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Abstract: Population ecolegy has traditionally relied on
mathematically simple, and usually tractable, models to mimic the
basic dynamics of populations. Parameters in these models ars
not generally tied to physiology, but reflect aggregate
properties of individual behavieral and paysiclogical
characteristics. The models are therefors biologically najve,
with little direct relevance to practical problems of rescurce
management or risk assessment, though they may be useful as
general descriptors of possible population behavior. Models with
higher precision and greater biolegical rezalism include many more
details of populaticn structuring (age, siza, genetics, spatial,
dominance, satiation level, &tc.), but thereby require many more
parameters and assumptions about interactions. These complex
models may work well (in terms of being accurate predictors of
future population sizes and strucrures under alternative
scenarios for a certain time frame) for the few species for which
we are willing to invest the requisite financial and research
resources. However, the structure of the dynamical systems
underlying these complex models is such that analysis of the
general behavior of the model is either precluded or requires
intensive numerical experimentation. Coupling these difficulties
with the fact that the models typically view the habitat
envirenmental variables (physical and biotic) as static,
diminishes the utility of these reductiocnist approaches to
problems on larger spatial or longer temporal scales. What is

needed for problems of environmental policy may well be a hybrid

of reductionist approaches, te indicate alternative appropriate
forms for macrodescriptors of the system on these larger scales,
With top-down approaches which query the policy-makers zs to thae
level of accuracy they deem nNecessary to differentiate berween
the e2ffects of alternative decisions. Ewvaluation procedures for
these models will be quite different‘from those appropriate for

models used mainly for development of general theory.
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INTRQDUCTION

"It is a common fallacy to confuse sclentists' models of
reality with reality itself. A model is a map. A mep is not the
territory it describes."

Richard Casement in Man Suddenly Sees to the Edge of the
Universe.

D2spice a tremendously rapid growth in the development of
mathematical models over the last several decades, in apclication
Lo hosts of scientific areas, relatively little attention has
been paid to the actual practice of testing and evaluating
models. It might be reasonably argued that for much of the
Physical sciences, in which carefully controlled experiments can
often lead to observations with small sampling errors, queastions
of model testing should be relegated to philosophers. Here thera

is ne great difficulty in comparing model results with new



experiments, but rather the concern is with how many alternaktive
such experiments the model is consistent. In the ecological
sciences however, appropriate experiments to test a medel may be
difficult, if not impossible to perform, and often the data
cbtained have so large an inherent variation that they do not
allow discrimination between several different models. It is
oftan extremely difficult to control all variables which may be
affecting a particulacr behavior of interest unless the experiment
is performed under laboratory conditions. How readily the lab
results then can be extended to field conditlons, for which there
are many mors independent and dependent variables, is typlcally
cpen to much interpretation by the researcher. For thesas reasons
careful attention to evaluation proéedures is essential,
particularly if the models are to be used for policy
considerations. Yet there has been relatively little work done
on the development of reasonable agrsed-upon procedures for
testing models either for practical applications or in theory(l].

The lack of substantive work on model evaluation is evident
by perusing most of the texts available on mathematical madeling.
It is not unusual for these texts to say so little on the subject
that it is not even listed in the index [=.g9. 2, 3, 4, 5} or else
limit the commments to parameter estimation and statistical
goodness-of-£fit [(e.g. 6, 7]. Only a couple of texts illustrate
concern for model testing: even though some carefully include it
in a list of the important attributes of medeling [(2.g. 8] the

general attitude seems to be that the issue is not central to the

modeling process. One of the exceptions is the text by
Mesterton-Gibbons [9], which is infused with the importance of
testing models, but proceeds mainly by case studies. This offers
little in the way of a general approach to model testing, though
the author c¢learly stresses that one important criteria for
models being applied in decision making is their flexibiliry.
France and Thornley [10] devote a brief chapter to model
evaluation with emphasis on the importance of testing throughout
the modeling process and the difficulty of defining precise
criteria for model evaluation.

There is an admitted difficulty faced by any modelar due to
the possibility of a conflict of interest in the testing of a
medel that the modeler may well have spent a great deal of time
and effort developing. Some authors (11, 12! argue that criteria
for model testing should be specified before model construction
begins to ensure that bias dces not creep into the evaluatiocn
precess. In practice, this suggestion is rarely followed in
ecology, and the literature i1s full of models which have never
been tested in any substantive way at all. As Hall and DeAngelis
[13] point cut, "the testing of the adequacy cf models vis-a-vis
reality seems to us to be poorly developed and often deliberately
and arrcgantly ignored.” As the above quote from Casement
indicates, models sometimes take on a life of their own,
obscuring the purpcses for which the model was ostensibly
derived. This can lead to potential misuse of the model by

individuals whe meraly pull a model vff the shelf when needed



without taking care that the use to which it is being put is
compatible with the assumptions on which it was originally based.

One objective in this paper is to peint out the dependence
of model evaluation procedures on the context for which the model
is intended to be applied. 1 suggest that a useful
classification of models which leads to different evaluation
criteria is: models for theory development; models for specific,
carefully delineated systems; and models for policy decisions,
How this relates to other classification schemes (e.g. the
generality-realism-precision continuum of Levins [1l4]) will be
discussed, and along the way I'yl point out some of the
difficulcies inherent in the application of highly reducticnist
models based upon the behavior of iﬁdividuals. Another key point
concerns the general inattention of the sclentific community to
the criteria which policy~-makers use in making decisions
concerning bliological systems, in particular the econemic, social
and political implicatiocns. I begin with a quick overview of
some of the work on mouel evaluation.

MODEL EVALUATION

A wide variety of terms are used by different authors in
discussions on model evaluation, including: evaluation, testing,
accuracy, verification, validation, cerroboration, gesirability,
domain of applicability, certification, realism, tuning and
curve-fitting. This plethora, and the very different meanings
assigned to the terms by different researchers, illustrates the

lack of agreement as tc what constitutes effective evaluation.

Most authors point out that evaluation is coupled to the purposes
for which the model is being constructed. The variety of reasons
for constructing models thus leadg to differing criteria far
evaluation. For the purposes of this paper, I will use tne
following definitions:

Verification: model behaves as intended, in that the equatlions
used correctly represent the stated assumptions, the equations
are self-consistent and dimensionally cocrect, their analysis is
error free, and any computer coding has been carried out
correctly [1li, 15]. France and Thornley [10] use the tarm
"testing” synenymously with verification in this sense, and 1
will as well. 1In contrast, Jeifers (16] uses "verification" to
indicats that a model behaves in ways which broadly fit your
expectations of how the system being modeled does behave, while
Shugart [17] uses jt to indicate that the mode]l has been
investigated to ascertain if it can be made consistent with some
set of observations. In the usage of Shugart [17], verification
therefore becomes 3pecific to a particular data set, while in
that of Jeffers [16] it is specific to the modeler.

Validation: model behavior is in agreement with the real system
it represents with fespect to the specific purposes for wiich the
model was constructed. Inherent in this is a notiqn of both
accuracy {that is how far apart in some metric the model behavior
is from some compenents of the real system), as well as a domain
of applicability (a prescribed set of conditions over which the

model is intended to apply). A variety of measures of the domain



of applicability have been {ntroduced in theory [18], but these
seem to be of little use in real applications. The metric chosan
to specify model accuracy would depend on the purposes for which

the model was censtructed. For avample, Lf model output consists

of a time-dependant vecktor variable X =( (), ... &,(c)) and

the data to which the medel is being compared were

(x, (&) c (ENY L dx ey oox(e)) for some time points
IR A R R TS
(Cl,.,.,tg , then a general form nf a metric would be
Kk =
Fx,0=Y Y a0 - xie)
J=t rel

A typical choice for the fu‘ functions would be a time-weighted

least squares such as £ (¥} =wu y% Here the represant

relative weights in time so that if emphasis were desired on more
recent times, for example, the mj's would be increasing
functions of j. If comparisons were only desirad at a single

time, then all the weights would be set to zero except at
that time. The w,/s represent relative weights of the

different output variables. The above schems assumes
multiplicative effects of the time versus variable welghts,

9

tnough more complicated models could be chosen.
For example, Lt might be important for a model ko determine
the occurrence of rare events, one of which might be a population

bottleneck, in which case the form of the fu’s would not be as
above but depend enly upon times ¢, for which x;{t;) is below

some preassigned threshold. Such a circumstance may have
occurred in the case of the passenger pigeon, due to the
interaction between social effects and population size. 1In a
situation with limited data, a variety of Monte-Carlc schemes
have been investigated which involve splitting the data into a
calibration component and one used for validatioen [L9].
Calibration: use of data to determine parameters of the model so
that the model behavior is in agreement with this pacticular data
set. Thls 1s also called curve-fitting or model tuning and
involves many areas cof statistics tied to parameter estimation.
Inherent here is also a notion of model accuracy, though only in
the restricted sense of providing agreement to the particular
data set.

Corroboration: a set of data independent of that used to
construct and calibrate the model is in agreement with the model.
This is one aspect of validation. It is quite different from the
netien of corroboration of a scientific theory [11]. The issue
of differences between models constructed to elaborate a theory
versus those constructed as calculation tools or for prediction
has been discussed by a number of authors (20, 21, 13].
Evaluation - validation plus attention to a variety of criteria,

10



including appropriateness to objectives, utility, plausibility,
elegance, simplicity, and flexibility {10]. There is not
therefore a set of simply objective criteria for evaluation, but
a number with different weightings assigned to sach through the
preferences of the investigator. It is the emphasis in the
evaluation criteria which serves to differentiate the modeler,
who is often primarily interested in either theory development or
a particular scientific gquestion, from the manager or politician
who is in general answerable to the public for decisions
influenced by the model.

EVALUATION CRITERIA FOR DIFFERENT TYPES OF MODELS

One classification scheme for models considers where in the
generality-realism-precision continuﬁm they occur (14}, with no
one model capable of satisfying all three completely. At :the
outset of a modeling project, some decision is made regarding
where in this continuum the resulting model should be aimed.
This is intimately tied with the purpcses for which the model is
oeing counstructed, and the evaluation criteria are chosen
accordingly.

Models for theory development make up the majority of the
subject of mathematical ecology, with emphasis on generalicy, a
slight amount of realism, and typically very little precision.
Evaluation criteria here are tied more to biological
reascnableness, rather than biological reality, for the cbjestive
is to produce a theory for general patterns of nature (20].

Validation here takes the form of qualitacive compariscns with

11

nature rather than quantitative ones. Parametaers {n these models
are often far removed from cbservable biclogy. Thus the
coetiicients in a Lotka-Volterra type model ara amalgams of many
physiological and population-scale processes, with far too much
effort wasted in ecology trying to estimate them. The models
serve useful gualitative roles, but trying to Squeeaze them ints a
role for which they are not suited is & wasted effort.
Calibraqion and corroboration are not appropriate for these
models, for the objective is typically to investigate how model
behavior varies qualitatively sver what ig viewed as a reasonable
parameter space,

There are a number of instances however in which models
developed with mainly theoretical goals have proven ta be useful
in exteansions to Particular problems with close ties to
observable biology. One erample includes the Mekendrick - von
Foerster formulaticn of an age/size/physiological state
Structured population. This partial differentijal equation model
is very general in form and serves as a basis for the theory of
continuously structured Populations. Yet it has been shown to be
quite useful as a means to Couple toxicological effects on
individuals to pPepulation scale phenomena (sec the paper by
Hallam and Lassiter in this volume). very simplistic epidemic
medels have been extended in a host of ways to analyze specific
instancas of disease spread, with varying success (22|, and
simple host parasite models have been g#xtended to apply to a

number of case studies of Mmaccoparasite infection and Spread
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(23i. ©ther examples include the applications of very general
reaction-diffusion models to many situations of animal movement
(24]. Here apelications to particular field situations typically
involve discretizations of the underlying partial differential
equation or random walk model which is being approximated {25}.
All of these illustrate that not only are thecretical medels
impertant for development of general paradigms, but they often
lead to more realistic extensions which are closely coupled to
bioclogical data. Thls requires a steap back from the generality
of the original however, along with an attendant increase in
model complexity and size of parameter space.

Models for specific systems (e.g. a given fish stock in a
particular region, a particular mamﬁal population in a forest,
etc.} are typically tied to data sets which, though often very
limited, provide some guidance as to the validation criteria
possible to choose as well as the possible model formulations
[26]. It makes little sense to construct a model with detailed
social structuring in the populatiocn, if there are no data
available to estimate the nature of this structuring. Population
models of this sort are typically based around some method of
fancy bookkeeping, particularly discrete age structured models
used for wildlife populations. Tt is the assumptiocns which go
into the mortality and fecundity relationships in these models
which are typically the weakest component, and the most difficult
ko validate. [t is these components which detail the coupling

between individuals and the effects of external environmental
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factors at the population scale [27]). Evaluation criteria
therefsre might need to be more stringent in application te one
madel component than te others.

It is the area of models for policy decisions that I beliesve
has the poorest record of results from effort expended of any
area within ecological modeling. A graphical scheme to
illustrate the situatien is shown in Figure 1. The horizontal
axis corresponds tc a simple bounded set of possible decisions.
Here we view a modeling effort as producing what might be
considered superb rasults for a particular policy decision. In
this case, an easily understood outcome (the solid line in the
figure}, which is completely deterministic, for any particular
policy chosen. This is meant to repfesent the outcome from a
biological analysis of the situation, with higher values
corresponding to stronger negative effect on the population in
gquestion. Thus a raticnal decision might be made based upon scme
acceptable level of the outcome. Examples might be population
size remaining given a certain amount of nac.tat destruction,
population size as a function of mean toxicant cencentration per
unit area of habitat, or fraction of suitable habitat remaining
te a species after a given land-use scheme is implemented.

The difficulty with the above is that there are typically
quite different criteria, not included in the biolegical
asgessment of effects, which are applied in making the policy
decision. Several possible results are illustrated in Figure 1.

These are meant to illustrate the effects of the policy decision
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on social factors such as loss or gain of jobs, expenditures to
maintain the local economy, infrastructure or bureaucracy needed
to carry out the decision, and the opportunlity costs associated
with these expenditures. They could just as well be pelitical
costs, including the percelved political advantage to the
decision-makers toc carrying out a particular policy, including
loss or gain of financial support from certain constituents. The
dashed curve corresponds to a particular societal cost function.
The solid and dashed curves are not commensurate quantities -
combining them iln some way invelves multiple-criteria
cptimization and construction of a utility function which makes
assumptions about the effects of alternative combinations. The
societal costs act to effectively coastrain the peclicy respoenses
in many instances, in particular to the endpoints of the policy
decision set.

Several possible scenarios are illustrated in Figure 1. The
upper shaded region indicates a threshold such that if the social
costs are within this, these costs completely determine the
policy choice with any possible population effects being ignored.
Similarly, the lower shaded region illustrates a situation in
which biological factors completely outweigh any political aor
social concerns, and policy choice is determined cqmpletely by
biology. Cases corresponding to these situations are readily
apparent. The recent controversy regarding the use of Alar on
apples illustrates that when direct affacts of toxicants cn

humans are perceived to be large, policy decisicns can be made

1s

based entirely upon social factors, independent of the biological
data {which in this case indicated minuscule telative nealth
effacts on the population). As an alternative to thnis example of
pelicy action being taken according to pelitical and social
facteors, coasider the case of the spread of resistance to
antibiotics in bacterial populations endemic amony humans. Here,
despite the fact that many researchers feel that the widespread
use of antibiotics in animal feed has fostered the development
and spread of new bacterial strains with quite damaging human
health effects, there has besn very little in the way of action
by governmental agencies on the issue, except to request further
studies [28|. This is one example of a common Oroperty resource
which is cverutilized for the benefit of one componaent of soclety
but is not raticnal from a total society viewpolnt [29], Though
in general one might believe that an analysis of policy decisions
over the recent past would indicate that it is situations
involving direst effects on human health far which the biological
impacts (the sclid line in Figure 1) take precedent over the
political cnes, I am not at all certain this would hold. Direct
human effects certainly would mora frequently take pracedence
relative to effects on other species though.

Situations feor which the social and political factors fall
inte the region bounded between the two dotted curves are the
ones in which cur models have been least successful. In part
this is due to the ignerance of these social factors in the way

we structure our models. What Mmay appoear to the biologists to be



very large effects may well appear very small whan viewed in a
policy framework taking account of social factors. The level of
detail of our models must tharefare take account of the lavel of
indifference to details imposed not by biclogy, but by external
factors. Dealing with externalities is a standard difficulty in
bioeconomics but with little agreement as to how to do so [29].
The above illustration is of course highly simplified. The
pelicy decision space is often not representable as a single
variable, and there are multiple biological criteria which might
be applied as well as social and political ones. The above view
assumes the world is determinisﬁ}c, wihlile often we can do no more
than specify ocutcomes with certain probabilities, or in a mean
sense. Probabalistic explanations introduce difficulties both in
the analysis of mcdels as well as in their explanation to policy-
makers. The above view is also a static one, ignoring beth the
dynamics of the system being modeled as well as the adaptive
nature of policy decisions. A large body of literature suggests
that in situations with very limicted data, carresponding to much
of resource management, policies leading to very contrasting
outcomes may be highly useful methods to increase the accuracy of
the models as well as their utility [30, 31]. There are large
potential errors in the prediction of ecosystem effects of
toxicants induced by uncertainties in extrapolation from limited
data sets [32]. Ancther aspect of the information effects of
policies is the potential for a policy to change the nature of

the sociazl and political factors which ara operating. A primary
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mechanism for this change is education.

REDUCTIONISM AND ENMVIRONMENTAL POLICY

A natural tendency in the application to policy congcerns, or
to specific management situations, of models derived for general
theory is to add complexity to increase the petential precision
and to allow for calibration ang corroboration through the
introduction of detailed sub-models. Many of the detailed single
and multi-species models take this approach. It is one
alternative to strictly empirically basad models such as those
for habitat indices, or statistical medels which are coupled to a
particular data base. As noted above, this has led to useful
results in a number of situations. It alsc requires a much
larger data base, or many more aSSQmptions about particular model
forms. These models have limitations however, since they
typically amalgamate all individuals within some class {age,
size, physiclogical state, etc.) and assume uniformity within
this class. Situations with strong neighbeorhced effects, or for
which the assumpticns of uniformity within a class break down
(2.9. if population sizes are low S0 that & class consists of few
individuals} are not readily handled by these extensions of
thecretical models. Thus there are ongoing a number of attempts
to model populations as interacting individuals, tracking each
individual separately in a simulation format [33].

The new individual-based models have great appea) for a
number of reasons. First, explicit behaviocral rules can be

specified at the individual level and there is no need to make ad
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hec assumptions about the efiect of these behaviers at the
population scale - this comes out of the model. Secondly, they
are relatively easy Lo construct once the behavioral rules are
specified, since one is essentially doing a dynamic bookkeeping
from that point, though it should be noted that efficient
algoritnms to handle this for the large numbers of individuals
being simulated are not easily obtained. Thirdly, they naturally
provide a means to handle individual interactions and
neighborhood effects and Monte-Carle methods provide for analysis
of situations with small population sizes.

The rub in the above is that these models guickly grow to
require enormaus numbers of assumptions about individual behavior
for which there is little available evidence. They are numerical
and not qualitative, so determining the effects of a peorly
understood assumption requires lacge numbers of simulations.
validation of the submodels is precluded without a vast amount of
field observations of individual behavier. A saving grace of
these models is that they are relatively easy to explain to
managers since the key objects are individual organisms rather
than more abstract population mortality and fecundity schedules.
This would imply a great future for these in pelicy applications
since a key limitation in the use of medels by managers may be
the ability to understand, at some level, how the models are
constructed. Understanding oa the pact of the manager may lead
to more ready acceptance of the model results as well as feadback

a5 to what is really desired by the manager in the decision
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process.

Tet, I would argue that policy applicaticns of thesa models
is generally premature, mainiy dug to the enormous number of
poorly understocd assumptions from which the models are
constructed. The parameter Space may be so rich that essentially
any result dasired can be obtajned, through judicious choicas of
the parameters. ance they are themselves large Monte-Carlo
simulations, sensitivity analyses of these models ars quite
computer-intensive. Qne essentially must Monte-Carlo a Monte-
Carlo.

It is my belief that these highly reductionist models will
be most useful in a policy sense if they provide means to suggest
appropriate large scale macrodescrip&ors of systems. These
should be robust in the sense that the outcomes ara not highly
sensitive to the details of individual behavioral assumptions.
This leads to suggested Forms for a top-down approcach. Her=z, one
starts with the manager and attempts to ascertain levels af
indifference to modzl cutcomes. This proviles a means to scale
the ameunt of reductionism necessary to meet the geoals of the
manager, and doesn't waste effort dealing with minute details of
biological processes if these are seccend or third order effects

in the scheme of social and political constraints acting.
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FIGURFE LEGENDS
Figure 1: Scheme to illustrate the combination of social and

political concerns (dashed curve) along with scientific criteria

(solid curve) affecting a policy decision. Social cost and
POLICY DECISION VARIABLE

populaticn effect are not on commensurate scales. See text for

further explanation.
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