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1. INTRODUCTION

Numerical weather prediction is generally performed by
numerical integration of the hydrodynamic equations
governing atmospheric motions. Therefore the differential
equations taking a grid point model for example are
approximated by finite difference equations applied to a
grid of finite volumes. In contrast to the original
differential equations which describe the whole spectrum of
atmospheric motions the finite difference equations of a
grid point model describe only those scales which are
larger than twice the grid length. For practical reasons
the grid length in numerical forecast models cannot be
reduced very much below 100 km and therefore atmospheric
processes of scales smaller than 100 km are excluded

from those models. However, small scale flow affects

the mean flow as for instance considerable amount of

water vapour, sensible heat and momentum are transported
by turbulent and convective motions. The effects of the
subgrid scale flow on the mean flow may be ignored for
short forecast periods of up to 1 to 2 days but they
become increasingly important for longer periods and must
be considered in models for medium range forecasts and in
general circulation models. Since subgrid scale processes
are not included in models only their statistical effects
on the mean flow can be taken into account. The statist-
ical contributions by the different processes must therefore
be expressed in terms of the large-scale parameters them-
selves. The mathematical procedure involved is generally

called parameterization,

In the following section the problem of parameterization
shall be discussed from a general point of view, i.e, in
relation to the scales of atmospheric motions.



2. THE SPECTRUM OF ATMOSPHERIC MOTIONS

Atmospheric processes are generally observed over a broad
spectrum ranging from microturbulent flow to planetary
waves. Fig. 1 gives an idea of the characteristic time-
scales and length-scales of several types of atmospheric
processes. We notice that microturbulent processes have

a characteristic length scale of 1 m, cumulus convecticn
has 1 km, deep convection 10 km, mesoscale processes like
tropical cloud clusters 100 km and synoptical disturbances
1000 km to 10000 km. In addition Fig. 2 shows how the
energy is spectrally distributed near the surface. The
spectrum shown is the classical spectrum of horizontal
wind speed given by Van der Hoven (1957). The spectrum
fs(f) has a maximum at high frequencies (f =~ 50) which
corresponds to microturbulent flow of length scales of
1mto 100 m (f = 1/ 1 is the frequency, 1 is the period

of oscillation, s(f) is the spectral energy density).
Another maximum is found for very long periods (1t = 4 days)
which reflects synoptical disturbances. A third weaker
maximum appears at a period of Tt = 12 h which is that

of diurnal oscillations. We also observe a broad interval
of small values around a period of t = 30 minutes with

a corresponding length scale of L = 10 km (L =u .1 )

The smallest scales resolved in a forecast model (L ~ 100 km)
fall into this spectrsl interval, so that the spectral
region around the first energy maximum belongs entirely to
the subgrid scale. For forecast models the spectral
interval of the large-scale disturbances is of primary
interest. There have been many attempts in the past to
derive the spectral distribution of kinetic energy from
observational data, most recently by Chen and Wiin-Nielsen
(1978). The investigations show that the kinetic energy
follows closely a-3 power distribution for large wave-
numbers (Fig. 3). The -3 power law seems to be due to

the two-dimensional character of the large-scale flow.
Three dimensional isotropic flow which is typical for the
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Fig.2 Spectrum of the horizontal wind velocity. After Van der Hoven
(1957). Some experimental points are shown on the graph.



small scale turbulent processes on the other hand shows a

- 5/3 power distribution. Both distributions are valid
only for inertial subranges of the spectrum where kinetic
energy (or enstrophy) is merely transferred from the larger
scales (where production occurs) to the smaller scales of
dissipation. Theoretical aspects related to this problem
are reviewed by Lilly (1973).
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Fig. 3. The kinetic energy K for the total atmosphere
as a function of a two-dimensional spectral
index (n) plotted on logarithmic scales.
(After Chen, T-C, A, Wiin-Nielsen (1978)).



3. TEE NON PARAMETERIZED EQUATIONS

In a forecast model only the large scale flow can explicitly
be prescribed. The differential equations of motion must
therefore be rewritten in such a way that the time evolution
of the mean flow as resolved by the grid is prescribed.

This is achieved by averaging the equations.

For simplicity we consider here processes in dry air. The

equations of motion are then

a{ew)
3t

+ v-(pyw) = - Vp - pPV¢-2axpw+ I (1)

Mass continuity equation

Bt ' (2)

3L§%l + 9 (P we) =p V-w+PQ+¢ (3)

p = RoT (4)
here
P = Dpressure
W = velocity
= density of dry air
_ 1 : ea
a = E specific volume
¢ = gravitational geopotential
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The frictional force F resulzs from a convergence of
viscous momentum flux as
F=v .P {5)
where P is the stress tensor with the components
9 auy auy u .

P..=u[ 6. . -« + J)]
ij 3 “ij 3%y axj %,

y 1s the coefficient of viscosi-zy, Gij is the Kronecker
delta (5ij =0, if i.* J and Gij =1, if i = j) and
quantities involving a repea:ed index are to be summed

over the index. )

The rate of conversion from kinetic energy into internal

energy due to viscosity is

e =P "vw ' (6)

(the two dots indicate a double scalar product).

The equation for the kinetic energy pk = % sz, the
equation for the potential energy p¢ and the equation
for the internal energy pe follow from (1) to (5) as

alok) V- (pvk+pv - P - w)

T -pW ¢« V¢+p¥Vr w - P vw

: at“') + 7 (oV) = v Ve (7
ag?*“'(p”e) = -p¥. v + P vy +pQ



From these equations we see that time changes of the

different kinds of energy result from

1. Convergence of energy fluxes across boundaries

7 (pwk + pv - P-w)
ve{pv4)
v (pwe)
2. Conversions between thé.different kinds of energy
pV Ve
pvw

e =P ww

3. External heating

Q (radiative exchanges and heat conduction through

the boundaries of a unit volume)

Dissipation of eddy kinetic energy into heat by viscous
flow takes place at the smallest eddies of the micro-
turbulent spectral subrange. Their dimensions range
from 1 mm to several cm and their time periods are
fractions of a second. The viscous flow occurs at the
far end of the spectrum shown in Fig. 2, with £ » 1000.

The prediction equations of a forecast model are derived
by averaging the equations (1) to (5). The averaging
generally applied is the Reynold's averaging which for

one dimension takes the form

8%
2

A(x) = -;—x [ A(x+x') dx’ (8)
AX

2



The original value A is then defined as the sum of the
averaged value A (mean value) and a fluctuation A'
(or eddy value)

A=A+ A', where &' =0 (9)

It is convenient to introduce also a weighted operator

oA (10)

[
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and we similarly have

A=A+ A" where A" = pA" =0 (11)

To derive the equations for the mean motion we make use
of the following rule

XY = 5 XY + pX°¥7" (12)

The eguations for the mean motion follow then as

2eW) 4y, (G + T W-B) = - VB - 5%
- - (13)
- 20Xp W
Continuity equation
8p =3y =
“5‘%*"'("“’)'0 (14)
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Equation of state

p=Rp T (16)
We see that:

The equations (13} to (15) for the mean motion v, ? and e
have the same form as the original equations (1) to (3) for
v, ¢, e and follow simply from those by replacing the
variables by the mean values. However, the equations for the

mean value contain additional terms
Y. (p \Vh \V")
Ve (pe" W)

T

pv: WV
which depend on the eddy motion. The term - ov" v" in the
momentum equation is called the Reynold's stress and acts as
an additional friction to the average Navier-Stokes stress
tensor P. From the equations (13) to (15) we can derive the
equations for the different kinds of energy. As the kinetic
energy splits up into two parts, i.e. those of the mean

motion and of the eddy motion
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the equation for the kinetic energy of the eddy motion must

also be considered. The energy equations may be written as
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As was done for the energy equations (7 ) for the non-
averaged flow, the energy conversions between the different
kinds of energies can be seen from the equations (17) for

the mean flow and for the eddy flow.

In contrast to the differential case there are now
explicit conversion terms from the kinetic energy of the
mean flow to that of the eddy flow and from the eddy
kinetic energy to the internal energy.

{1) Dissipative heating due to viscous momentum
flux.

(2) Generation of turbulent kinetic energy by mechanical
turbulence in a shear flow.

(3) The work done by the turbulent flow against
the pressure gradient, The largest contrib-
ution comes from the vertical component in the
boundary layer as the pressure gradient term is
related to the turbulent heat flux

55 -~ gwe ~ B ooy

Thus turbulent kinetic energy is generated/destroyed
depending on the turbulent heat flux being upward or
downward.
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4. PRINCIPLES OF PARAMETERIZATION

Considering the prognostic equations (13) to (15) for the
mean motion, we are faced with the gemneral problem of
parameterization, i.e. to determine the terms'depending
on viscosity and on the eddy motion. The problem is
generally solved in forecast models as follows:

The viscous terms are not taken into account, as the sink
of kinetic energy of the mean flow due to viscous flow

is small compared to that which results from the transfer
to eddy kinetic energy. Consequently also the warming
effect due to dissipation is neglected in the thermodynamic
equation.

The eddy terms are generally specified in one of the
following three ways.

1. Eddy fluﬁes are neglected,.

2. Eddy fluxes are determined by means of
the K-theory.

3. Eddy fluxes are specified using higher
order closure schemes.

The first scheme is often used in barotropic models.
Neglect of the eddy terms in barotropic models seems
justified, since the energetic conversions in barotrop
flow are reduced to transformations between different
kinds of mechanical energy. Horizontal diffusion is,
however, sometimes included for reason of numerical
stability.
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The K-approach is widely adopted in baroclinic numerical
forecast models. This method is based on the assumption
that the eddy flow yields downgfadient transfer of momentum
and sensible heat. Taking the eddy momentum flux for
example, we would have

W”W” = - E KMW’

where KM is the diffusion coefficient of momentum. The
K-theory is applied to determine eddy fluxes in the
horizontal direction as well as in the vertical direction.
An example of the K-approach is given in the lectures on
the parameterization of vertical eddy fluxes in the
planetary boundary layer,

Higher order closure schemes use prediction equations for
the eddy fluxes pu'x'. These equations are similar to

the eddy kinetic equation and contain triple preducts

of eddy variables. These triple products must be spec-
ified either in terms of the predicted values (parameter-
ized) or again be predicted which leaves the problem of
parameterization at a higher level. A hierarchy of higher
order closure models for the planetary boundary layer

have been given by Mellor and Yamada {(1974).

12 .



REFERENCES

Chen, T. and A. Wiin-Nielsen 1978 On nonlinear cascades of
atmospheric energy and enstrophy in a two-dimensional
spectral index. Tellus, 30, 313-322,

Lilly, D.K. 1973 Lectures in sub-synoptic scales of motions
and two-dimensional turbulence in P. Morel, Dynamic
Meteorology, pp. 353-418.

Mellor, G.L. and A. Yamada 1874 A hierarchy of turbulence
closure models for planetary boundary layers.
J. Atmos. Sci., 31, pp.1791-1806.

van der Hoven, I. 1957 DPower spectrum of horizontal wind

speed in the frequency range from 0.0007 to 900 cycles
per hour. J. of Met., 14, pp. 160-164.

van Miegham, F. 1973 Atmospheric Energetics, pp. 306,
Clarendon Press, Oxford.

13






