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Applications of Fractals in Ecology

George Sugihara and Robert M. May

edged complexity of reai-world ob-
jects by simplified euclidean ideals.

There is. however, growing recog-
nition that many natural objects
have a graininess or nested irregu-
larity to them. which places them
within the realm of fractal geometry.
Whereas in the euclidean scheme
lines are smooth. in fraczals lines are
jagged (not differentiable), often ex-
hibiting a special type of self-simiiar
structure that is repeated on dif-
ferent scales. As Mandelbrot' has
ermnphasized, this peculiar kind of
nested irregularity, which appears
to be so ubiquitous in nature. can
become a source of simplicity when
fractal methods are applied isee. for
example, Fig. 1}

Fractals are based on the idea
that any measure that we assign to
an object {e.g. the amount of length.
area. velume, etc.) depends on
some notion about appropriate di-
mensions. Thus, for example. a line
has zero area ipianar measurel,
whereas a plane has infinite length
(because it would take a line of in-
finite iength foided back on itself to
fill iti. At first glance, the problem

it

of choosing appropriate units for
measurement may seem trivial, but,
as we shall see. for many natural
objects having complicated shapes
this is not the case. In fact, problems
as apparently simple as measuring
the length of a coastiine or the area
of availabie leaf habitat for insects
can be rather tricky insofar as they
have fractal geometry. Although
the technical origins of fractals in
measure theory may seem abstruse
{e.g. Ref. 31, the basic ideas of fractal
analysis are extremely simpie and
intuitive, and one can begin to work
with them very quickly.

This review gives an introduction
to fractal techniques, pointing out
possible applications in ecotogical
research. It begins with ar informal
discussion of the theory of fractals,
followed by a section providing
details on specific methods of
computing them. This is then fol-
lowed by a survey of possible field
applications. which are intended to
illustrate the utility of fracials
in ecological research {Ref. 4 and
Sugihara, unpublished). and par-
ticularly their use as a tool for
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Fig. 1. Fractal image of a black spleenwort fern pro-
duced by a model consisting of four simple transform-
ations each having only six parameters from Ref. 2. with
penrnissiont, By contrast, a euclidean descnptior of this
compiex shape might involve a poiynomial involving
thousands of fitted parameters

addressing problems of scale and
hierarchy™'®. For a more detailed
review of these ideas. with some

(a)

different examples of applications
in ecology, see Frontier''.

Defining a fractal dimension
How long is the coastline of Britain?
Suppose the jagged curve in Fig.
2a represents a section of coastline.
How long will it take me to walk this
coastal path; how long is this jagged
coastline? To measure with a ruler,
| could approximate the length
of the curve with a polygonal arc
having N straight-line segments,
each of length 8, as shown in Fig. 2b.
One could think of realizing this
measurement scheme by using div-
iders set to width &, and flipping the
dividers along the curve. The total
estimated euclidean length of the
curve, L. would be the number of
sides of the polygon, N, muttiplied
bv the length of each side. . But as
[ move to finer scales -~ to shorter
straight-line  segments. having
smaller values of 3; to more finely-
set dividers — 1 will be able to trace
the wiggly ins and outs of the coast-
line more ciosely. Thus. the iength
of the coastline will increase as |
measure it on finer and finer scales
in practice. the lengths, L. of many
interesting objects in the natural
world - coastlines, rivers. tree
trunks, and so on - are found to
depend on measurement scale, d,
according to a simple power law
(over an appropriate range of &
values):

Lidt = Kp'™P 1

Here L is the length, measured on
the characteristic scale . and the
exponent D is called the ‘fractal di-
mension’ 12> D> 1)

Figure 3 gives some examples of
such ‘coastlines’. along with their
fractal dimensions. For the familiar

Fig. 2. lal An irregular curve. Ibi The length of the curve is measured using a polvgonal approximation

where curve lengin 1s reckoned as the number of sides 1K ™71 umes the length of each side 151 K15 a
constantisee Box J1and D s the fractal dimension | In afractal cunve. measured length [L 181 = K3

grows as d dechnes 1ef Eqn L1

80

e

euclidean geometry that we were all
brought up to know and love, D=1.
That is, the length is simply a
constant. L=K. independent of
measurement scale, More generally,
for geometrical objects such as
‘Koch's snowflake' {Fig. 3b and Box
1. the structure of the sutline of the
object repeats itself on finer and
finer scales; successive magnifica-
tions of the object show the same
‘self-similar’ structure. As shown in
Box |, the fractal dimension of
Koch's snowflake is D = 1.26.

In the natural world. there is no
guarantee that such elegant self-
similar properties wiil apply. Al-
though coastlines. landscape pat-
terns. vegetation boundaries, ieaf
perimeters and the like do show
fractal geometric pattermns, the
characteristic fractal dimension, D,
of Eqn | may - as we shall see below
- itself change with changes in the
measurement scale, d.

D as a measure of complexity

Box 2 gives a brief indication of
the relationship between the essen-
tially intuitive presentation of ideas
about fractal geometry in this review
and their more formal origins in
measure theory. One of the prob-
lems with an excessively intuitive
approach is that it invites the
suggestion that maybe the coastline
of Britain is a defined entity, and
that what we are fussing about
is only a problem of practicality
of measurement. Koch's snowflake
and other such self-similar geo-
metrical objects make it clear that
something deeper is at stake: for
such abstract objects, boundary
iengths become infinite as 3 tends
tozeroiata rate determined by Egn
I). For real objects, there will be
physical limitations to the minimum
meaningful scale (ultimately set by
molecular dimensions, but usually
by other commonsense consider-
ations before that). But the probiem
is nevertheless deeper than one of
trivial measurementaccuracy: a tree
trunk literally has larger and larger
circumference as one moves to
smalierand smalier scales, ina man-
ner characterized by Egn |, and this
has consequences for the way the
tree trunk looks to creatures of dif-
ferent sizes.

Mere explicitly. consider Eqn |
applied to a coastiine for which
D=15. Here. a tenfold reduction in
measurement scale will increase the



apparent length by a factor of
10%5=3_in general, we see from Eqn
| that the faster the apparent length
changes as measurement scale
changes, the larger D becomes.

For an ideally smooth and simple
curve, the fractal dimension D=1 is
equal to the formal 'topologicai di-
mension’, Dy, that we expect ‘one-
dimensional’ objects to have. But
for the jagged curves that we
have been discussing, D will exceed
D;; a more formal definition of
Mandeibrot's fractat forms are those
where D exceeds D;.

Returning to the curves in Fig. 3,
we notice explicitly that larger
values of D correspond to curves
that are increasingly complex. [n the
case of the Brownian trail in the
plane. for example, the curve is so
complex as to literally fill the plane
iwhich is why we did not draw it!3;
that is. for this Brownian trail in the
piane, D = 2; see Box 3.

The fractal exponent, therefore,
describes the complexity of a
shape. Moreover, this complexity of
shape is reflected in the speed with
which apparent iength changes as
measurement scale changes. For
larger values of D, length changes
faster because the curve is more
complex.

Measuring the fractal dimension, D
Dividers method (boundary
dimensions: 2 > D > ||

This method invelves stepping
along a curve or boundary with div-
iders to see how apparent length,
L(3), changes as the dividers are
brough: closer together. Using a
spectrum of widths of dividers, one
plots log L versus log § and deter-
mines D according to Eqn | as 1.0
minus the slope of the linear re-
gression through these peints: see
Box 2. Again. the fractal exponent D
can only be thought of as a Haus-
dorf dimension in the limit as the
divider width goes to zero, & — 0.
This, of course. can never be real-
ized in practice because the so-
called "inner scale’ of measurement
of D will be constrained by such
things as the resolution of the photo-
graphic image or of the dividers.

In practice, for a given &, it is a
good idea to repeat the exercise
starting from a variety of different
points on the curve, because L will
have some variance to it depending
on where on the curve one starts. In
this way, one can either construct a

plot of log L versus log & containing
more points. or obtain a distribution
of D values. An additional compli-
cation, to be discussed below, is the
possibility that D may change ab-
ruptly at some measurement scale;
that is, for a particular range of & we
may obtain one value of D whereas
at another scale range we obtain a
new value of D.

Grid method (boundary dimension)

If the landscape image or other
object is digitized on a plane, it is
easier to use the following approxi-
mation based on the equations in
Box 2. Superimpose on the image a
reguiar grid. composed of squares of
side length 3. At some &, count the
number of grid squares containing
a piece of the curve or boundary
and call this C lin technical jargon.
the grid squares farm an approxi-
mate d-cover over the curve). Repeat
this for various 3. and compute D as
the magnitude of the slope of the
regression line through a pict of log
C verus log & |tc be pedantic. D is
{—1) times this slope|. Recrienting
the grid relative to the image has
the same effect that choosing
different starting points has in the
divider method {see also the dis-
cussion of pointwise dimension by
Gukenheimer'?).

Crid method (generall

If the image is digitized and em-
bedded in N dimensions las will be
the case. for example. if the image
is a strange attractor in a high-
dimensional phase spacel, then D
may be computed as in the preced-
ing paragraph by using an N-dimen-
sional grid of boxes of side length &
to cover the obiject. For various
values of &, the log of the number of
N-dimensional boxes containing a
piece of the object (log C is plotted
against log 8. Again foilowing the
equation in Box 2, D may be esti-
mated as the siope of the regression
of log C against log & as & — 0. Note
that if the shapes are planar islands
and the interior points are included
in C, then D should equal 2 in the
limit as & — 0. At larger values of &,
the boundary irregularities may pre-
dominate so that D may appear t0
be less than 2.

Perimeteriarea method (boundary
dimension)

If the object consists of a mosaic
of irregular islands (for instance, im-

(@)
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(b)
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Fig. 3. A higher fractal dimension is associated with
higher shape complexity. {ai A straight line. & = |
{bi Koch curve, D = log 4 / log 3: see Box |. (¢! Brownian
time series (line-to-line functioni. D = 1.5, A Brownian
trail in the plane (not shown ts ‘piane-filling’ and conse-

quently D = 2: see Box 3.

ages of ocean colours or vegetation
patches! the dimension of the
boundaries of these islands can
be estimated from perimeter/area
data. by using the relaticn P = AP
That is. one calculates the per-
imeter. P.and area, A, of each irregu-
lar tile at some fixed &, and plots
these values on log coordinates so
that the slope of the regression is
equal to D/2. The choice of 3 should
not affect the result. as long as the
objects are simple fractals gener-
ated by rules of self-similarity: in
such situations, the piot of log A
against log P will give a single
straight line, providing a unique D

of the ensuing 'snowflake’.

imeter is {4/3) x {4/3) x .

stituting into Eqn 1, we have
43 = (1317

Thatis, 4 =32 orD=Ind/in3 =126

Box 1. The fractal dimension of Koch's snowflake
Koch's snowflake is constructed by the fol-
lowing rule. Start with an equilateral triangle.
Take the middie third of each side, and re-
place it with the other two sides of an egui-
fateral triangle (smatller, of course, than the
original one) pointing outward. Now do this
again to each line segment in the new figure.
And again, indefinitely many times, repeating
the same process on smaller and smaller
scales. Figure 3b shows one of the three sides

The snowflake has an area not much larger
than that of the griginal equilateral triangie.
But how large is its perimeter? Each step in
the process obviously lengthens the per-
imeter by a factor 4/3, so the asymptotic per-
... which is infinite'

To characterize the fractal dimension of the
snowflake, look at Eqn 1 inthe maintext Cach
step in the recipe represents reducing the
measurement scale by a factorof 3 (5, /5. =
1/3) and consequentiy increasing the iength
by a factor of 4/3 [L(3,..,}/ Lib1 = 43]. Sub-
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Box 2. Measure theory, Hausdorf dimension and fractal dimension

The graph is a plot of log apparent
length, L(8), on log divider's width {5},
For a fractal curve, the log apparent
length grows linearly as the dividers
are brought closer together (log-
arithmicaily). The siope of the line is
1-D.

This illustrates Egn 1, applied to a
self-similar, fractal object {for example,
Kech's snawflake) for which D is in-
deed a constant. A question asked by
measure theory is to find some relative
measure (for a given dimension, D)
that does not depend on the scale, 5.
Hausdorf proposed the parameter K, the asymptotic intercept with the y-axis in the plot, as
such a measure.

Afternatively, we may return to the measurement procedure in Fig. 1, and note that for
such a polygonal approximation to an irregular curve, the approximate linear measure K
may be calgulated by adding up the sides’ lengths, 8, after they are each raised to the
power D imore specifically, Egn 1 tells us that the number of sides of the polygon is
N = KB°° where each sice has a ‘D-dimensional length’ 8° so that the approximate
measure is (K679 8% = K].

Expanding on this theme, we see that if a linear measurement scales as n, then a
D-dimensional measurement scales as k= n°. Thus, if an object of dimension Dis expanded
by increasing its linear size in each spatiai dimension n times, then its volume (O-
dimensional measurement) is increased by a factor of k = n®times the original. This simple
scaling relationship, k = n®, thus sugges:s the foliowing general notion of dimension:

Log K

Slope = 1—=D

Log L(8)

0 Logd

D=Inkilnn

where kis the multiple by which the D-dimensional measurement {e.g. volume) increases,
and n is the multipie by which the corresponding lirear measurement increases. We call
this D the fractal dimension or fractal exponent; it is the same D as met in Eqn 1.

According to these intuitive argurents, the fractal exponent is an ailometric scaling
constant that behaves something like a dimension. To interpret this exponent more
rigorausiy as the Hausdorf cimension requires that we investigate the scaling as the linear
measurement, &, approaches zero. That is, the Hausdorf dimension may be defined as

Dy = limitjin C/In (3/3)) asds— 0
Here C is, for example, the number of sides in the polygon {more generally, C is the
‘cardinality of a minimal 8-covering of the set'). Thus, as in the mare intuitive apprcaches,
we are looking at how apparent length changes with respect 1o scale, but now we are doing
sc in the limit 3 — 0. If the plot of In L versus In & is really iinear for all &, as suggested by
Egn 1, then the Hausdorf dimension and the fractal exponent are equal, D = D,,.

In practice, D, can never really be obtained because of the finite resclution of measuring
instruments or photographic grain. Mcreaver, given this constraint, itis most olausible that
s & — D the Hausdorf dimension will eguat unity for most natural outlines, Largely far this
reason, butaisc because fractal ideas are easierto grasp intuitively, we focus the discussion
in this review on D rather than D,,.

g2

for all & of interest. More gener-
ally, D itself may depend on the
scale of measurement, as reflected
in the characteristic magnitude of P
or A.

Notice that D obtained in this way
is an ensemble measure for the
collection of islands or patches
This is in contrast to the previous
methods, which can be applied to
the boundary of a single island

Huperboiic distribution (boundary
dimension)

Certain rules or mechanisms that
generate archipelagoes of self-
similar islands (for instance, so-
called Koch islandsl are known
to produce size-frequency distri-
butions that are hyperbolic:

PriA > a1 = ¢3~8 2

Here PriA> a) stands for the prob-
ability that the area of a given
island, A, will exceed some speci-
fied value, a; ¢ and B are positive
constants. Hyperbolic distributions
of areas have been demonstrated
empiricaliy for patches of veg-
etation'?, the Aegean Islands'!, and
global landmasses'. Mandelbrot'
suggests that — under certain as-
sumptions about the generating
mechanism - it may be possible to
fit a hyperbolic distribution to data
on island areas, and by so doing to
obtain an estimate of D for island
boundaries. In particular, when the
generating mechanism has a
specific geometric form. it can be
shown that D=28. It foliows that
archipeiagoes composed of irreg-
utarly shapedislands will tend to be
dominated by many smail islands

{as exemplified by the Baltic coast
of Sweden or Finland).

Like the perimeteriarea method,
this distribution-based estimate is
of course an ensembie measure-
ment. but all that is required here is
the area of each tile. measured at
some fixed value of 5. When applied
to global landmasses. Mandelbrot!
finds that this method gives esti-
mates of D berween 1.2 and 13,
which accords with estimates ob-
tained by the dividers method.

Ecological applications
Measuring habitat space

One of the more straightforward
applications of the notions of fractal
dimension and fractal measure in
ecology is to the problem of
measuring available habitat space.

Morse et al’> have applied these
methods to the question of why in a
given habitat there ternd to be so
many more individuals of smail ani-
mals than of larger ones. They inves-
tigate this question for arthropods
living on vegetation whose surface
area ts believed to be fractal: that is,
whose surface area appears to ex-
pand at finer and finer scales Using
photographs of various types of veg-
etation. they calculate a value for
the fractal dimension of the habitat
flora bv the boundary-grid method.
Thev find a value of D between 1.3
and 1.3. which pertains to the cuat-
lines of the planar projections of
the vegetation in the photographs.
Taking the approximation that D =
t.5 for the leaf boundaries, heuristic
upper and lower bounds on D for
the surfacesare2 x | 5= 3and | =
1.5 =25 Icf Ref. 16, p. 365). Follow-
ing Eqn |. this means that for an
order of magnitude decrease in
ruler length 18) the perceived sur-
face area of vegetation increases
between 3.16 and 10 times. Thus,
organisms that are an order of mag-
nitude smatler in length would have
between 3.16 and 10 times more
available living space. Moreover,
the observed fractal scaling of the
vegetationa! substrate, which pro-
vides small arthropods with much
more living space than is available
to larger ones on the same sub-
strate. is qualitatively consistent
with predictions of individual abun-
dance based on allometric argu-
ments. Morse et al '’ speculate that
the steep increase observed in the
abundance of arthropods as bedy
size decreases, is qualitatively con-



sistent with predictions based on
the fractal scaling of the vegetation
on which they live.

Briand and Cohen'? discuss habi-
tat dimensionality in relation to
food web shape, suggesting that
webs from three-dimensional habi-
tats are longer and narrower than
webs from planar habitats. Only
rough arguments are made in guess-
ing the dimensionality of habitats,
and criticisms have been made'®'?
that the apparent differences seen
may in fact be a more accurate re-
fiection of the differences in data
coilection habits of investigators
studying aquatic versus terrestrial
environments. Although it has yet to
be tried, fractal methods could con-
ceivably be applied to resolve this
problem. Measurements of Dforen-
vironments of a given type could be
used to determine whether within a
given web type the presumed trend
with dimension stili exists. Thus.
one might use photographs teo
measure the fractal dimensions of
the environments from which each
web was drawn. Alternatively, the
D-dimensional measure for avail-
able habitat space in each environ-
ment may be a more important
quantity for regulating food web
shape. Thus. fractals can be used to
compare webs of a given type by
providing a quantifiable continuum
for habitat dimension and measure.

Dintension as a function of scale:
detecting functional hierarchies

By definition, the Hausdorf di-
mension invoives computing the
unique value D, = jog C/log & in
the limit as 3 — 0 (see Box 2}. Notice
that D, is independent of length
scale, 8. As suggested in Box 2. in
most applications it is more useful
to adopt the less formal sense of
dimension given by the fractal ex-
ponent, D = lcg k / log n. where D
may in fact depend on the inner
and outer scales of measurement
{a particular range of & for which a
straight line is obtained on a log-log
plot). Mandelbrot provides a nice
example of this idea in discussing
how a bal! of string appears to
change dimension depending on
how close the observer is. As the
baii is approached from afar the
string goes through the sequence of
dimension changes. 0 (a distant
pointl. 3 (a closer balli, | (the linear
thread). 3 I(the three-dimensional
tubular thread), etc.. illustrating how

apparent dimension may change
with observational scale (i.e. differ-
ent ranges of §). Different obser-
vational scales capture different
aspects of structure, and these tran-
sitions are signaled by shifts in the
apparent dimension of the obiect.
This latter fact suggests an interest-
ing application of fractals as a
method for distinguishing hierarchi-
cal size scales in nature.

A constant fractal exponent overa
given size range linner and outer

this region large-scale features are
simply magnified versions of smaller
ones. As discussed above. such con-
stant scaling could be produced by
a single (possibly complexi self-
similar generating process. It should
be required, moreover. if one is try-
ing to extrapolate mechanisms from
small scale to large.

On the other hand. a shift in D at
the innerorouter scale may indicate
a shift in generating process, and
define a boundary across which one

scale)

may indicate that within may no longer make extrapolations.

Box 3. Inferring dynamics from complexity of shape: a Brownian neutral model

The important connection between fractal patterns and self-similar generating processes
can be made more explicit by considering modified Brownian diffusion processes. Man-
deibrot’ and Hastings et al.'? have discussed how fractal exponents may be incorporated
into diffusion processes, as a scaling factor for normalizing increments in space and time,
This normalization effectively tunes the memaory of a diffusion process, to produce either
smoother (‘persistent’) or more complex {'anti-persistent’) outlines characterized by their
fractal complexity.

Amodified Brawnian process is defined in terms of socme random variable characterizing
displacement, X{t), which is distributed as Gaussian white noise, with a root mean square
equal to

r.m.s, Xt = (AN

Depending on the value of H, the process can be said to be positively or negatively
correlated. When H = 1/2, the process is classical Brownian motion, with no serial
correlation between the dispiacements in successive time intervals. This means that, at
every stage and at every scale of At all directions of displacement are equally likely. If
1> H> 1/2,theincrements of displacement may be roughly thought of as overlapping each
other, above time increments that de not overtap. Such a process may be said to be
positively correlated, or persistent, in the sense that a particie moving in some direction at
time twill tend to move in the same direction regardless of 2 t. Roughly speaking, the grain
of the Brownian path will have been smoothed out in a statisticaily self-similar fashion that
transcends all scales.
To summarize, the H values for constrained white noise may be characterized as:

H = 1/2, Brownian
H > 1/2, Persistent
H < 1/2, Anti-persistent

These results translate to fractal curves and landscapes. Smoother curves can be generated
by higher values of H, and more irregutar curves by lower vaiues. The classical Brownian
value, H = 1/2, serves as a neutral value.

Mandelbrot' and Hastings and Sugihara (unpublished} have shown that the expanent A
can be retated to the fractal expaonent, D, with the precise relationship depending on the
details of the Brownian generating maodel. if the process involves a Brownian trail in the
plane {a Brownian line-to-plane function}, say for describing animal movements in two
dimensions, then D for the resulting path can be shown to be

D=1H

Thus, forthe classical Brownian trail where M = 1/2, we find that D = 2; the curve effectively
filis the plane. Adding persistence to the modified randoem walk smocths the trail out and
lowers the dimension; the curve becomes iess plane-filling.

if the process invoives level curves cutting acress a crinkled Brownian sheet (e.g.
isoetevation lines on a topographic map; a Brownian plane-to-line function), or if we are
considering the time series of a Brownian process (displacerment versus time; a Brownian
line-to-line function), then D may be calculates from the relation

D=2-H

Conversely, we can use the above relationships to infer the Hvalue required in order that
the appropriate Brownian process may reproduce the texture of an observed random
fractal pattern. That is, one can infer the space—time scaling that would be reguired of a
modified Brownian model 10 approximate the texture of the observed fractal pattern.
Mandelbrot’ provides some nice exampies of this.
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Fig. 4. 1a} A piot of log patch perimeter | Pl against
log patch area (A) for aerial photographs of decidu-
ous forest in Natchezr Quadrangle, Mississippi, USA.
tb1 Using a sliding window of 60 pcoints along the x-axis,
a discontinuity in D i{s uncovered at o0-70 ha. this is
marked by a kink in the curve at this scale. Such kinks
indicate shifts in dimension, and may demarcate
boundaries between hierarchical levels. From Ref {9,
with permission.

In this way. fractals may provide a
methodology for obtaining objec-
tive answers to such difficult prob-
lems in hierarchy theory as how
to determine boundaries between
hierarchical levels and how to
determine the scaling rules for
extrapolating within each leve! (Ref.
19 and Sugihara. unpublishedi.

Bradbury et al¥ investigate the
possibility of hierarchical scaiing in
an Australian coral reef. They use
the dividers method in transects
across the reef to determine
whether D (boundary) depends on
the range of iength scales. They find
that D declines abruptly from a
value of about 1.1 at the finest scale
{d = 10 cm) to a value of about 1.05
forintermediate lengths (8 between
20 cm and 200 cm), and rises sharply
to avalue of about 1.15 at the largest
scales (3 between 5 m and 10 m).
Again, the constant D within each
of these size ranges suggests the
possibility of a single class of pro-
cesses for generating reef structure
that are self-similar within these
size ranges. The shifts in D between
scaling intervals indicate when the
processes are different at each
scale. These three ranges of scale
correspond nicely with the scales of
three major reef structures: 10 ¢m
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corresponds to the size of anatom-
ical features within individual coral
colonies (branches and convol-
utions); 20-200 ¢m corresponds to
the size range of whole adult living
coionies; and 5-10 m is the size
range of major geomorphological
structures such as groves and but-
tresses. That is to say, the shifts in
fractal exponent at different scales
appear to signal where the break-
points occur in the hierarchical or-
ganization of reefs.

In similar vein, Krummel et al."
evaluate the fractal dimension of
deciduous forest patterns in Mis-
sissippi using the perimeterfarea
method on aerial photographs of
the US Geological Survey (1973)
Natchez Quadrangle. This region
has experienced relatively recent
conversion of native forests into
agricuitural use. Repeated calcu-
lations of D using a sliding window
of b0 points along the size-scale axis
ithe x-axis of Fig. 4al, reveai a
marked {# < 0.001) discontinuity in
D at areas around 60-70 ha. The
discontinuity was signaled by a kink
in the log Pagainst log A plot. Small
areas of forest tend to be smoother
with D = 1.20 = 0.02, while larger
areas. greater than 70 ha. have
more complex boundaries, D = 1.52
+ 0.02. This result is interpreted to
indicate that human disturbances
predominate at small scales making
for smoother geometry and lower D,
while natural processes le.g. geol-
ogy. distributions of soil types. etc.)
continue to predominate at larger
scales.

Scaling: persistence/smoothness

One of the more intriguing appli-
cations that has particular relevance
to remote sensing studies concems
the connection (discussed in Box 3}
between fractal spatial pattems and
modified Brownian dynamics.

As outlined in Box 3, there are
simple relationships between per-
sistence, measured by the par-
ameter H in modified Brownian
diffusion models (see Box 31, and
fractal exponents. Although the
exact relationship between Hand D
depends on the details of the
assumed model {Hastings and
Sugihara, unpublished}, the general
relatienship remains: increased
persistence (more memory in the
process) should comrespond to
smoother boundaries and patches
with larger and more uniform areas;

whereas reduced persistence will
correspond to more complex and
highly fragmented landscapes
dominated by many small areas. For
example, in simple patch-extinction
models‘?, persistence in the dis-
semination of spatial displace-
ments corresponds roughly with
how long the resulting patches last.
Given that for a particular natural
landscape the Brownian paradigm is
somewhat reasonable, one might
expect to find the predicted re-
lationship between reduced shape
complexity and persistence in time,
indeed, without committing to any
particular Brownian model, it may
be possible to obtain a purely em-
pirical scaling that relates a pat-
tern's ephemerality to its fractal
exponent, D.

Hastings et al'? have examined
this possibility for patches of two
kinds of vegetation, cypress and
broadieaf, in the Okefenokee
Swamp. USA. They fit patch areas to
the hypergeometric distribution to
determine B {Eqn 2|, which is then
used to estimate H and D isee pre-
vious section on hyperbaolic distri-
bution). Hastings et al. find that the
fractal exponent D is larger ithus
persistence, H is lower) for the
earlier successional cypress. The
more persistent broadleaf veg-
etation which eventually dominates
has a lower value of D. They specu-
late that D may be used as an index
of succession in circumstances

where simple  patch-extinction
models are reasonabie.
Several additional anecdotes

help to illustrate these ideas. An
initial analysis of satellite ocean-
color pattems appears to corrob-
orate the predicted relationship
between shape complexity and per-
sistence {(Sugihara. unpubitshed).
The boundary-grid method applied
to a series of images of the California
Current taken by a remote color
scanner reveals remarkably good
fits to single fractal expenents on
length scales between | km and
10000 km. When stable patterns of
low productivity of typical years are
compared with transient El Nifo
conditions, the predicted corre-
lation between fragmentation and
vagility is observed. Transient El
Nifio years show low and high pro-
ductivity regions having a patchier
and more highly dissected appear-
ance than is the case in typical
years.



Similar informal observations
arise in the patch dynamics of sess-
ile organisms. Heaithy vestimen-
tiferan reefs formed within plume
fields of deep-sea hydrothemal
vents often appear to have a much
simpler geometry than failing colon-
ies that inhabit vents on the verge of
extinction {R. Hessler, pers. com-
mun.). Similarly, certain persistent
bryozoan and coral colonies (eg.
Montipora spp.) often have simpier
outlines and are less patchy than
colonies of more ephemeral species
le.g. Pocillopora spp.) (Ref. 21; T.
Hughes, pers. commun.; 1. Connell,
pers. commun.). [t would be inter-
esting to follow up these provoca-
tive anecdotes with careful studies
to determine to what exrent D com-
puted from snapshots can be used
as an index of physiological state or
persistence of patches in time. and
how such persistence may relate to
the spatial scales involved.

Extingtion

Another potential application cf
fractals in ecology is to the related
problem of persistence of rare
species. Rather than focusing on
spatial geometry. we shall consider
instead the fractal properties of a
time series of population values.

viewed in the light of a modified
Brownian mode! {Box 31, one might
expect the range of values in a time
series to grow roughly as time raised
to the power H i.e. &t7). Thatis, if
x(t) is the time series variable. and
x*(t) is the normalized deviation
1x*it) = xitl — &it) for t between 0
and Tl. then the range RIT) Iwhere
R(TY = max x*(t} — min x*10) for ¢
between 0 and T| of a modified
Brownian process will scale with the
length of the time series, 7, as

RITY = cT" {3)

According to the third equation in
Box 3. the fractal exponent D for
the time series is computedas D =
2 - H.Thus, Eqn 3 provides another
method for calculating D for a time
series. All that is required is a re-
gressicn of log range against log
time. and the resulting slope is H.
Notice that when H > 1/2, the time
series is smoothed out {lower value
of Di: but because the Brownian
process is more persistent in its
deviations, the time series goes
through wider swings.

Such power-law scaling between

range and time has been observed
empirically in river discharge rec-
ords'®. The values of H computed
here have been found to vary be-
rween 1/2 and 1, indicating a tend-
ency toward persistence in the
fluctuations of river discharge. ie.
wet vears tend to be followed by
other wet years. Moreover, this per-
sistence is scale-invariantin that the
autocorrelation remains at all scales
(at least at all scales used to
measure H). That is, correlations be-
tween wet weeks will scale upward
in a self-similar fashion to imply cor-
relations between wet years and
wet decades, etc. This information is
important, for example, in designing
a reservair so that in its finite life-
time it will never overflow and never
empty.

The analogy to populations is
ciear. All things being equal, a
species whose population time
series follows Eqn 3 would be more
vulnerable to local extinction if its
range of population vaiues in-
creases faster with time ilarger H1
than cne whose population range
grows only slowly {lower H1. Roughly
speaking, the time to extinction
should scale as ¢'N'¥, where ¢’ is a
constant less than | and N is the
average population size. Thus, one
may speculate that vulnerability to
extinction should be associated
with a larger H or a lower fractal
exponent for the time series,
whereas more stable species will
have time series with a lower H.

Figure 5 shows an informal
example of such an analysis for two
bird species having roughiy the
same average abundance®. Accord-
ing to Eqn 3, the slope of the log R
against log T plot yields a value for
H. The value of H for the least
fiycatcher {Empidonax minimus} (H
= (.56 is higher than for the Ameri-
can redstart (Setophaga ruticilla) [H
= (.38), suggesting that the former
is more prone to local disappear-
ance and less subject to density-
dependent population corrections.
A lower H for the American redstart
suggests anti-persistence in its time
series (higher D), which again trans-
lates roughly to tighter density-
dependent population correction.

Dimension and embedding

As a final suggestion for a poss-
ibie class of applications of fractals
that may be of interest to ecologists,
we consider how the concept of di-
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Fig. 5. Log range in population vatues {normalized.
RIT: - see text] versus log ume of observation (T tor
two equally abundant bird species Itime series data
from Ref. 221. The slope yields a value of H trom which
D for the time senes can be calcuiated as D = 2=H
ial For the American redstart H = 0.38. and b1 for the
least flvcateher H = 0.56. A higher value of H for the
least fiycatcher implies higher suceptibility to local

extinction and weaker density-dependent control

mension operates in sampling. i.e
why sweep nets should work better
than flypaper.

Consider two sets of dimensicn
D, and D, embedded in a space of
dimension E. in order for them 10
intersect with nonzerg measure, it is
necessary that

D,+D,>E

Thus, a sampling scheme of dimen-
sion D., used in a space of dimen-
sion E can only detect phenomena
of dimension D, > E = D,
Lovejoy et al.? discuss an appli-
cation of this idea in connection with
the ability of the worldwide network
of fixed weather stations to detect
weather phenomena of different di-
mension. They use a modification
of the generalized grid method to
obtain a value of D, = 1.75 for
the worldwide netwark of weather
stations. Assuming £ = 2. phenom-
ena of dimension D, < 0.25 cannot
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be detected by this network.
Apparently, the low-dimensional
phenomena that might be missed
characterize certain violent epi-
sodic storms - a good case for the
use of satellites.

In addition to the possible,
though perhaps only weak, rel-
evance of these ideas for designing
sampling regimes in ecology (e.g. for
monitoring acid rainj, they may be
used to motivate a variety of in-
teresting evolutionary hypotheses
involving encounter rates le.g. be-
tween predator and prey).

For example, in cases where a
predator searches randomly (having
no information about the where-
abouts of its prey}, one might expect
selection to operate toward maxi-
mizing the dimensionaiity of the
predator's search path. Thus. such
predators may have highly con-
voluted and space-filling search tra-
jectories. Prey movements, on the
other hand, might tend to be
simpler, or the prey may be distrib-
uted in space so as to minimize their
dimension (Cowles and Sugihara.
unpublishedl. It would be an
interesting and workable task to
investigate how dimensional con-
siderations may come to play in
evolution by maximizing or mini-
mizing the frequency of different
kinds of encounter.

Conclusion
Fractal scaling appears as a
ubigquitous property of nature. It has

some promise both as an economi-
cal description of natural patterns
and. more specuiatively, as a tool for
probing causes. Whereas the for-
mally defined Hausdorf dimension
is not in itself usually a practical
concept, in real applications the
less stringent fractal exponent may
prove to be more valuable. More-
over, because the mechanics of esti-
mating fractal exponents are often
straightforward, they should be par-
ticularly attractive as a novel way to
approach some difficult problems
involving scale and hierarchy in eco-
logical systems. The suggestions for
applying fractals that are offered
above illustrate their potential in-
terest in ecology.
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