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We address the problem of relating information on the effects of a particular stress on individuals 10
possible effects at the population level. Structured population models aim o predict population
dynamics from a carefui specification of the dynamics of individuals; however, in spite of major
mathematical advances. there are only a few cases where such models have made significant
contributions to ecological understanding. This paper reports progress to date on a project in which
we construct both individual and population models of Daphnia. We present a model of individual
growth and development which has been tested against results from several laboratories on D. pulex.
We propose a simple. stage-structured population model and give a preliminary report of some of it
properties.
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INTRODUCTION

One fundamental impediment to elucidating the concept of stress in ecology is
that the simplest measurements to undertake are often on individuals, while our
primary interest is likely to be in effects at the population level. For example, the
direct effects of toxic substances may be to inhibit growth or development,
reduce fecundity or increase mortality; the consequent changes in population
densities and in the pattern of population fluctuations depend on the regulatory
mechanisms of the population under investigation. It follows that a potentially
valuable tool in the study of ecological stress will be structured population models
which aim to predict the dynamics of a population, given a well-posed, dynamic
specification of the response of individual members of that population to external
factors.

Systematic mathematical methods for the formulation and analysis of struc-
tured population models have been developed in recent years (e.g. Metz &
Diekmann, 1986), but there has been much less progress in the equally
demanding task of assessing their practical utility. The appropriate level of
complexity of a model for a particular task remains a matter of considerable
controversy, progress towards whose resolution would be considerably assisted
by some detailed case studies. We therefore have started a programme in which
we plan to contrast the performance of simple and complex models of the
zooplankter Daphnia. These animals are particularly appropriate for this work as
there exists a vast body of literature on the physiology of stressed and unstressed
individuals as well as data on laboratory and natural populations.

Many natural Daphnia populations exist at low food levels, sustained by a
balance between low fecundity and (presumably) mortality. Two of us
(Murdoch & McCauley, 1985; McCauley & Murdoch, 1987; McCauley,
Murdoch & Watson, 1988) have previously conjectured that the diverse patterns
of Daphnia dynamics that follow a spring algal peak reflect the Daphnia—food
interaction rather than exogenous forcing by biotic or abiotic factors. If these
conjectures are valid, it follows that any model of Daphnia population dynamics
must treat carefully the assimilation and utilization of food.

McCauley & Murdoch (1987) also showed that quasi-cyclic fluctuations in
both laboratory and field populations of Daphnia have a dominant period close to
the generation time and (where demographic data are available) that the
fluctuations have the following pattern: a burst of reproduction at low density
producing a peak population consisting largely of juveniles, then a long period of
declining density, suppressed reproduction, and slow Juvenite development, the
population at its nadir consisting largely of adults which eventually produce the
next burst of recruits. These observations support our premise that a realistic
population model must incorporate some aspects of the physiological structure
(e.g. proportions of large/small, old/young individuals) of the population.

As already noted, development of such a structured population model starts
with the construction of a model of the properties of individuals, and in previous
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papers (McCauley ef al., 1989b; Gurney ef al., 1989} we developed one such
model for Daphnia. For a detailed exposition we refer the reader to Gurney et al.
(1989), but its main assumptions are set out in section 2 of the present paper.
The emphasis of that section is on the judgements that were necessary to
construct the model and not on the technical details. In similar spirit we refer the
reader to the original paper for detail of our quantitative tests of the model, but
highlight certain qualitative predictions on starvation and recovery, an area
where the model suggests new critical experiments.

In section 3, we discuss the problems inherent in constructing a population
model based on our rather elaborate description of individual physiology, and
we expose certain formidable technical obstacles that preclude immediate incor-
poration of our model within the standard mathematical framework for struc-
tured population models. To circumvent these problems, which are the subject of
current research, we simplify our description of individual physiology, 50 as to
permit development of a model in which the population dynamics are described
in terms of a set of coupled delay-differential equations. Quantitative tests of the
model are still in progress, but we discuss its ability to explain the demography of
the cycles in real Daphnia populations.

A MODEL OF GROWTH AND REPRODUCTION IN INDIVIDUAL DAPHNIA

The model developed in our two previous papers (McCauley et al., 1989b;
Gurney et al., 1989) describes dynamically the utilization of food by daphnids for
growth, maintenance and reproduction; for this we need a description of ‘food’.
Notwithstanding evidence that the composition of the algal population, and in
particular the edible fraction, may significantly influence Daphnia population
dynamics (McCauley e al., 1988 and references therein) we initially regard food
as a homogeneous assemblage within the water, describable by a single density,
namely carbon content per unit volume. The model describes the fate of this
carbon following ingestion, and specifies a set of ‘sinks’ or ‘pools’ within a
daphnid, together with a set of rules for allocating assimilate to these pools. The
model equations are summarized in Table 1.

(A) The model structure and equations

Reserves and the shori-term fate of assimilate

There is good evidence (e.g. radiotsotope studies of Lampert (1975)) that
assimilate is incorporated into the body structure within a few hours, so we do
not need a representation of short-term reserves in the model. There is also good
evidence from starvation experiments that as much as 709, of body tissue may be
used as long-term reserves during periods of starvation. We therefore assume that
(long-term) reserves constitute a specified fraction of the normal body weight
(excluding eggs) of a well-fed animal; an animal dies of starvation if its body
weight drops below the appropriate fraction of the ‘normal’ weight (defined
later).

In our new energy channelling scheme (Fig. 1), we assume that assimilate is
committed immediately and irreversibly to reproduction, or to growth and mainte-
nance. We then assume that given ‘sufficient’ food, an animal of length L
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TasLe 1. The model of individual growth and reproduction as specified by Gurney et al. (1988;.
The equations are set out in a style close to that required for computer implementation of the
model. The symbol « means ‘is assigned the value’

Food assimilation ie = SLY 1 =exp {—(LjL,)}]
and utilization I=1  Fi(F+F,;
A=eg,l
Am‘x = EAIM

IfL<L_ thenK, =10
else K, = K, (Ag+ 1)/(Ag+AJA,,)
HK, < 1.0then K{L,A) = K,+ (1 -K,} exp {{L,—Ly/L}
else K(L,A} = 1.0
At moult Er =T [ =K (L A Jlel .
W =W_+W_EE_,
IfE > W, then (N, ~ E/W_,E ~ 0}
eise {N, « 0, E unchanged}
IfW > (L/X) then {L — XW'")
else {L unchanged}
Between moulis M = BWY
IfA<MorW < (L/X)"thenK = 1.0
else K = K (L, A)
dN_jdt = dL/dt = 0
dE/dt = (1-KA
dWidt = KA-M

Food dvnamics Semichemostat: dFjdt = D(F,—F} = I}V
Transfer dF/dt = —1/V between transfers
F-F, at transfers

allocates a constant proportion of assimilate to reproduction and the remaining
fraction to growth and maintenance combined.

The utilization of assimilate when food is scarce

We need rules for energy channelling when food supply varies as well as when
it is constant. Following Kooijman (1986a, but noting that he was modelling
commitment from a reserve pool and not the immediate fate of assimilate), a
natural assumption is that if the default allocation of assimilate to growth and

Eggs (E) Brood (Ng)

Ce
Assimilation

2
>

Body tissue

Overheads Maintenance (M)

N, bb——
Respiration

Figure 1. The energy allocation scheme in the model of individual growth and reproduction (from
McCauley et al., 1989b).
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maintenance is at any time insufficient 1o meet maintenance, then a daphnid
meets immediate maintenance needs by (in order): (i) stopping growth, (ii)
supressing commitment to new eggs, (iii) metabolizing reserves. However,
although qualitatively plausible, a model embodying the strict priorities outlined
above made predictions inconsistent with experiments on the growth of indi-
viduals in continuous flow systems, and it appears that at moderately low food
densities daphnids give slightly higher priority to growth than is implied by the
above rules (Gurney et al., 1989).

In addition, Daphnia is able to recover from periods at low food levels and
eventually perform at a higher food level at the same rate as individuals raised
continuously at that higher level (Ingle, Wood & Banta, 1937; Kooijman,
1986a). We therefore hypothesize that starving individuals give priority to
growth over reproduction whenever their weight is less than a notional ‘weight-
for-length’. We assume that this weight-for-length is the weight of the body (but
not the eggs) of a healthy daphnid of length L immediately after the moult, there
being experimental support for the existence of a simple allometric relationship
between these quantities. We are thus introducing a practical criterion to define
a starving animal, and then postulating that starving animals suppress reproduc-
tion in favour of recovering body weight (i.e. reserves). If the appropriate
weight-for-length is reached, the normal allocation rules apply.

The rules for energy channelling

We now define the variables for our model and specify the set of mathematical
rules governing the utilization of assimilate by the animal.

We recognize that Daphnia development proceeds through a series of discrete
instars separated by moults. We assume that instar duration is a constant (T
for all instars and at all food levels (though both of these assumptions can be
relaxed without prejudice to the structure of the model).

We characterize a daphnid of age a by the following five state wvariables:
carapace length (L}, body weight excluding eggs and materia! destined for egas
(W), weight-for-length (W) as introduced in the previous subsection, material
in the body committed to egg production (E), and number of eggs in the brood
pouch (Ng). We assume (section B) that for well-fed daphnids, weight and length
are related immediately after 2 moult by an allometric relation of the form

W = (LjX)?, (1)

where X and p are constants. :

Assimilate is assumed to be allocated between growth, reproduction and
maintenance in accordance with the scheme shown in Fig. 1, where we also
introduce notation for the various material fluxes. With this partitioning,
elementary book-keeping yields the following differential equations which are
assumed to hold throughout an intermoult:

dW/dt = C,—M,
dE/dt = C;. 3)

We assume that length cannot change during an intermoult, implying a similar

property for W,. Since eggs are only released at a moult, Ng cannot change
during an intermoult.

2)

b ——
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At a moult, all the state variables except W take new values as follows:
L =Xw'p, (4)

unless this would produce a decrease in length, in which case the value of L is
unchanged. The new weight-for-length is then calculated from the new length as

Wy = (L/X)P. ()

All assimilate committed to reproduction during the previous instar is passed as
new eggs to the brood pouch (the existing clutch being released as neonates). We
assume that a certain quantity of assimilate (W.), whose value depends on the
amount of material available for egg production, is required to produce an egg;
thus the new brood size is given by

. E/W_ifE > W,
I\E = .
0 otherwise (6)

where
Wc = Wm+WuE/Emax‘ (7)

For simplicity, present implementations of the model allow fractional eggs to be
passed to the brood pouch, but in principle equation (6) could be replaced by a
more elaborate rule in which an integer number of eggs are passed to the brood
pouch with the remaining egg material retained in the body for the next instar
(as is done if there is insufficient material for even one egg). However, given the
large observed variability in brood size, even for Daphnia grown under controlled
conditions, such elaboration would appear rather unnecessary—hence the
simple form for equation (6). With this simple form, the animal normally starts
the next moult with no carry-over of egg material; at the start of each instar we
set E = 0, unless the brood pouch is empty (N, = 0) in which case we leave E
unchanged.

Dynamically, the key feature of the model is the ‘K-switch’ in Fig. 1 which
determines the fluxes C; and C_. We define this quantity K (which is the
fraction of assimilate that goes to growth plus maintenance, leaving the fraction

—K for reproduction) by writing the fluxes formally in the form

C.=KA, C;=(1-K)A, (8)

(where A is the rate of assimilating food), so the specification of the model
structure is complete once we select the rule for calculating the quantity K. We
have already noted that this allocation function must depend on length (to
distinguish juveniles from adults), assimilation rate (to meet maintenance when
food is scarce), and weight-for-length (to give priority to growth in animals
recovering from starvation). After considering a variety of forms (Gurney e al.,

1989), we concluded that the structure of these dependences was given by the
rule

IA<MorW < (L/X)? ThenK = 1.0
Ese K =KL, A (9)

The form of the function K_ is given in the next section {equation 16).
Implementing the model now requires us to specify functional forms for the
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equations relating assimilation (or ingestion) to length, maintenance to weight,
and the default partitioning function K,(L, A} to length and assimilation rate.
This is the subject of the next section. However, it is important to realize that the
energy-channelling scheme of the above section does not rely on these particular
forms. Thus when testing the model against experimental information it is
important to distinguish a priori whether we are testing the fundamental par-

tioning rules, or the eflects of any particular functional form or parameter
selection.

(B} The model functions and parameters
Length and weight

The model as formulated in the previous section requires a relationship
between length and weight (in carbon units) for a daphnid stripped of eggs
immediately after the moult. The literature contains an apparently wide range
of observed relationships between length and carbon content or dry weight, but
careful examination of these results for one species (D. pulex) shows that most of
the data are consistent with the interpretation that there is a single allometric
relationship between carbon content and carapace length, valid for both adults
and juveniles, which is, at most, weakly dependent on the food regime in which
the animals were living. This is given in equation {1) above,

Ingestion and assimilation

For daphnids of a specified length, the dependence of feeding rate {I) on food
density (F) can adequately be described by a (type 2) hyperbolic functional
response; thus ingestion rate can be written in the form

I=ImaxF/(F+Fh)‘ (IO)

Our review of existing data (McCauley e al., 1989b; Gurney e al, 1989)
suggests that we may safely assume that the half-saturation constant (F,) does
not vary with length. .

McCauley ef al. (1989b) discussed the variation with length in the maximum
ingestion rate (I,..), which is well fitted by the function

Loay = SL® {1 —exp (~ (L/L,)")}. (11)

We follow Lampert (1975) and regard food as assimilated if it passes across the
wall of the gut, the assimilation efficiency then being defined as the ratio of
instantaneous assimilation rate to ingestion rate. Measurements of this quantity
exhibit high variability, but it is not established whether the variation is
systematically related to either food concentration or the size of the individual.

Consequently, for our model we assume a constant assimilation efficiency,
assimilation rate A then being given by

A=g¢,l (12)

Maintenance

This is possibly the most elusive quantity on which we require high quality
information for the model. We argued in McCauley ¢f al. (1989b) that mainten-
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ance rate could be modelled as the sum of two components, the first a term

proportional to weight, the second a representation of the continuous commit-
ment of new material to make the next carapace. We thus set

M=BW+TI'W, (13)

where T is the intermoult duration, and W, is the weight of a cast skin which
varies with body weight as

W, = 0016 W'Y (14)

when both quantites are measured in units of micrograms dry weight (Lynch,
Weider & Lampert, 1986). It turns out that the use of equations (13) and (14) to
specify maintenance makes simple analytic calculations of such quantities as
maximum length or brood size unacceptably awkward. For practical conve-
nience we therefore assume an allometric maintenance-weight relationship of the
form

M = BWY (13)

and calculate parameters B and Y so as to make the resulting curve as close as
possible (which turns out to mean almost indistinguishable to graphical accu-
racy) from that implied by equations (13) and (14).

For detailed justification of these assumptions we refer the reader to McCauley
et al. (1989b). However, it is important to note that our representation, in which
total maintenance scales as weight to some power greater than one, is consistent
with the common claim (e.g. Peters, 1983) that respiration in ectotherms scales as
W% The reconciliation comes through work of Kooijman (1986b) who
recently interpreted many observed relationships between respiration rate and
weight as the sum of two terms: the true routine metabolism (assumed propor-
tional to weight) and a term representing the overheads on growth (assumed
proportional to the instantaneous assimilation rate).

Allocation to reproduction

Gurney et al. (1989) propose that the dependence of the allocation function on
assimilation rate is treated by first introducing a quantity K :

IfL<L_ thenK = 1.0
else K, = (A +1)/(A+AJA). (16a)

McCauley ef al. (1989b) give a table, based on data in Paloheimo, Crabtree &
Taylor (1982), from which we can infer the length dependence of the allocation
function K (L, A), a reasonable representation of very sparse data being

obtained by fitting a clipped exponential function. Finally, K_ is calculated from
the rule

IfK,<1.0then K (L, A) =K +(1—K,) exp {{L,~L)/L)}
else K (L, A) = 1.0 (16b)

in which the exponential term represents a gradual ‘switch-on’ of commitment to
reproduction before and after the primiparous instar.
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TasLe 2. The parameter set for the mode! of individual growth and reproduction for D. pulex at
20°C-from Gurney et al. (1989)

Parameter Value Units Briel description

S 9.54x 101 mgC day™! mm~-2 Constant in ingestion function

Q 1.76 dimensionless Index in ingestion function

L, 0.95 mm Constant in ingestion function

i 2.14 dimensionless Index in ingestion function

F, 0164 mgC |- Half saturation constant

£ 0.6 dimensionless Assimilation efficiency

B 0.28 (mgC)'~Yday~! Coeficient in maintenance
—weight relatjonship

Y 1.14 dimensionless Allometric index in maintenance
—weight relationship

Ko 0.18 dimensionless Minimum allocation to growth
+ maintenance

Ag 0.15 dimensioniess Parameter in allocation function

L, 0.9 mm Minimum length 10 allocate
cnergy to reproduction

L, 0.33 mm Constant in energy partitioning
formula

P 24 dimensionless Allemerric index for weight-
length conversion

W, 0.4x1073 mgC egg™! Minimum weight of an egg

W, 14 x 10-3 mgC egg™’ Constant in formula determining
egg weight

L 0.6 mm Length of 2 neonate

T, 2 day Average instar duration

The model parameters

We have derived one complete set of parameters for the model—for D. pulex at
20°C. These are presented in Table 2. Preparation of this table involved making
a number of judgements additional to those required in formulating the model,
for example selecting between conflicting data on ingestion and assimilation

rates. We refer the reader to the appendix of Gurney ¢t al, (1989) for further
details.

(C) Testing the model

Qualitative predictions on starvation and recovery

From the start of this paper we have recognized that the ability to model life
at low food is vital; indeed the fundamental structure of the model, and much of
its complexity, is the result of attention to detail in this regard. Thus before
proceeding to quantitative tests of the model, it is appropriate to look qualita-

. tively at its predictions regarding starvation and recovery.

If an animal is assumed to be capable of surviving a bout of starvation unti jts
weight drops to a specified fraction () of its weight-for-length, then it is

straightforward to derive an approximation to the starvation time (T,) of an
mdividual, namely

T, = log, fj(fractional daily maintenance rate at start of starvation). (17)

Since we relied heavily on qualitative information from starvation experi-
ments in formulating the model, and used data on weight loss during starvation
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as part of our calculation of the maintenance parameters, prediction of starva-
tion times for D. pulex is not a valid test of the model. However, the model also
makes predictions about recovery from starvation, which ought to be amenable
to experimental test. Suppose an adult has starved for a few davs and has a
weight less than its weight for length. If it is now introduced to food of constant
density, our energy allocation rules imply that it allocates all assimilate to
growth and maintenance until it regains its weight-for-length. It can be shown
(after some algebraic manipulation) that there are now three possibilities.

(i) If the food density is sufficiently high, the weight-for-length s eventually
achieved and commitment to reproduction resumes.

(i) At sufficiently low food density, weight continues to decline until it
reaches the value f times the weight-for-length, whereupon the animal dies of
starvation.

(i1} For an intermediate range of food levels, the weight grows or declines to
an asymptotic level where the animal neither dies of starvation nor resumes
reproduction.

We know of no existing data against which these predictions may be tested, but

have in progress a series of experiments on starvation/recovery designed to test
them.

Quantulative predictions on growth and reproduction

The effort involved in constructing a model as elaborate as this is only
Justifiable if it results in quantitative predictions on growth and reproduction,
the latter in particular being vital for a population model. In Gurnev et al.
(1989} we reported a series of tests of the model against data from four different
investigators (detailed in Table 3), using different clones of D. pulex and different
experimental procedures. All but one of the sets of experiments (Taylor, 1985)
used a fransfer culture technique in which animals were grown in individual
containers and transferred at regular intervals to new containers with fresh food.
We selected four quantities to characterize the growth and reproduction of
individuals at each food density: the maximum observed length, maximum
brood size, length at first instar containing eggs, and time to first placing of eggs
in the brood pouch. In Fig. 2 we show a comparison of predicted and observed
values of these quantities; all except length at first brood (a quantity in which
there is no obvious pattern to the original data) are well predicted by the model.

TasLE 3. Data sets used to test the model of Daphnia growth and development. From Gurney e al.
(1989): A = Chlamydomonas reinhardii; B = Scenedesmus acutus

Number of Food
individuals per Food conclusion Value
Worker(s) container type (mgC 1N (ml) Renewal
Richman {1958) ! A 0.58 10 Daily transfers
1 A 1.15 10 Daily transfers
! A 1.73 10 Daily transfers
1 A 2.30 10 Daily transfers
Paloheimo ef af., (1982 ! A 4.2 100 Daily transfers
Tavior (1985) 5-13 B 0.1 200 Dilution {7.5 d7")
Taylor & Gabrie! (1983) 5-15 B 02 200 Dilution (7.5 4~
5-15 B 1.0 200 Dilution {7.5 =1
Lynch o al., (1986) . 1 A+B 1.54 40 Two-day transfers

1O
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Figure 2. Predicted and observed life-history characterizations for the model of individual growth
and reproduction of D. pulex. The sources of data (detailed in Table 3) are: Paloheimo ef al., 1982

(1), Lynch et al., 1986 (O), Richman, 1958 { A}, and Tavlor, 1985 { x . Figure reproduced from
Gurney ef al. (1989),

This success is an encouraging start to the wider programme of relating
individual and population phenomena; at least it is possible to construct a model
In which parameters derived largely from short-term measurements of physio-

logical rate processes are used to successfully predict individual growth and
reproduction. '

A STAGE-STRUCTURED POPULATION MODEL
(A} Model formulation

Having constructed 2 model of individuals we might now expect to be able to
use techniques similar to those in Metz & Diekmann (1986: chapter 3) to
construct a population model. Their approach, which to the best of our
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understanding reflects the current mathematical state of the art, involves select-
ing a set of variables which specify the state of an individual (1-state}; the
individual model then gives us the differential equations which describe the
change with time of these state variables. The population dynamics are given by
partial differential equations or integral equations which are numerically trac-
table only if the equations in the individual model are reasonably well behaved.
Unfortunately, certain key variables in our individual model change disconti-
nuously (at moults), while derivatives of all the state variables may change
discontinuously, for example when food drops so that an animal enters starva-
tion. We are therefore some way away from being able to follow this approach to
a population model.

The same discontinuities cause difficulty if we adopt a ‘brute force’ approach
and, arguing that a population is simply a collection of individuals, model a
small volume containing (say) tens of individuals by solving numerically the
differential equations for each individual. There are now many non-analytic
points in the solutions, and it is our experience that these have to be located
rather accurately to avoid large numerical error. These problems are superable
(but only with considerable effort) and we are pursuing this approach further.

Faced with these difficulties, we have temporarily compromised our original
objective of deriving a structured model based strictly on the individual model,
and formulated a stage-structured ‘continuous development’ model in which the
life history is subdivided into a number of physiological stages, within which
development and mortality rates vary continuously and are assumed to have the
same values at any given time. The methodology has been described in detail
elsewhere (Gurney, Nisbet & Lawson, 1983; Nisbet & Gurney, 1983; Gurneyv,
Nisbet & Blythe, 1986}, here we merely note that the pay-off from this
simplification is that the population dynamics may be described in terms of a
relatively small number of delay-differential equations whose numerical solution
is fairly straightforward.

In our stage-structured model, we recognize three stages—juveniles (whose
density is denoted by J}, young adults (density Y), and mature adults (density
Aj—all of which are assumed to eat a common food of (carbon) density F.
Juveniles are defined to be individuals which commit, or have the capacity to
commit, all excess assimilate not required for maintenance, to growth. The young
adult stage covers the period (roughly two moults) that elapses between the first
commitment (or capacity for commitment) of assimilate to egg production and
the release of the first brood of neonates. The adult stage covers the entire
remainder of the animal’s life. The densities for the three stages then must satisfy
the following balance equations

dJ(t)/dt = Ry(t) =M, (t) —m,(6)] (1) (18)
dY(t)/dt = Ry(t) ~ My(t) —m, (1) Y (1) (19)
dA(1)/dt = Ry(t) —m, (1) A(t) (20)

which are coupled through the various vital rate functions to an equation
describing the balance of supply and consumption of food namely

dF(t)jdr = Re{t) =J(41;(1) = [Y (1) + A(0))1,(v). (21)

In these equations, at time t: Ry(t) = food replacement rate per unit volume;

12
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Ij(v) = feeding rate (mgC per day) for Juveniles; I,(t) = feeding rate (mgC per
djay) for adults; R;(t) = recruitment rate per unit volume of juveniles; R, (1) =
recruitment rate per unit volume of young adults; R, (t) = recruitment rate per
unit volume of adults; M;(t}) = maturation rate per unit volume of juveniles;
My (t) = maturation rate per unit volume of young adults; m;(t) = per capita
death rate of juveniles; m,(t) = per capita death rate of adults.

For each stage we are required to define a development index (or physiological
age) such that individuals mature to the next stage when their development
index attains a particular value. This permits us to relate the rate of maturation
out of a stage to the rate of recruitment to the stage at some previous time. The
remaining steps in the formulation of the model involve assumptions on mor-
tality within and between stages, and assumptions on fecundity. A full account of
the basis for these assumptions and of the detajls of parameter estimation will be
published elsewhere; however as with the individual model, following the
programme through involves making a significant number of biological judge-
ments and using our own data to fill gaps in the literature. These aspects we
highlight in the next two subsections (B and C), and some preliminary tests of
the model are presented in subsection D. The full set of equations defining the
model is given in Table 4 and a provisional set of parameter values in Table 5.

TabLE 4. Formulae for the ‘continuous development’ Daphnia population mode)

Food and feeding: Fi; = Rr(t;—J(UIJ(i)—[Y(l)+A(t)]IA(1)
R
' F+F, o F+F, l
Lo =T [ L(x)dx I,0) = To! | Lax) dx
(=T 1=Tm
Juvenile development: hytt, = To L+ [T =TxL [ealy=T)).
[BAJ]mJ_‘rj]
Fecundity: Bit) = e[e T, —T, )-T,).
Mortality: my(t) = m, +m, exp [—L(t)!lm]

m,{t) = mg,+m, exp [~ 1,(1)/1,0)
Juvenile development

times: 5y = l—hJ([)/hJ(l—rJ(l)J
. ) h
Through-stage survival: Pi{t) = Pyy myt—T1(t)) E_J‘('l‘)—-mJ(l)
J(l_t_j'(‘))
Py(t) = Py(tym, (1= 2T, ) ~ m, (1))
S_]\'(‘) =1 —oxp [_ (Tmu—Tj(t)'{Tu)]
Recruitment and Ry(t) = B(y)A(Y)
maturation: .
h,(t)
= - -
Mt Rt 7 ()iP (1) hJ(l—TJ{l))
Ry{1) = M08y
Myt = Ryne=2T, Py o
R, = My
Population balance j_{t) = RJ(t)-—MJ(l)—-mJ(l)J(t)
equations Y = Ry(t; =Myit) —m, (t)Y()

Alth = R,/ ~m, 1A
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TaBLE 5. A provisional parameter set for the ‘continuous development’ population model-—appro-
priate to D. pulex at 20°3

Parameter Value Units Brief description

T 20 day Maximum development time: juveniles
T 4 day Minimum development time: juveniles

T, 35 day Constant in formula for surviving maturation
e 1000 (mgC;~! Conversion efficiency—food to neonates
F, 0.164 mgC |~! Half saturation constant

Ly 6.5x10-? mgC day~! Maximum feeding rate: juveniles

1. 2.1x 1072 mgC day™! Maximum feeding rate: adules

I, 32x107 mgC day~? Maintenance rate: juveniles

r. Llx10-? mgC day™! Maintenance rate: aduls

€y, 0.6 dimensionless Assimilation efficiency: juveniles

£, 0.6 dimensionless Assimilation efficiency: adults

T, 3.0 day Average instar duration

I, 4x10-* mgC day™! Constant in formula for juvenile mortality
I, 2x 1073 mgC day~! Constant in formula for adult mortality
m,, 3x1073 day~* Background juvenile mortality

m,, Ix10-3 day~! Background adult mortality

m,; 0.217 dav~! Maximum mortality increment: Jjuveniles
m,, 0.217 day™! Maximum mortality increment: adults

(B) Development and maturation of juvenile daphnids

The primary role of the
to determine the timin
From Fig. 2D and from

Juvenile development index in the population model is
g of the onset of maturation of the young adult stage.
our own experiments, it is clear that over a wide range of

food densities, the first brood appears at a certain critical length. However, our

own experiments {McCauley, Murdoch and Nisbet, 1989b) point in addition to
the existence of an upper duration to the Juvenile stage; D. pulex grown at very

low food densities at 20°C which surv
attempt to produce an egg,
observations point to a dev

ive to an age of around 20 days will

sometimes dying as a result. Taken together, these

elopment index, q,

which is a weighted average of age

and weight. If we chose to make the development index dimensionless and

specify that neonates have q = 0, and that

maturation occurs at q = |, and

further accept a technical constraint that an individual’s development index

must never decrease as she grows older, then

the form

T
_— - -1 max 1. T
h(t) - dq/dt Tmax+ [SAjImj'_rj] [sAjIj(t) rj]+

this suggests a development rate of

(22)

where T . and T, are respectively the minimum and maximum development
times for a juvenile, €4 represents the assimilation efficiency of a juvenile, T its

maintenance requireme
rate. The notation [ ],

nts (mgC day™"), and I,; its maximum possible fee ing
is a shorthand form for the rule that jf the value of the

quantity in square brackets is negative, it is replaced by zero when evaluating

the formula.

Figure 3 shows that,
satisfactory fit to both ou
the data used by Gurney ¢! al. {

individual model.

with this choice of development index, there is a
T own measurements of juvenile stage duration and to
1989) and reproduced in Fig. 2 in the tests of our
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Figure 3. Juvenile development time versus food concentration for D. pulex at 20°C. Data from
McCauley ef al., 1989a (O), Fig. 2 (x).

(C) Assimilation of food, mortality and reproduction

The current ‘continuous development’ model deliberately neglects the discrete
nature of daphnid development, largely on the grounds of technical expediency.
Yet our tests of the individual model demonstrated the importance of this aspect,
and we require some ‘fix’ to ensure that we capture the way In which the
production of discrete broods smooths out the effect of large, short-term fluctua-
tions in food supply. Similar considerations arise in modelling any mortality due
to starvation,

We thus choose to model both reproduction and starvation mortality via an
average ingestion rate over a time interval equal in duration to one moult, and

define

T,(t) = T j Lix)dx  I,t)=T3' j I,(x)dx. (23)
t—T

m |"Tm

To model fecundity, we recognize that neonates released at time t have
developed from eggs transferred to the brood pouch at time t—T . It thus seems
appropriate to assume that fecundity depends on I,(t—T,); indeed we assume
that a fixed fraction of all excess assimilate over and above that needed for

maintenance goes to reproduction, implying that the instantaneous fecundity is
given by

Blt) = e[aAaTA(t—Tm)—'ra]- (24)

Far less information is available about mortality rates for individual daphnids
than is available on growth and reproduction. In particular, we know of no
published life tables at different food levels for D. pulex, the species we chose 1o
test our model of growth and reproduction. Our representation of mortality thus
Tests on an interpretation of data for other species (D, galeata: Goulden, Henry &
Tessier, 1982; D. magna: Porter, Orcutt & Gerritsen, 1983), and on preliminary
analysis of our own (unpublished) experiments.

15~
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We have identified four components of mortality in laboratory populations.

(1) Background.

(2) Senescence.

{3) Starvation.

{4} Production of first brood.

Background mortality is generally agreed to be low. Senescence 1s well docu-
mented, there being good evidence (Porter e al., 1983) that life is shorter when
food is plentiful. We are currently evaluating evidence that might give pointers
to the mechanisms of senescence in Daphnia; pending completion of this investi-
gation we have not incorporated senescence explicitly in the model, but instead
modify the assumed background mortality rate to give plausible average life-
times.

To model starvation mortality, we again argue that the appropriate determinant
is likely to be average food intake over a time comparable with one moult, and on
the grounds of parsimony assume dependence on the same averages (equa-
tion 23} already used in the model. It is clear from the experiments already cited
that starvation mortality is only significant at very low food levels, and this leads
us to assume an exponential dependence of the form

mj(t) = m+m,exp [_T_](t)/IJO] (25)
mA(t) = moa+msa cxp [_T.’\(I)IIAO] (26)

Finally we have included in the model a crude representation of mortality at
maturation, based on our own experiments on individual D. pulex growing on
Chiamydomonas reinkardii at densities of 500 cell ml~'. We assumed that anv
juvenile which has not matured by age T, dies with 1009, probability, and
that any which mature at age a { < T,,,) have a probability

Siv(t) = 1—exp [—(Tp,,—a)/T,] (27)

of surviving the transition to the immature adult stage.

(D) Qualitative tests of the model

Laboratory populations

McCauley and Murdoch (1987: see their table 3) reviewed the available
literature on laboratory population dynamics and noted that at temperatures
around 18-20°C, the expected pattern of behaviour was either damped
oscillations (Frank, 1960 for D. pulex}, or low amplitude cycles (Slobodkin &
Richman, 1956 for D. pulicaria; Marshall, 1978 and Goulden ef al., 1982 for
D. galeata). The period of the persisting or damped cycles was in the range
20-40 days.

A detailed simulation of any one of these populations requires careful repre-
sentation of the food replacement schedule, and determination of model para-
meters appropriate to the species under investigation. However, we might expect
to capture the essential features, in particular the period, of the cycles with runs
of the continuous development model using our D. pulex parameter set and a
‘pseudo-chemostat’ food replacement schedule in which

R (t) = D(F,~F). (28)

[6

G e e ——————



STRUCTURED POPULATION MODELS 95

1500
1000+
>
E Juveniles
QO
©
2
[3
§
500+ .
Immaoture adults
- Mature odults
~ / o
T 4/1\1
o] 20 40 60 80 100
Time (doys)

Figure 4. Predicied population dynamics for a ‘laboratory’ population of D. pulex. Details in text.

One such set of results, for a dilution rate of | day™' and a reservoir concentra-
tion of 1.0 mgC1™' (corresponding 1o 5 x 10* cells m1~! Chlamydomonas reinhardis),
is shown in Fig. 4. The cycles are lightly damped, have a period in the desired
range, and the demography implied by the stage populations is broadly consis-
tent with observations. However, the detailed form of the cycles is not strictly
consistent with the dominance-suppression hypothesis in the Introduction to this
paper (A. de Roos. personal communication), an aspect on which we shall report
in a future publication.

Field populations

McCauley & Murdoch (1987: see their table 2) also surveved a number of
field populations. and found examples of both ‘stable’ behaviour and apparent
‘prey-predator’ cycles, with small amplitudes (ratio of maximum to minimum
populations less than four) and essentially the same range of periods as occurred
in the laboratory. In examples of prev-predator cvcles for which there was
information on the size structure of the population, the demography was
remarkably similar to that occurring in the laboratory populations.

The difficulties in a realistic simulation of field populations are even greater
than those for their laboratory counterparts; the structure of the food assemblage
must be considered, and a// parameters have the potental to vary in response to
changing temperature. However, it is again appropriate to investigate the
qualitative predictions of our model when we introduce the one key feature that
distinguishes the laboratory and field populations: self-reproducing food. We
have therefore studied the behaviour of our model with a logistic food replace-
ment function,

R:{t) =rF{1-F/K}. (29

A typical set of results i1s shown in Fig. 5A and is totally inconsistent with what
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Figure 5. Predicted population dynamics for a Daphnia population with reproducing prev as detailed
in text: A, using parameters from Tabie 5. and B. with F, increased by a factor of 10.

happens in the real world. The ratio of maximum to minimum populations is
very large, and the minima are sufficiently small to imply extinction in practice.
In addition, the period is far too long. These large amplitude limit cvcles are
reminiscent of those found in simple, unstructured prey-predator models as a
result of the paradox of enrichment, in which the combined effect of a saturating
functional response for the predator and self-limitation of the prey can be to
produce cycles whose very large amplitudes would in practice imply extinction
(Gilpin, 1972). '

We can look to this literature for guidance on which of our model assumptions
andjor parameters is likely to be responsible for the unrealistic cycles. One
possibility is that there is some small portion of the food inaccessible to the
Daphnia at any given time. Such a refuge might arise if Daphnia avoids the top 1-
2m of lake water because of high light levels and hence high visibility to
potential predators (Gulati, 1978), or on a horizontal scale in stratified svstems
because of Langmuir circulations (George & Edwards, 1973.. We therefore
performed some simulations with constant number refuges. Even a refuge as low as

18
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5% of carrying capacity is sufficient to dampen out the large amplitude prey-
predator cycles, interestingly leaving behind ‘single-generation cycles’ with a
period of the same order as that observed.

A second, and perhaps more plausible, mechanism is suggested by work of
McCauley ¢/ al. (1988) on factors determining the equilibria of natural Daphnia
populations. There, it was argued that the model parameters were likely to be
strongly influenced by the structure of the phytoplankton assemblage, and in
particular by variations in the edible fraction of the algal population. It was
further argued (by reference to the daphnid’s mode of eating) that the introduc-
tion of inedible food would not influence the handling time per unit of edible
food, but would reduce the effective filtering rate. In terms of the parameters in
Table 4, this would imply that the half-saturation constant F, is too low. We
therefore performed a set of runs in which the value of this parameter was varied,
one result being reproduced as Fig. 5B. Again we see the disappearance of the
large-amplitude, long-period cycles and the occurrence of low-amplitude, single-
generation cycles.

DISCUSSIOX

The work outlined in this paper has drawn attention to the large number of
biological judgements that are necessary when constructing an individual model,
even for a genus as well studied as Daphnia. We arrived at an individual model
that is inelegant and parameter-rich, but is consistent with a rather wide body of
experimental data. Clearly an important component of future work should be a
search for simpler individual models which retain the capacity to predict growth
and fecundity over a wide range of food densities and in rapidly varying
conditions.

Further study is also needed on some technical problems associated with the
transition {rom individual to population models. Qur ‘continuous development’
population model does appear to be a useful simplification, but we would feel
safer using it if we knew how its properties compare with those of a model
rigorously derived from our individual model.

However, the central, still unanswered question is this: can structured popula-
tion models help us understand the factors responsible for determining popula-
tion sizes and patterns of fluctuations in natural populatuons? The approach to
population modelling adopted in this paper is deliberately unbalanced: we work
from a detailed account of the individual behaviour of members of the popula-
tion under investigation, vet include as little detail as possible on the environ-
mental factors (such as ‘food’) that drive the population dynamics. We do this,
fully recognizing that real, natural populations are spatially heterogeneous, and
form part of a multi-species community in which the dynamics of each species is
potentially influenced by many others. The broad Justification is that this
approach opens the possibility of quantifying the relative importance of the
many factors that may influence the population dynamics. A lake may not be
merely a ‘scaled-up’ litre flask, but the analyses of McCaulev & Murdoch 71987:
suggest that Daphnia populations may behave similarly in both svstems; struc-
tured models can sharpen our understanding of the ways in which they differ,
thereby contributing significantly 10 our understanding of natural populations.
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