as the vertical coordinate the height 2z is the dependent variable.
Thet is 2 = 2 (x, ¥, 7, t}s ‘Therefore any other dependent variable

A (either a scalar or vector) is given by 4 (x, ¥, z, t) or

A(x, ¥4»TC , t). Thus, we may write

A (x, YW t) = A(x, ¥, 2 (x, YT t}, t)

Differentiating partially with respect to an arbitrary S = S(x, y or t)

gives
')A} — 2 7_)
(_a__s_. = (%.2.) + _b_&. (%_; conens (7)
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and 2 or W denotes a particular vertical coordinate.

2 2ah 2z
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Using (8) in (7) gives the transformation relation

(2'&)' - (-aﬁ) + ..B.-i—\..?_!‘ _a_:.?' e (9)
IS s )z F AR TACTY, J

A simple physical relationship between S, TU and s is given in Fig 1,
A

£s

A o Ti€ 1 - Transformation of the a.buuont
of 4 to J{ coordinates
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Since T is the new independent vertical coordinate, the total

derivative now is
i = U@)ﬁ okl okt * o
A L “@: +v€ﬁ)ﬂ+ -n%......(wa)

oY c\ﬁ L S Y-<LA + 11'%% eeeees (10D)

if now § = x, 8=y and 6 = t alternatively, then from ()

@_}L = L.%%)L 4 %_% g(%i)“ ceesss (11)

_3_6_)' —_ é_ﬁ;) £ R rYiS 32—) ceeene {12)
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(24 = z»_A_) + 2R 2T 2z
ot 2t _ T —-‘2—. 1’ veeean {(13)

From (11} and (12), we have that

VA = A +2AMGz

The transformation relations (10)to {14) will be uged to cbtain
the primitive equation set (1) - (6) in the two other ccordinate
aystems in which they are commonly used for numerical weather

prediction pupposes.

.31 THE IS0BARIC COORDINATE lcm Jlsx E)

The direct application of the unaimplified primitfve equations
Tesults in the introduction of wnwanted noise by large-amplitude
sound and gravitj.wekea: wbich may result from errors in the initial
data. The waves then amplify spuriously leading to the loss of the
meteorologically important motions.. The easiest way to remove these
undesired gound waves is by the application of the hydrostatic
balance which, as stated before, is an assumption of quasi-horizontal

flow. In such a case, the equations can then be written in pressure

coordinates.

When the expregeions (10) - (12) are applied o equations (1) and

(2) with 7C= p and A = u or v, the horizontal momentum equations

become

W = —yFu - to ~2 L IV R e (09)
AV /. _ —_ 0P _
T m% 35{) ety (16)



with hydrostatic balance, using (8) and putting @ = gz, the

geopotential, equation (3) reduces to

& = +P—-{E ceenes {17)
op

The continuity equation becomes

?,0_0.. + v,‘y =0
ap

The reader iam referred to Haltiner & Williams (1980) for detail

sesense (1B)

derivation of (18). The remaining equations for the complete set are
GL®) = @ ; g=7 L—&)t ceenee (19)
P

Pt = RT reeres (20)

vhere € is the potential temperature and

Tt = df =
dx

is the pseudo-vertical velocity in preseure coordinates

— 9
w= +yyp !

The =ystem (15) ~ (20), though free of undesired vertically
propagating sound waves, can still support horizontal so-called
Lanb waves which have their maxigum amplitude at the lower
boundary (ground) and which decay upwards,uith hydrostatic
balance cbtaining everywhere. The isobaric formulation applies
quite well in removing theee waves with the use of the condition
(D= 0 at the lower boundary. This condition, together with the
specification of hydrostatic balance, completely filtexgout gound
waves, However, the system of equations still allows gravity

wave propagation. We will deal with this problem next.

In spite of the above, some of the advantages of the isobaric
coordinate system have now become obvious in equations (15) to (18).
These are that:
(8) the continuity equation takes a simpler form
(b) denaity no longer appear explicitly in
the momentum {time-dependent) eguations
(c) the equations can be applied to the levels
vhere meteorological data are normally
referred and, more importantly,
{d) unwanted sound waves, which can amplify spuriously
vhen equationg (1) - (6) are integrated in time,

have now been completely filtered out.



341.1 Filtering of Gravity Waves

One of the important conditions for gravity wave propagation ia

a changing and divergent horizontal velocity field. However,

it ie not 'immediately obvious that the primitive equation get (1) -
(6) or (15) ~ (20) contain the time variation of divergence,

This can be made to appear by obtaining the divergence and vorticity

equations from the horizontal momentum equations,

Equations (15} and (1€) are first combised into the vector form,
neglecting friction P

vees (21)

2t

The advection term can be rewritten as

MY = (§vy) + ks

where f 5 Vh'\J in the vertical component of vorticity, or

simply relative vorticity. In the atmosphere, large-scale flows

T = WY - ol 9 gy

are quasi-horizontal as the vertical velocity 1s much smaller than
the horizontal components, making the vertical component of vorticity
of prime importance. Hence only the horizontal wind vector and the

vorticity component‘%' are moetly needed, Equation (21) then becomes

3‘:

Operating on (22) with k.VA and V. alternately give the vorticity

and divergence equationg, respectively.,

N V(‘If’ +dv V) A\[(‘?-b{:)—wg% e (2)

_g;i_ = - V. V(ﬁ‘tf)" oo_} GV vens (23)
+ k. Nw)

10

oD _ _.v"(fpt_ly.y) "‘V'[EAVC;H')] cavne (24)

dE
. a:%‘_? -2y
were D = ],y P op B
Equations (23) and 2l) are independent scalar equaticns that can
be used to replace the two scalar momentum equations (15) and (16)

in the prediction set.

In order to filter out the timewdependent gravity waves, it is
sufficient to neglect the local rate of change of divergence
in (24). However, it is more advantagaous tc uase scaling
arguments to neglect all terms whose magnitudes are smaller
than v2¢ in order to remove the gravity waves, To do this,
let the wind ¥ be partitioned into its nondivergent *and

irrotational V.. parts such that
Y = Y‘P + V, creees (25)
vhere VA}J_Y =0 AVA -\_/\" =0

Then, for two-dimensional flow (since for synoptic-scale motions,

vertical sccelerations are negligible), a stream function ll)

may be defined such that

Yq; = K.V eveses (264)

giving u'y = - 'B 3 VP = _@P
" (.3
% = k.VV = VQ'P ceeess (26Db)



Also as stated above, the velocity field ¥ ims quasi-nondivergent

for mid-latitude motions (V-! < (0"‘" e.“')

go that

l\ltp, > Ye

With all these, scaling analysis leads to the equation

V(P vtyy) = Vv

Using (26a)and (26b)gives the non-linear balance equation.

V"{qﬁ +%W‘P)l} = V{(‘F ""VI‘PJV‘P] ceeees (27)

The balance equation {27) is not usually used in numerical

weather prediction in the middle latitude because of its complexity.
A reasonable approximation to (Z‘i). again for synoptic scale flow,

is the so-called linear baglance equation

vip = V() veeee 28)

By similar argument, the vorticity equation (23) may be shown

to gecale down to

%?{: = —NVEH) —Ff V¥, e @

Note that ?;«-F for the mid-latitude cauze butZ"-F in the

tropica. However, outside precipitating (deep convective) systems

'q')[,'—_“: lo"h <! g0 that (‘z -(-f—) ’V_\! ~ |o“13-l

|12

Hence () further simplifies to the well-known barotropic

vorticity equation

‘b t— secene (30)
This equation has been nged, with pome success, in studying
the evolution of troplcal synoptic scale disturbances. We

shall be dealing more with this later.

Though rather complex, the non-linear balance equation (21)

ie the more appropriate in the tropice where the stream function
(P cannot be evaluated from the geostrophic vorticity, as
implied by (24), for a constant mid-latitude coriclis parameter.
Solving the non-linear equation ('.1']) at every time step ie not
only difficult but also involves considerable computer time,
Becauae of all these and the fact that all the assumptions
(quasi~geostrophy etc} limit the accuracy of the prediction even
in higher latitudee makes it desirable to have predictive models

with less restrictive assumptions.

3.2 THE SICMA COORDINATES (case T =T)

Although the advantages of the {scbaric aystem have been listed, a
rather important disadvantage of thip sytem is the assumpition that
co(ps T fgwu,) ae the lowsr boundary condition.

This assumes that the height of the ground g, coincides with

the pressure Py {usually taken as 1000 hPa), But this is not
gtrictly true even if the ground is level, As the height of the

ground generally varies, it is not correct to assume that the



lower boundary condition applies at a constant py+ Moreover, surface

pressure also changes with time. Thus it should atrictly be

Pg = Pg (X4 ¥y t). However, it is not convenient io have a

boundary condition to be applied at a horisontally variable surface.
This is the basis for the Bo-called sigma coordinate system which

is now commonly used in numerical modelling. In fact, most primitive
equation modals currentily use sigma as the vertical coordinate,

This was introduced by Phillips (1957).

In the sigma syatem, the vertical coordinate is a normalised

Pressure, viz,

Y
= A
where Py iz the surface pressure. Thus ¢, a Bopdimensional
vertical coordinate, takes the value (J= 1 at the ground where
P = Py, and zero at the top of the atmosphere. The lower boundary
condition will therefore alwaye apply exactly at "= 1 and the
vertical velocity &= dO‘/dt will alwaye be zero at the ground

even when the terrain is not level.

Applying traneformation {11) withq("=¢j~and 2z = p, we have that

(%xi\]"" = —:?ﬁ)? + % %Es__a_g cenee (31)

RY 3y

or, in vector form

VA = VoA - Zyp o (z2)

IE BN 6 row agplied © U5) and (16) tmes  ormiingd afzex
nQ.S\L‘E\V\% o fddion tem, we  olbotein

?E_&) — zﬁ) 4+ o, ap veene (3%)
& P

S

B = (VW)Y D -0 + aiyp 2f . (24)
rY s [ 20

14

The hydrostatic equation is obtained by applying (8) to (17).

The result is

?'i *Q_?s = O cveses (35)
20

The continuity equation is obtained as follows., Firatly apply (8) to
(18) to get

D —
_(\)SLV'Y);» + % —° veenes (26)

Now, in the g -coordinates, the vertical velocity (- is given by

¢ = AT = 0T 4 V.Vo 40020

ak 2% ?
— -~z (2k + vve) —_—
(G L) -

Hext, differentiate this w.r.t o and rearrange to ges

Qo 24 af, + V.V o .B_!'-'VP
da P$ o * ('_);—l_: ¥ Ps) al W °
Using this last expression and (Q4) in (36) finally gives the

transformed continuity equation:

%’% = —V-(y) - %% eees (38)

Note that 3f9 V5 =0, since ?s =F' K(O‘),Thc boundary conditions

on the vertical velocity in this r=-:system are:

at the surface G- =0 as P = Py glvingo =1

at the top of the atwosphere O~ =0 as p=o hence o =0
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Equation (38) can be fntegrated over the entire atmosphere, using

the above coﬁditiona. to obtain the surface pressura tendency equation:

oF _ _ V(L) Ao ceees (39)

2t
o
Integrating (38) froms =1 to an arbitrary level & gives the vertical

velocity ot the level o « Thus

Rs = -C"_'%%- — E;l.('gg)aq- ceeens (40)

Finally, the thermodynamic eguation becomes

b

Equations {34), (35), (39), (Lo} and (L1) contain the eix independent

20 — —(V Ve —& 28 + 06 ... wy
20 <

scalar variables u, v,&, 8, and P, snd they represent the complete
set of primitive equatione in sigma coordinates which can then be used

to predict the future state of the atmosphere.

Alternatively, equatioria (34) and (L41) may be written in their
flux forms, which are commonly used in the numerical integration.

Multiply (41) by Ps and (38) by € and add the results to obtain

%;(29) = —V.(PSYB) “%_({’sd‘g') +%§-Q ceeens (12)

Next, expand (34) into its components, multiply each in turm by Pa,
next multiply (38) by Wl or V and then add together to get the flux

forme of the momentum equationai

2 (&) = -V{puy) - 2 (Rus) +for

3d’+0‘_¢2??

_B,_.(psv) — ——'\7(9 VSL —-_@_ (? VCS') - ,gvsu
*“?——43 + c‘yﬁ_a& verres (L)
Y- '33
The alternate primitive equation set in flux forms now comprises
equations (35), (39), (L0), (42), (L3) and (L4). Note that an
immedinte result of the condition that 0= 0 at r= 1 is the
concise form (equation (39)) for computing the surface preseurs
changes. Once bsz{- is obtained, it can be used to evaluate the
vertical velocity O from (40) and hence the terma ,_?_)_0_( z&—g.) in

equation (42) and similar terms in (43) and (LAL).

k. PRIMTTIVE EQUATION MODELS

Having assembled al) the equations needed in the various coordinate
systems, we will next briefly diamcusa the several variants of
numerical prediction models which utilise the primitive equations and
which are in current use, In sections L.1 and 4.2, models specially
suitable to the tropical regions are discussed while section L.3

deals with medels fommonly used in the extra-tropics.

4.1 ONE-LEVEL MODEL

This model which allows divergent motions and im based on the shallow
water equations le alsc known as the divergent barotropic model., It
is the pext in hierarchy to the mo-called barotropic model whose
equations are different only for the mass continuity. It is & special
case of the shallow water model presented by Pedlosky {1979). 1In

the present case, there is no bottom topography, that ie, the terrain
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height h is zerc,
The model containe three unknowns u, v and z (or #).

The eguatlons are

W = —VVu +4{v—q 3=

bt W ssesae (h5)
AN D _fu — q.0% ceenes (46)
o YUy —fu 335

and the continuity equation
‘?_E' oot — y‘.v\\i -_ ZV'M ssevas (h?)
oL

viere & is the helght of the free surface andV, is the horizontal
del operator. Except for the maws oontinuity equation (47), this pet
(45} ~ (4T) is the same as for the non—divergent barotropic system,
However, the latter model employs the more convenient and
differentiated form of (LS) and {46) as given by (29). 4is alresdy
diacussed, the system allows for the propagation of gravity waves
which, as part of the system, can grow spuriously as a result of
imbalances in the initial data. The method of solving this problem
will be discussed under Objective Analyels of Meteorological Fields
{Tibaldi, 1990).

The initial values of the free height = (or the geopotential #) is
obtained by solving the non-linear balance equation (27) which we

can also be written as:

V°'¢ = V4VYy + Qj(%%,%‘{’) cerees (48)
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where J is the Jacobian operator. The initial fielde of u and v are
cbtained fron streamline and iscbach analysis. Bquation (L8) is called
the reverse balance equation because the pressure (geopotential) field
ig determined frony the motion field, as againet the mid-lgtitude

situation where the preesure field is used to determine the wind fisld.

Because the phase velocity of the gravity waves relative to the mean

flow is given by

C = Ut ?Q’& ceeeee (49)

the choice of P {or 3) ia very crucial. From the work of Williamson
(1976), the wean height = was fized at 2000m, which is seeumed to
represert the height of the 700 hPa. The molution of the reverse
balance equation is then followed by dynamic initialisation to bring
the initial mass and wind fields into a etate of balance. This is

usually accomplished by repeated forward and backward integration.

Full details of this model (and the version with bottom topography
in section L.2 below) can be found in Krishnamurti and Pearce {19711},

Adejokun and Krishnamurti (1983) and Krishnamurti {1986).

L.1.1 DOMAIN INVARIANTS OF THE MODEL

In developing a numerical model, it is very important to ensure that
it conserves the integral properties of the flow when the model
prediction equations are put into their finite difference analogue.

It is usual to place emphasis on the flow properties in & closed domain
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into and out of which there can be no net mass flux, since it ia

within such a demain that the evolution of the systems are best seen,

Consider then the vorticity equation (29)

?efq — __YM.V‘% AR verees (50)

where z = S-I- f and ¥, is the horizontal wind. The divergent

term can be removed by the use of (41}, wih 4me ~resull

2(%) + V(%) =o

or _Sli(g_‘ — O esanse (51)

Equation {51) etates that the potential vorticity '?P( -E [z} 1s a
domatn tmvartant. By mltiplying (51) b 1° ™'/a, 1t can be shown
n

n
that -ga is alsc an invariant.

A third domain invariant 1s the height of the mean free surface z.

We first note that the continuity equation (47) can be expressed

in the form
%%; '\'V'(Z.\.Jh\ = O

Integration over a closed domain yields

2ffzaxy =0 o

YTet another domain invariant is the total energy E. This can be ghown

as follows. Multiply equation (45) by u and (L6) by v and then add.

a0

The result is

’_2_*:_ + MYk = —N.VY(g2) veeeen (53)

Now, multiply (L47) by (k + gs) and (53) by = and add to obtain:

%[L(M 3;-:)] + V.V(ke) = 2(x +§)VY + 2V-Vgz =0

This can be rearranged to give the flux form

%[z(“%)] + Ve(azyd + V-(\ g_i_‘) =0

Integrating over a clomed domain leads to

%_ ngZ(k_r g_;t-tﬂ o\xa‘\a = O e

showing that the total energy E = z(k + 32/2) is an invariant.

4.2 ONE-LEVEL-MODEL WITH TOPOGRAPEY

Thie is an extension of the above model with the height of the bbottom

terrain h incorporated inte the equations. Theee are

U

e p——

l

— ¥, Va +4y — 3%(1%} venes (85)

> o

i%- = .__\_]h,v\; _...Eu _—3%(_7_*\0 veenas (56)

%TZ.: _ )_L-Vz — 2V, veeere (ST)

h is the smoothed mountain height.
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Fig 2 One-level with terrain height h
and mean fres surface height s.

L.2.1 INVARIANTS OF THE MODEL

As already presented for the special case of no bottom topography

alﬁr_e (1.0 hwe), the pattel and domain invariants are the potential
vorticity‘?., its powera (e.g?:) and the total energy E'. In this
case however E' = 2 (k + g%/2 + gh), Proof of these are similar to

the cage h=o.

The two models described so far are widely used in the tropics.
However, their performances vary from one region of the tropics to
another. Discusgsion on their performance can be found in

Krishnamurti et al {1987) and Yap (1987).

Attention will now be focussed on the primitive equation models that

have become popular in the extra-tropics.

L.3 THE SIGMA-COORDINATE MODELS

Most current primitive equation models use the prediction equaticns
formulated in the sigma (o) coordinates, The equation set are (3L},

(35), (39) - (41) or their flux forme (35), {39), {LO) and (42) - (LL.

20

One of the ipportant advantages of such models is that the variation

of static stability parameter with time (an important atmospherie
property} can be evaluated by computing 387“‘ explicitly at each

grid point and each time step. This pa_,rmtqr is usually specified as -
a constant in gquasi-gecsirpphic models, Thare are currently two
versiona of the primitive equation models in sigma coordinatess the

two~ and six-layer models. A brief summary of these are presented here.

4.3.1 TWO-LAYER MODEL

In this model ,~4he atmssphere is-divided into two layers with the level
aurrace:'la.bened_“_o {awound), 2 and L. Each layer is then

gubdivided into two with their mid-levels labelled 1 and 3. The
momentum and thermedynamic equations { (L3}, (L4) and (L2) respectively),
which are prognostic, are alpplied at levels 1 and 3. Initial data for
the model (u and v) are obtained from the non-linear balance equation‘
{21) since, for the mid-latitude case, the geopotential ¢ distributions

are usually known.

3_ ——— — —

h)/}///{ﬁ//////l 777 a1

Fig 3 Vertical differencing Scheme for the two-layer
model
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To make a forecast with this model

{a)

(b}

(c)

(4)

the finite difference analogues of (L2) - (ih)
are firat written. (Thie will be shown in the
present workshop by Pearce (1990).

step (a) is repeated for the surface pressure
tendency equation (139).

new get of valueg for uy, vy, 01, Uys V3 03
and Py are computed ueing suitsable time
differencing, The time step must be very

small and should satisfy the condition

— X
A = v veeeas (58)

¢ is the speed of the sound wavee.; This
criterion takes care of the gravity and
horizontal sound waves which are present in
the primitive equations.

the new values of uq, ¥4 9y etc are then used

to evaluate 0, #, and f3 disgnostically.

L.3.2 THE SIX~LAYER MODEL

This is a more complex model used for operaticnal numerical prediction

by the United States National Meteorclogical Centre. As its name

suggests, it has six prediction levels in the vertical with a modified

" - system which allows better regolution in the stratosphere, In the

model, the vertical coordinate G~ is glven by (Arakawa and Lamb (1977))

o = P'—'Pm

[(ET R T (59)
_rt

.;]

r

where

n =

Py and Pp are constanta,
Thus

o
=-1, P = B

and hehavee like the previoualy described (b below Py but as
p-coordinate above Py When P, = Pp = 0, we recover the original

0 - coordinate.

o= -t

p = conat , ¢y = const

¢—f$——>

O = const

—
q

Fig I Layer definition in the model

The injtial data for the model is also obtained from the balance

equation (M).

The egix-layer primitive equation model ia suitable for both limited

area prediction and general circulation studies.



L.l SPECTRAL MODELS

Having described the common current primitive equation models, we

conclude this lecture series with a short summary ef spectiral

application to the primitive equationa in numerical forecasting.

In the spectral medel of the primitive equaticns, the momentum
equations are replaced by the vorticity and divergence equations

(29) and (24) but here written, respectively, in the forms

&= —v{Ey]

sevess (60)

-2—'5 = —-'Vg'(gb +ﬁ¥-!) + g.V,Eiﬁ)i]...... (61)

Note that the divergence equation has been scaled so that the last

two terms of equation (24) are neglected. Also,

V o= VE + k.VUp veeses (622)
g’ = V% 5, b =V17. (Vy*:o) (62b)

Equations (60) and (61) are mere convenient and simpler when spherical

and

harmenics {(of erthogonal functions) are the basic functions. Alse,
the resulting (ordinary differential) equations then contain only

Scalar variables.

Further details of the use of spectral technique in the primitive

equations numerical prediction can be found in Bourke(1972).

ab
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