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SUMMARY

Over the vears, there has been much discussion about the relarive importance of environmental and
biological factors in reguladng natural populations. Often it is thought that environmencai factors are
associated with stochastc fluctuations in population densitv, and biological ones with deterministic
reguladon. We revisit these ideas in the light of recent work on chaos and nonlinear systems. We show
that completely determinisdc reguiatory factors can lead to apparently random fuctuadens in populadon
density, and we then develop a new method ‘that can be applied to limited data sets) to make praczcal
distincdons berwesn apparendy noisv dynamics produced by low-dimensional chaos and population
variadon that ia fact derives from random ‘high-dimensicnai}noise, such as environmenrai stochasacicy
or sampliing error.

To show its practcal use, the method is first applied (o0 models where che dvnamics are known. We then
apply the method to several sets of real data, inciuding newlv anaivsed data on the incidence of measles
in the United Kingdom. Here the additonal problems of secular wrends and spacal erfects are explored.
In pardcular, we find that on a citv-by-city scale measles exhibits low-dimensional chaos ‘as has
previously been found for measies in New York Cirv:, whereas on a larger, countrv-wide scale :he
dynamics appear as a noisv rwo-vear cycle. In additon to shedding light on the basic dvnamics of some
nonlizear biclogical systems, this work dramatizes how the scale on which data is coileczed and analysed

car affect the conclusions drawn.

1. INTRODUCTION

The classical debate berwesn the biotce and climade
schools has divided opinicn over the reladve im-
portance of deterministc versus stochasde forces in
controliing ecological popuiations (Sinclair {989). This
long-standing debate over random versus determined
variaton has begun to take on new meaning with
receat interest in chaos and nonlinear dvynamics, and
with the ever-increasing demonstrations of the ap-
plicability of these ideas o real dawa. Undl recendy,
one would have viewed a time series such as the one
snown in Agure |2 and concluded that the ecologically
important information here rested in the smooth ftted
line. There is, however, a change of view occurring in
dynamics, similar to the change that fractals is bringing
to geometry and the study of spatal patrern, which
suggests that the most interesting things mav be found
in the irregularides rather than in the smoothed
pattern (Lorenz [969; Takens 1981; Schaffer & Kot
1986; Sugihara & May 1990). Although inidally it
appears that incorporating such derail into the popu-
ladon dynamics debate mav further cloud the problem,
we shall argue thar the end result is not new difficulty,
but the prospect of a new clarity and simplicicy.

The paper is divided into four sections. In the first,
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we discuss the limitatons of traditonal approaches to
analysing deterministic influences on population dv-
namics. The second section outlines the light which
recent advances in nonlinear dyvnamics theory shed on
these problems. In partcular, it summarizes a new
method for distinguishing roise from low dimensional
determinism in ecological time series, based on their
internal prediciabiliey (Sugihara % May 1950). The
third section appiies this method to tme seres of
notitied case reports for childhoed diseases in developed
countries. Because they are often reladvely long,
and redect comparacively simple host-ma¢roparasite
population inreractons, these series are among the best
ecological candidates for applving noniinear methods
{Schaffer & Kot 1986; Schaffer et al. 1988). After
reviewing previous work in this area, we present a new
analvsis of the dvnamics of measles in English cities,
which has significant implications for the questian of
spatial scaling in ecological systems and the concept of
stadonarity as defined in traditional time series
analvsis. The final section draws these conclusions
together and suggests lines for futurs work.

2. TRADITIONAL APPROACHES

The ciassical approaches to analysing populaton

Mic Vafara sife
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seasonal pattern. (5} Time series of 1000 pownts {or the chaouc tent map: ., =

‘a) An =xampie of sopuiation dynamues for Dagama and edible aigae rom Lake Washingron Murdoen &
¢83). The dasned ine joins ke observagons and the smocth soiid lne is a sine wave arled o e

A, i x, <055, =2 -5,

x, > 0.5, These data are in many wavs mc.srmgu.uhablc from white noise. -¢) Kev factor anaiysis :mmxcq to the damn
in Agure !2. Although the signatur¢ appears to be an example of density vague populadon rcg*.uanon ne densicy
decendence ac low densities with severe control ac high densities;, it was derved from a low-dimensionai chaotic

process.

dynamics are key factor anaivsis of observed data (to
distinguish density-independent and nonlinear density-
dependent influences) and the exploration of lab-
oratory and mathemarcal models that reduce the
compiexicty of reai svstems to a singie or a few factors
‘Sinclair 1989:. Although these metheds nhave been
highly successful in the main, recen: developments in
nonlinear sheory identifv 2 number of probiems. which
we summanze as oilows.

{a} Limitations of key factor amalysis

Consider the model time seres shown in fgure [,
which appears to e stocnasdc. [fthis were 3 time series
for a real population, cne might easiiv conclude that it
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represents a population that is being bufeted bv
frequent random shocks with apparent occasional
rerurns 0 a quasi-equilibrium. Indeed. as shown in
figure lc, a kev factor analysis based on these data
would lead ane to the opinion that this s 1 classic
example of what some would call “density-vague
control’. i.e. no reguladion at low densities with control
occurring only at high densities. Yer these daca do not
represent density-vagueness at all, but are an exampie
of simple ¢haote dvnamics that were generated from
the deterministic tent map [Sugthara & May [990".
Thus, in :his case. an interprezaticn of these data as
arising [rom external unpredicubilines would have
bean incorrect. Conventonai aporoaches would have
mis-identified what was in fact simple chaotic dynamics
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Figure 2,

.a Simultaneous dme sedes for the three variables of the Lorenz system: .Y, ¥ and Z as

r

functions of tme.

Each ame-series represents the projecdon onio one axis of the Lorenz aceraccor (the so-called butterly attracior: as

itis embedded in three dimensions. ‘4) The tme secies in figure 22 were
the Lorenz auracror are shown here. The correladon berwesn

and the correlatons between all pairs of variabies for
Yand 7 has r = 0.636; that berween ¥ and Z has r = 0.00¢
Z arc ceterminisdcally coupled thev show no correladoa.

(i.e., low dimensional chaos) as random wvarartion
within a deasity-vague envelope.

(&) Limitations of the single factar approach

To complicate marters further {as discussed here by
Godfray & Blvthe (1980}, the dynamics of real
populadons can only be properly understood if they
are considered in their ecological contexe, that is ir a
wayv that recognizes the inherent complexity or
multidimensionality of the probiem. Populations do
nOC eXist singly, but are embedded in a dvnamic web of
other species and enviroamencal forces. While we are
censciously willing o acknowliedge this fact, it is
important to reaiize how such complexity could blur
any reladons that one could ever hope o ses in a
typical single-factor analysis (regressing one explana-
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randomiy sampied at 500 simuitaneous times,

vand ¥and Z have r = 0.00C. Thac is, aithough ¥ and

torv vanabie against another: a mainstay of ecological
research) such as the/factor approach,

This can be shown with the following simple
example. The three tme series shown in figure 24 were
gznerated {rom the three variables thac describe the
well known Lorenz equations {Lorenz 1968). The
system is completely determined by these three
variabies. Suppose now that we do not know that these
time series came from a Lorenz svstem. We only know
that they are parallel measurements from some system,
Typicallv when one is trving to undersiand a phenom-
enon one looks for pacterns, in this case correladions
between the time series. [f we randomly sample these
series at simultaneous times and look for Dairwise
correlations we get the result shown in Agure 24. While
there is a significant relacion between .Y and ¥, there is
no significant linear relfation between U and Z

G. Sugihara and ochers 000 3
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(aithough there is a sign:ficant paradoiic reiation:, and
no reiadon of anv kind between ! and Z. Thus even
though ¥ and Z arc determinisdcally coupied thev
appear completely unrelared. That is o sav, lack of
correiation becween pairs of variabies does not imply
lack of causadon.

We are faced, therefore, with two dilemmas thar ac
first glance are not obviousiy related: (1) how o
distinguish randomness rom low dimensional deter-
minism. and i} how o explicitly acknowledge higher
dimensions. These two probiems are noc oniy central to
populaden reguladon debates, but are at the heart of
nonlinear theory as shall be discussed in the next
secdoq.

3. NONLINEAR PERSPECTIVE

Suppose we have perfect xnowledge about the
internal dvnamics of a populadon, so that without
arbitrary disturbance evervthing is determined and
nothing is random. That is, we inow all the variables
and the functions describing how they are related, The
space whose axes consist of 2ach of these dvnamically
coupied variabies is known s the “state space.’ For
exampie, if cthis is an expenimental muldspecies svstem
where the oniv important variabies are ocher species.
then the axes of the stace spacs wouid be the population
sizes of 2ach of the coupied species, All popuiadon
variability and moron wouid e constrainecd to jome
sub-manifold of that space ser by ne reladons
(functons) among variabies. IfL after an arbirary
perturbagon, the poouiation returns o ir this sub-,
mAnifole. it s called an attractor’ Takens 198%:
Abraham & Shaw 1982; Schafer & Kot 1983 fexy

5 1989 Godfrav & Blvthe 15801

The central concepts hers. of state space and
artractor, represent the sciendfic ideai of pertect
deterministic knowiedge. In dracdce, however, we do
not know the state space. Rather, we might have ume
sedes for ome or more of the variables. Thus.
practice, the state space and it 3(Tracior are a black
box, and the time series art observables or curpus.
Fach of these dme series can be viewed essendally as a
projecton onto one axis of ne state space through dme
{e.g. 1 r:ﬁ shows the thres time semes for the

Srenz attracior). That is, each time series is a view in
one dimension of a process occurring in higher
dimensions. Therefore. in a perfecdy dererministic
world, much of the complexicy or apparent randomness
in a dme series will arise rom a state spacs having a
high number of dimensions, or alternatvelv {and
possibly in conjunction with), an atractor with chaouc
dynamics.

Let us focus on the case whers we have oniy one rime
series. How can we get information about the state
space and actractor that produced ic? The standard
method here is Taken's [1981; technique of using
lagged coordinates to embed 1 time senes in higher
dimensions ' Godfrav & Bivthe 1990'. Although em-
beddings can be created from the omginal state-space
time series themselves, here we shall consider the worst
case where there is only one ume series 1o work with;
this is also the case where the lagged coordinate idea is
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most valuable. Again, the space created by such an
embpedding is not the original state-ipace, but 2 mock
version of it: something we shall call a “phase space’.
As oroved bv Takens ‘1988, the phase space retains
essential properties of the onginal state-space including
the dimensionalitv of the atiractor it contains. More-
over, as we shall see, 2 phase space can be used to make
foracasts. properties of which provide pracrical disunc-
tions between low dimensional determinism and noise.
even with limited data of the kind encountered in
population bioiogy {Sugihara & May 1990

Thus even though our uitimate goal is to understand
the populadon in state-space Le., how many dimen-
sions does it have? are the dvnamics low dimensional
chaos or simply noisv? etc.}, we may only have a time
series for one variabie of this space nameiy for the
population itself whese dyramics we are trving to
understand). To get around this probiem we shall
construct a phase space as a surrogate Raving the same
topological characteristcs as the ariginal state-space
(again, a higher dimensional embedding of the dme
series by using dme-lagged coordinates;. [aformadon
about the original atrractor can then be gained bv
exploring the properues of the mock arTacior in pnase
space.

(a) Nonlinear forecasting (o differentiate notsa from
chaos: basic ideas

The method outlined hers is discussed in fuller derail
in Sugihara & May (1990) and is dased oa theories of
short-range precicdon proposed in general terms by
Lorenz (1969} and others . Tong & Lim 1380: Prestly
{080 Farmer & Sidorowich 19874 The basic idea here

‘which is classical in predicton? s that i indeed
deterministic laws govern a system. then sven if che
dvnamicai behaviour is chaodc. the future may be
reckoned from the benaviour of past values that are
similar :0 the present. The key, however, is in knowing
the dimensionality within which the past. present and
future are embedded. —

Suppose {as discussed byeﬁ‘ray & Blvthe; we have
properly embedded a time series in an E-dimensional
phase space so that gac'ygggc\d sequence of data
poine. Z, = {x, .r_._,,..j/'— E£—1iT} is a point in this
E-dimensional space. Here we usually choose 7 =1,
bur the results do not appear o be 00 sensitive o the
choice of v, provided it is not tco large. This is like
raking an E-pronged fork whose tines are separated by
a distance 7, and dragging it sidewavs along :he mnime
series; the vector of time-series values, Z,, formed by
where the tines land at each instant. describes another
E-dimensional point, and the set of ,vectors {2}
JescADes the SCracior. [n general, Loy S/D 4 1, where
D is the arrractor dimension. Each predictes Z, is now
to be regarded as an £-dimensicnal poing, comprising
the present value r and the E—1 previous values each
separated by one lag time 7. We now locate all nearby
E-dimensional points in the phase space and choose 2
minimal neighbourhood so that the predictes s
contained within the smallest simplex formed from its
E+1 closest neighbours; a simplex containing E+1
vertices is the smallesc simpiex that can contain an
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£-dimensional point as an interior point. When a
minimal bounding simplex cannot be found for
exampie, for boundary pointi, we use the £+
nearest neighdours. To obrain a prediction, we simplv
project the domain of the simpiex into its range ‘that
is. we Xxeep track of whers the other points in the
simplex end up at ¢ dme steps), and compute the
weignted cencre of mass of the simplex o ge: the
predicted value. [n other words. we foilow che short
term destiny of nearby points in the attracior to ses
where they end up after p cme steps. This is a non-
parametric method, aad it should appiv to any
stadonary or quasi-ergedic process, including chaos. [t
uses no previous informaden about the model used o
generate the series. only the informadon in the ume
series outpur iseif. Uniess otherwise stated, we shall
- COmstruct the phase space rom the Arst half of che dme
series to make predictons on the second half,

(B} Nonlinear forecasting to differenticte noise from
chaos: ¢xamples from models

Figure 3a shows an appiicaton of this method 20 the
walite-noise time series produced Sv taking Srst differ-
eacss of the tenr map series shown in Agure 15, It
compares predicied against acrual resuls cwo dme
steps into ine {Urure: 1 ume siep where there is no
significant corrsiadon berwesn vajues. Notics again,
the pnase space constructed from the drst half is used
to predict the valiues in the second haif. Thus. this tdme-
series, wnich bv standard stadstcal analvsis s un-
correlated white noise - unpredic:abie:, in fact becomes
strongiv predictabie when embedded in higher dimen-
sions.

Figure 34 shows how predictabilitv, as measured by
the standard correiation coeficient. declines as the
predicdon interval T, i, how far into the future cne
projecs; increases. Such a decrease in the correlation
coefcient with increasing predicion tme is the
hallmark of chaos  or equivalentiy, of the presence of 2
positive lyapunov exponent, with the magnitude of the
exponent being reiated 1o the rate of decrease of p with
7,,. This property is noteworthy because ic sugzests a
simple way o distinguish berween additive noise and
multipiicative chaos: predictons with uncorrsiated
additive noise wiil appear to have a fixed amount of
error, regardless of how far or close into the futurs one
tries (0 predict, whereas predictions with muitiplicatve
chaos tend to deteriorate as one tries to forecast further
into the fucure. This can be seen in figure 3¢ where it
is shown that the characteristc signature cof p de-
creasing with 7, does not arise when the erratc dme
series s in fact a noisv limit cvele ‘here addidve noise
supertmposed on a sine wavel. With uncarrelated
addiave noise. such as sampling variation. the error
remains coastant as the simplex is projected further
into the future. In contrast. the dashed line in fgure 3¢
represents the correlaton coefficient (p; against pre-
diciien time 7,; relation for a chaotic sequence
generated as the sum of two independent runs of Aest-
differences of the ten: map. Although the :wo tme
series here both look aiike as sampie functons of some
rancom process, the characteristic stgnatures differen-
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date random noise in one instance Tom determinisdc
¢haos in the other.

The predicdons in figure 3a— are based on an
embedding dimension of £ =3 These results are,
however, sensitive to the choice of £. This is shown in
figure 34 where resuits are summarized for prediction
accuracy {correladon between predicted and observed,
here at T, = 1} versus embedding dimension £. [t may
ac rst sight appear surprising rhac aaving petentially
more information erodes the accuracy of the pra-

e . N AV
dictions, since for large £ :hcrc;w

g more data sum-
marized in each £-dimensional point, and a higher
dimensional simplex of neighbours for each prediczes,
Sugihara & May [1920) have suggested that this effec:
may De caused by contamination of nearby DOINLS in
the higher dimensional embeddings with points whose
earlier coordinates are close but whose recent 'and
more relevant] coordinates are distant. If chis is so, chis
method may have additonal applicadon as a trial and
error method of computing an upper bound on the
¢moedding dimension, and thence on the atmractor
dimension.

So far, we have compared relations betwesn 7
‘or chaodc tme series with the corresponding relation
for additive white noise. More problematic, however, s
he comparson with p—7, reiations generated by
coloured noise spectra where there are significant
snort-term correlations but no long term anes, As with
chaos, such correiated noise can also lead o declining
p—T, curves. Although, in the limit, the shallow form
of the decline in simpie cases may distinguish correlaced
noise from a chaouc signarure Eugihara & May 1990

Farmer & Sidorowich I98/€\, in a practcal sense.

—

pand 7

particularly with imited datd of “he MAC avaiaople in
populauon biviogy, such distinctons may be diffcult
to find. One practdcal solution to this- dilemma.,
suggested by Sugihara & Mav 1890}, is that coloured
noise may teatatively be distinguished rom determin-
stic chaos if in additon to an exponentially declining
p—?; curve, the correlation, p, between predicied and
observed values obtained bv nonlinear methods is
significandy better than the correlation obrtained by
the Dest-fitting autoregressive linear mode!. That is, if
a ume series is chaotic it should have both a steeply
declining o~T7, curve and more predicability uncer
the noniinear hvpothesis {i.e. that it was produced bv
noalinear mechanisms}, than if one assumed it was
produced by iinear mechanisms ‘i.e. by the lizear
superposition of simple cycies of varous period and
amplitude;.

Perhaps most germane <0 the biotic/climare issue is
the possibility of noise entering multiplicacivelv as a
disturbance o popuiation numbers which is then fed
back into the dynamics. An example would be noise
entering in the form .Y, =F{.'{'_.i—,2f:;, where £ is
assumed to have swmble dynamics. Here, if £ is
noalinear, 1 nonlinear predictor mav sull verform
better. However, one can again expect a siower than
exponendal decline in the p— T, zurve. An exponencial
decline which arises from locally exponenually diverg-
ing trajectories mav be taken as the operational
definition of chaos. A simpie wav io use nonlinear
forecasting 0 disunguish this possibility (s bv examin-
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A, predicled

Coellicient, p

Correlation

ing whether the £.dimensional simpiex tends to expand
ichaags) or contract {noise fed through scable dvnamics)
when projected from its domain into its range; this idea

will
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Figure 3. [a) Predicted values two steps into the future | T, = 2) versus observed values for the white-noise dme senies

produced by taking frst differences of the tent map saries shown in figure 14 [after Sugihara & May 1990).
Specifically, the first 500 point in the series were used to generate a library of patterns, which were then used as a
basis ‘or making predicdons for sach of the second 300 poinws. As described in the texy, the predictons wers made
using & simplex projecton method {Sugihara & May 1990) with an embedding dimension and lag dme of £ =3 and
r = |, respectively. Hers the coefficient of correlacon berween predicted and acrual values is p = 0.997 [.¥ = 300).
For comparison, we note that the corresponding correlation coefficient using an autoregressive linear model is p =
0.0%. () Predictability measured by the standard correlation coefficient, o, as a functon of how far into the future
the forecast is made, 7. The =xponential decay in predictability with increasing predicdon time, T,, shown herz is
a characterisdc of chaotic dynamics. ¢} Additive noise ‘solid line) versus chaos idashed line). The solid line shows
that the correlation, p, between predicted and observed values for the case of addidve noise (here white noise
superimposed on a sine wave; does not decline as one tries to forecast further into the future, Bv contrast, the dashed
line shows the declining signacure characteristic of a chaotic sequence (here the sum of cwo separate tent map
sequences). (4} Correlation coefficient. p, between predicted and observed values as a function of embedding
dimension, £, for predicdons one time step into the future {7, = 1); like figures 34 and &, the fgure is based on the
time series shown in figure 5.

4. APPLICATION: THE DYNAMICS OF
CHILDHOOD MICROPARASITIC

be developed further sisewhere. INFECTIONS

Because of their public health imporiance, the
epidemiology of childhoed viral diseases such as

Trans. R. Sec. Lond. B . 19G0)




measles and chickenpox in developed countries is
especially well documented . Nokes & Anderson 1986},
In pardcular. the refariveiv long time series of case
reports accumulated {rom disease notification pro-
grammes in Europe and the U.5.A. provide a mass of
informadon about the characierisdeally oscillatory
dvnamics of these infecdons in human communities
‘Anderson et ai. 1984, The dvnamic origin of this
recurrant epidemic benaviour has Deen exiensively
examined, both in terms of mathemadcal models
{Bartierr 19537, Anderson & Mav 1283; May 1986;
Hethcote & Levin 1989), and time-series analvsis of
eoidemiological daca /Anderson et ai. 1984). The data
for measies have received considerabie attention
recencly, and have been the focus of a debate as 0
whether measles dvnamics is simply a noisv limit cvele
‘Schwarrz 1983, or low dimensiopal chaos super-
imposed on a seasonal ¢ycie {Schafer & Kot 1983,
1986 Schaffer et ai. 198'9‘4\‘.1 Much of this controversy
has cénwed on 3chafder’s pioneering analyses of case
reports for New York, and so we begia by appiving the
predicdon method to these data.

{a) Measies and chickenpox in New York

Thae methods described above have besn used o
analvse public health records of monthiy changes in
the reported incidence of measies and chickenpox In
New York Citv Sugnara & Mav 1990;. The resuis
are summarized in Agure +. The eariier arguments or
chaos. tased largeiv on qualitadve judgements as o
statc properdes of the atzractor and modei simulations
‘ses, for example. Schafer «¢ al. 1989}, were supported
bv the results of the forecastng analysis presented here.
However, because predicuon is a harder test of £-
dimensional determumism than judgements as to the
geomerrv of a putative attracter, we think this analvsis
constituzes the sirongest evidence so far, {or the measies
atrractor, Here we see 2 steeply declining -7, curve,
with the characteristc signature of a chaotc process.
The result is supported bv the fact thac the nonlinear
predictor performs significantly better than the best
linear predictor {£ < 0.00053}). An opumal embedding
dimension of 3-8 is roughly consistent with our
independent estimates of an attractor dimension of
2.3-3.53 by using the Grassberger—Procaccia (1983)
algonthm (Schaffer & Kot (19831 also repart an
esumated artractor dimension of 2.5 for measies).
Thus, we believe che apparent irregularity in the
measies ume series is not due © random effecs
{environmental shocks or measurement errors), bus is
generated by low dimensional chaos. -

In conrrast, the analysis for chickenpox ‘figure 1)
suggess thar complexity here is not due to low
dimensional chaos, but w0 noise (possibly high dimen-
sional chaos, superimposed on a strong annual ¢vcle.
These data produce a flat p-7, curve, similar o the
addiave noise case in figure 3¢, Moreover, the best
dnear predictor was found to pertorm at least as well as
our noclinear predictor .the correlation betwesn the
predicted and observed monchiv change in the num-
bers of chickenpox cases using the linear predicror was
p =084, and for the nonlirear predicior p = 0.82

Pril. Trans. R. Soc. Lond, B | 1990)

where .V = 266 and T, = 1), Thus, there is no evidencs
thar the irregulancy in the chickenpox data is due o
anything other than random noise.

As discussed in more detaill elsewhere Suginara &
Mav 1990}, there are biclogical reasons 0 expiain wiv
measles mav exhibit chaodc dvnamics - essenciallv
deriving from a roughly two-vear ‘inter-enidemic
period’ interacting with annual varadens in trans-
missibility;, wrle chickenpox [where infectdousness
can recrudesce at older ages: exhibits oniv annual
periodicites.

(&) Measles in England and Wales

We now extend the analysis to dara on changes in
the monthly incidence of measies in England and
Wales /figure 3a). These and subsequent data were
extracted from the Registrar General’s Weskly Re-
turns, for the peried 1948 [when measles notficadons
began) to 1967 {just before the onset of mass measies
vaccinatdon in 1963 significanty altered the dvnamics
of the infecdon; Anderson ¢f al. {1984)}. As with earlier
analyses (Sugihara & May 1990) we begin by
transforming the data to first differsnces. partv o
remove such linear trends as mav exist and pardv o
increase the density of points in phase spacs. Because
the ume series hers are verv short 'V = 240, roughiv
haif the size of the New York seriesi, :o maximize :he
irformation content in esumating £ we ailow :he
library and predictons to span the fuil ume perod.
However, 1o avoid circularicy berween our forecasts
anc the modei. we sequendally exciude points irom the
library that are in the neighbourheod of each predicras
(specifically the 'E=1i7 points preceding and foi-
lowing each forecass). Similar but much acisier results
for estimating the embedding dimension wers odrained
bv using the standard protocol of the frst hasf
predicting the second haif. The standard protocol was
used for the p~T, curves. where the pattern, thougn
noisy, appeared 10 be more robust. The qualitative
appearance of these curves was found o be much :he
same for all choices of library.

As shown in figure 34, we obrain optimal embed-
dings at £ =7-[0, which is similar to the rangs of
values found for measles in New York £ = 3-8
However, unlike New York, it appears that the
dvnamics here are not produced by low dimensional
chacs, The p—T, curve {figure 53¢, does not decay
exponendaily as it does lor the measles incidence dam
from New York City, but rather has a flat 2ppearancs
more reminiscent of the additive noise case we saw [or
chickenpox {figure +4}. This result is corroborated by
the comparison with the optimal linear model. For
predicted changes in measies frequency one month in
advance {.V = 120), the best linear autoregressive
medet gives the result p = 0.797, which is not signid-
cantly different from the correlation obtained with the
nonlinear predictor, waere g = 0.790. Thus. unlike
measles incidence in New York Citv, measies in
England and Wales appears not to be chaotic.

Thus we are faced with an apparenr concradiction:
why should measles in New York City be chaotic while
the same disease in the Uniced Kingdom is a simpie
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biennial cyele with addidve noise® Could the con-
tradiction be explained by differences in the population
or spadal scales invoived? For example, could in-
dividual cities in the U.K. be chacdc and nonlinear,
but produce an emergent behaviour that appears
linear when they are aggregated?

(¢} Spatial dynamics of measles

The analvsis of the spatal dvnamics of measles has a
distinguished ~pedigree in both biomathematics
(Bardert 1937 and spatial geography {CLf & Haggett
1988. Before exploring the dynamics of measles in
Engiish cities, we clarify the dynamical implications of
spatial heterogeneity with a simple model.

(1} Scale dependence in models
The sensicivity of ecological models to aggregation
and scaling has been discussed in a number of different

Phil. Trans. R. Soc. Lond. B 119%0)

Prediction Time, Tp

contexts (see, for example, Cohen 1979; Livdahl &

&
Sugihara 1983 ; Sugihara ¢ al. 1984; Ives & May l98£/ 48

Allen & Starr 1985; O'Neill 2t al. 1988" Sugihara ¢f al.
1089). Here we test the theoretical _possipility of
emergent linearity from nonlinear pars with the
following simple experiment.

We approximate measies dynamics within 2 single
city as a chaode logistic map (., =aX, 1 =X}
superimposed on a sine wave. We then invesugate
what happens as more of these ‘sine + logistic’ series
are summed. [n summing the series. we require the
linear part {the sine waves) t¢ be synchronized as the
seasonal patterns in cities would e, but we ailow the
nonlinear parts o be independent 0 approximate
spatial decoupling {or weak coupling by contagion;. In
efect, this is equivalent to averaging the output from
independent logistic maps. and superimposing this net
ourput on a sine wave. Because the dynamics in each
city may not be perfectly identical, the logistic maps

g

f
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Figure +. (a) Time series generated by taking first differences, x| ==, of the monthly number of cases of measies
reported in New York City berwesn 1928 and 1672 (the frst 332 points in the sequence shown hers). After 1963, the
introduction of immunizaton against measles had a gualitative effect on the dynamics of infection; this can be seen
in the later part of the sequence shown here. (§) By using the methods described carlier, the first part of the measles
time series (216 points, from 1928 to 1946} was used to construct 2 library, which was then used to predice forward
from each point in the second part of the series (1946 to 1963}. The correiaton coeficient, p, between predicted and
observed results is shown as a function of the embedding dimensicn, £, for ptedictions one tme-step ahead, T, =1
fand r = 1). The figure suggests an optimal embedding dimension of & ~ 3=7. (¢} Here p, between predicted and
observed results for measles, is shown as a function of predicdon interval T, for £ = 6 and = = 1. The overall decline
in predicdon accuracy with increasing ume into the future may be taken as indicative of chaotic dvnamics. as distinct
from uncorrelated noise. Figures +4. ¢, fas for figures 4, 4, ¢, respectvely, except now the data are for monchiy case
reports of chickenpox in New York City, irom 1928 o0 1972, Here, ail 332 points are used in the analysis. Again figure
¢ suggests an oprmal embedding dimension £ ~ 3-7. In marked contrast to figure ¢. f{caiculated on the basis of
£ = 3and r = 1) indicates pure additive noise, superimposed on a basic seasonal cycle. For a more detauled discussion
af figure 4, see Sugihara & May (1390

are given some variability bv choosing the parameter a
for each map uniformly in the interval [2.57, 3.67°.
However, similar results are obtained with indepen-
dently inidalised logistic maps having identical para-
meters.

Figure G2 shows how the p— T, signature varies with

Phil. Trans, R. Sec. Lond. B :1990)

increasing aggregation. As more independent logistic
maps [cities} are folded into the picture the p~T)
signature becomes ever more shallow. giving much the
appearance of the linear noise case. This is corrobo-
rated by figure 66 where the linear predictor tends 0
match the nonlinear predictor mare closely as more
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Figure 5/a; Time-series of first differences in the number of sases of measies reported across Engiland and Wales
berween 1948 and 1966. For data-source ses Anderson ef af. (1884, () Correiadon coefficien: or precicabilicy, g,
as a funcdon of embedding dimension. £f for measles rom Engiand and Wales. Because of the low aumber of daca
points available 7V = 216}, we emploved the whole series in forecasting in order to obtain the clearesc sstimnace of
optimal embedding ‘unbiased v the possibilicy of nonsiatonarity in the data). However, to ensure independence.
the library used for each forecase was constructed o exclude points near the predictes in the dme-seres. A lag of
7 = 2 was used (0 embed these dara, ¢ Predicrability, p, as a function of predicden dme, T, for measies from Eagland

p

and Wales. Here the optimal parameters obtained above (7 = 2 and £ = 8) were used in forzcasting; the lgrarv of
patterns from the firsc hall of the data was used to oredict the second half of the dara. The relativeiv a: pattern shown
here is simuar o the addirive noise case seen for chickenpox in New York Ciry. This figure shows that the large-scale
aggregate behaviour of measles across Engiand and Wales does not appear to be chaccic {in curious contrast to

measles in New York Ciry, figure $a;.

logistic series are summed. These trends are under-

standable in light of the foilowing two facts. Firse, as
more logistic maps are superimposed, the nonlinear
signal becomes ever more complicated. High dimen-
sienal dynamics. chaodic or otherwise, are regarded as
noise. Secondly, as more such series are superimposed.
the amplitude of :he norlirear signai should decrease
roughly as the square root of the number of in-
dependent chaotic logistic maps; this exposes more
clearly the linear parts (seasonal sine wave) of che time
series which are svnchronized. Thus as more in-

Phii. Trans. R. Soc. Land. B 1990}

dependent chaodc nonlinear series are aggregated, the
noniinear part should begin to resemble noise supers
imposed on a sine wave,

(WY Measles in English cities

To test the applicabilicty of these ideas 1o the observed
patterns for measles in England and Wales, we have
disaggrezated the data, focusing on individual cites.
The central question here is whether evidence for
chaotic behaviour (which is not apparent in the
countrywide analysis) emerges on a single-city scale.
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Figure 6.[a) Predicrability, p. as a funcdon of predicdon dme, T, at different
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levels of aggregaton. Here we

approximate measles dynamics in a single city as a chaode logisde map superimposed on a sine curve. and investigate
behaviour as more of these (sine +logistic) series are lumped {summed). The solid ine with open boxes is for one
{sine +logisdc) {r = [, £ = 3), the dashed line with closed diamonds is for 10 (sine ~logistic, series summed 7= |,

£ =7}, and the solid line with solid boxes is for 20 series summed '+ = t, & =9). The afect of such aggregadon on
the dvnamics s 0 diminish e nonlinear chaodc portion of the signal.
the difference in predictabilitv. p. berween ostimaj lnear iutorsgressive methods

like the addicve noise case. 4%,

- . . . - . .
30 that the pr\—)T; s1gnature i00Ks (ncreasingiv ¢ £

versus our nenlinear methods is shown. as a funetion of the number of ‘sine — logisde: maps that are lumped together,

The maps are as described in figurs Sa. and here L=!and&£=3r=

with increasing aggregadon.

li. Noce that the diference in 5 degreases

Table |. Demographic summary for the seven English cities used in the spatial analysis of measies

distance ;road miies)

distance marrix London Birmingham Liverpool Manchester  Sherheid Bristoi Newcasde
London —_ 113 205 189 135 113 281
Birmingham — — 94 81 78 38 2035
Liverpool — — — 35 T+ 16+ 156
Manchester —_ — — — 38 164 132
Sheffieid _ — — —_ — 16+ 128
Bristai —_ — —_ - —_ — 293
populadon® 8232 1066 792 693 S5i¢ 435 294
(thousands)
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We shall focus here on a represencative sample of seven
large English cities: table | liscs che cities, aleng with
their population sizes and a distance marrix, while
figure 7a shows the associated measles time-series for
the period 1948-67. '
Figure 74 shows the embedding analyses for each of
the seven cities (again, using the fuil data set (¥ = 2400
10 compute these correlations!. All of the five most
populous cities, London, Birmingham, Liverpool,
Manchester and Sheffield, had optimal embeddings in
a range similar to what was observed for New York
(£ = 5-8; Manchester, however, also had a peak at
£ =4, and each had 2 local maximum ac £ = 7, [n-
deed these results seem o match the embedding results
for New York better than those for the pooled daca for
Batain. On the other hand, the two least populous and

Phii. Trans. R, Sec. Lond. B 1990,

most isolated cities appeared to require higher dimen-
sional embeddings: for Bristol £ = 10, and for New-
castle £ = (2. Although one must be caudous not o
overinterpret the specific figures obcained here.
especially in light of the low number of data points
involved (.V = 240}, it is interesting to note that both
Bristol and Newcasde fall weil below the population
threshold believed necessary for the infection to remain
endemic (Bardert 1937, It is possible, therefore, that
the higher dirmensionality of the embedding hers is
because of the higher complexity coming from the
required coupling to the ouside worid.

Figure 7¢ shows the p~T7, curves for the seven cities.
The resulss here are not flat like the ones obrained with
the aggregated darta, but rather have a look very
similar to the chaotic signature observed in New York

'
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Figure 7.{¢} Time-series of first differences in the reported monthiy cases of measies in seven major British cites
berween [848 and 1966 (arranged in order of citv popuiadon size;.

where predictability falis off steeply with increasing
predicden ume. Moreover, the resuits of the com-
parisons wich the optimal linear predicior for zach city
shown in table 2 {Dyn,0, 18205 0,001 0w 38 T, = |, with
the resuiting p-level! firmlv support the view thar the
dvnamics are chaodc. Thus, it appears thar scale
consideradons may help rto resolve the apparent
contradicdon between the lumped analvsis for measles
in England and Wales, and the zarlier analvsis for New
York City measles. In this regard, it is interesting that
London, the most populous and geographicallv the
largest of the British cites by aimost an orcer of
magnitude, appears o show the most gradual decline
in its p-T, curve.

These resuits show that the noalinear dynamicai

Phii. Trans. R, Soc. Lond. B {1990)

fearures that are present in the individual cities of :he
U.K. are averaged ourt in the aggregate. Although a
linear predicior worked well {at least as well as the
nonlinear predictor) at forecastng changes in measies
incidence countrv-wide, the greater success in pre-
dicting on a city-scale using 2 nonlinear predictor
suggests that one might expec: o produces better
forecasts country-wide by combining the results of the
component noniinear predictors.

(d) Stationarity

Finaily, 2n issue that seldem appears in simple
models but that is important when analvsing data frem
the natural world, concerns the statonaricy of the

W
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Table 2. Compartson Setween lincar autoregressive metfods
and ke nonlinear simplex pregictor

Tabie 3. Tust of measies data for noniinear stationarity N =

120, =1

CEW Pigear ? oatinenr Signiﬁcancc
London 0.63 n.’s £ < 0.00!
Birmingham 0.37 0.71 2 < 0.0005
Liverpooi 0.40 0.48 2 < 0.03
Manchester 0.38 037 2 < 0.0005
Shefhicid -0.02 0.6+ 2 < 0.0003
Briscol =0.01 0.37 7 <€ 0.0005
Newecastle -0.10 0.28 2 4€0.0005

process generatng the dme-series. In all of the p—7,
analyses above, the first half of :he series was used o
construct a lbrary of patterns chat was then used o
predict the second half of the dme series. [n the nacural
world, where paramerers car undergo svstematic
changes over dme, past patteras can be of dubious
relevance to an altered present or an even more
different future. An inspecdon of several of the time
series in fgure 7a, pardculariy those for Sheffaid,
Bristol and Newcastle, suggess that non-statonarity
might indeed be a problem here.

One wayv to gauge whether secular trends might
confound the forecasdng results ziven above has been
discussec bv Sugihara & Mav [990). Rather than
using the frst haif of the tume series to construct the
librarv, and che second half 10 compuie correiations
between predicdons and observadons, we instead
investigate what happens whea the lbrarv and
predicted halves are chosen in ail combinadons {table
3). That is, we use the first half 10 predic: iseif /1 =1}
and then use it to predict the second haif {1 — 3, and
the second half to predict iself 2 —2) and then use it
to predicrt the first haif /2 — |}, We then compare the
correlaton coefficients obtained in each of these four
cases. If the dme-series shows a secular trend, we
should find higher correlations when the library and
predicted segments span the same dme period, and
lower ones when a library 'rom one time span {e.z. first
half is used to forecast values rom another time span
{e.g. the second half of the series;.

Tabie 3 shows the resuits of such an anaivsis for each
of the English cicies in fgure 7. Although there is a
ceriain amount of varadgon in the predictability of
each of the reciprocal combinations, there is no
systemadc trend for higher correladions when the fitted
nalf is used to predict on iself. This is most clearly
evidenced in the summarv statistics given at the
bottom of table 3. Moreover, ail reciprocal combin-
atons gave similar p- T curves. Thus ac least from a
nonlinear perspective, these tme senes do not appear
to contain secular trends.

On the other hand, when reciprocal pairings
berween firted and predicted halves are made using the
linear autoregressive approach. thev can appear highly
nonsationary {table 4). Notica that the linear auto-
regressive mode! kevs on repeated patterns in one
dimension {the time-series irseif). Thus the tme series
for Shefiield, Bristol and Newcastle, for which there
was almost no linear predicrability betwesn the frst
baif and the secoad haif, appear rmosc clearly non-

Phl. Trans. R. Soc. Lund, B . 1390

library haif — predicred haif

Ciey =1 =2 2t 22
Lorden 0.85 0.72 0.73 0.46
Birmingham Q.67 0.7 0,72 0.68
Liverposi 3.31 £.49 0.17 0.33
Manchester .48 0.34 0.+8 0.27
Sherficid 0.7 O+ 0.47 0.4t
Bristol 0.43 0.63 0.7¢ 0.31
Newcastle 0.35 0.59 0.60 0.60

Table +. Test of measies data for linear stationaricy | N =
120 =1

firted haif — oredicred half

Cirv =1 =2 2] 22
London 0.6+ 0.64¢ 0.33 0.5+
Birmingham 0.60 0.33 043 0.76
Liverpool 0.36 0.+3 0.2¢ 0.30
Manchester 0.6+ 0.38 0.42 032
Sherfieid 0.60 ~2.02 028  0.70
Bristod 0.73 —~0.07 0.43  0.80
Newcastle .60 —-3.10 2.33 057

siattonary to the naked =ve. None the less, when these
time series are embedded in higher dimensions. the
obvious secular trends disappear. The moral :hat
emerges {rom this is that if 2 process is zrulv nonlinear,
one aeeds o be carefu in proclaiming nonstadoraricty
based cn linear criteria. A stadonary process in higher
dimensions may only appear o contain secular changes
when viewed in one dimension.

3. DISCUSSION

Our preliminary anaiyvsis of the spadal dvnamics of
measles suggests two fruidul avenues for future work.
First, the measles data for England and Wales are
available on a much finer spatial scale than the ¢crude
city-bv-city division examined here. In partcular, a
furtner subdivision of the Londen measies data would
provide a much more refined test for the “emergence’
of chaocs at smaller spatial scaies. Secondly, we require
more detailed mechanistic modeis, which ailow ex-
piicidy for the impac: of spatial heterogeneides in
transmission on the dvnamics of the host-parasite
interaction (May 1986; Mav & Anderson 1984}, As
shown by the simple [*sine+logistic') spatial model
considered above, the analysis of time series simulated
from such models can provide impertant insights into
the dynamics of the real svstem.

Two main points emerge from our paper, the first
having to do with dvnamical details and the second
with general prnciples. First. growing understanding
of deterministicaily chaotic systems suggests thac
apparently random time series mav in fact be
generated bv deterministic mechanisms, and that
techniques may be available o distinguish such low-
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dimensional chaos from externaily imposed environ-
menral noise or sampling eror. Many of these
techniques, however, reguirz longer time series than
are rypicailv availabie 10 ecological or epidemiological
contexts. We have oudined methods, based on the
ahility to make short-term  but not long-term; forecasts
7om dererministicailv chaodic data. but not irom
‘reaily noisv’ dara, that appear [0 work with relatively
short runs of data. Applicaton of these ideas to
epidemiological time series for the incidencs of measles
and chickenpox suggess thac flucruadons arise from
determinisdc chaos for measles and from sampling
error or other sources of noise for chickenpox. This
work sheds a wholly different light on earlier con-
roversies as to whether populations are governed by
environmental ducruadons or determinisde regulatory
factors: with sufficient noniinearity, deterministic
factors also can give erradc fucruadons. but the
Gifferent kinds of apparsnt randomness that arise from
determinisdc chaos versus external noise may be
disdnguished.

Seconcly, the qualitagve difference becween the
patterns seen for the incidence of measles aggregated
over Exgland and Wales, versus those seen in in-
dividual cides, provide a striking iilustration ot how the
scale on which we coilect and analvse data can affect
our interpretation. Surficiently aggregated. ife Eng-
land and Wailes dara for measies suggest a dynamicai
pattern of approximatelv wo-vear cvcles with addiuve
uoise. Disaggregated city-by-city, 3 more detailed
pactern of chaouc dynamics ‘and short-term predicton
of the appaready erratic fAucruations) emerges. This
cleariv is a metaphor, aibett a very explicit metaphor,
for a much larger range of issues in ecology.
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Discussion

P. Cagsson Ohio State {niversity, Columdus, Ohio, L1540, 1
am sure Prodessor Sugihara's technique wiil be 2 usefui one
for understanding chaotic sysiems, but [ have concerns about
the range of alzernative causes of ductuatioas in ecological
time series that vou have considered. You have spoken as i
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the only alternadve to chaodc dynamics is measuremens
error. However, in nature stochasde factors affect populaden
ajectories, not just their measurement Thus one should
expect populadons @ Auctuare { to have stochasuc dvnamics)
as a consequence of these stochastc factors, quite apart from
anv apparent fucruadons that are introduced as an artefact
of measurement error. [t is quite likely thae such stechasdc
factors will not be addidve and will cause erdfects that ars
vastv different from the addidve measurcment ervor that
Protessor Sugihara considers.

His technique of distinguishing chacs from addidve error
will work when these two are the oniv ziternatives, but will
be incapabie of distnguishing becween stochastic dynamics
and chaos. [ accept Professor Sugihara’s point that from
some perspectves, high dimensional chaos and stochastcity
are the same. [t ther appears that vou intend vour technique
to distinguish between measurement error and dyvnamical
uncertainty, whatever the cause of the latter, be it low-
dimensional chaocs or stochasdeity.

H. M. Pratr (The Natwral History Museum, Londom), As [
undersiand i, Professor Sugihara became incerested in the
£ngland and Wales measles data because, unlike those of
New York, they seemed to be addidve aoise. However, when
he backeracked to individual sets for cities he found the chaos
patterns again. How does Professor Sugthara know that these
data which he suggests display real addiove noise patterns,
such as the chicken pox ser, are themseives not in fact
assembiages of chaos pattems, wiich he mayv or may not be
able o ger at.

Phil. Trans, R, Soc. Lond. B {1990)

M. Waitrasson {Untversity of York, York, UK. Is it noc
possible o get almost any shape of predicdon curve bv
choosing various models for both dvnamical chaos and for
svstems with measurement error?

G. Sucmara. As discussed more fullv in the Vawre paper
{Sugihara & May (8901, it seems likely that a specific pattern
of autacorrelated noise could be hand-railored, o munuc anv

specified reladon bccwccn//(cor.':iacion coefficient) 3‘“#"—27_

oredicdon interval), such as that tound for the chaote test
map. The converse is surely not wrue! Chaode dynamical
systems of low dimension will aiways show a systematic
deciine in with increasing 7;/[,)&{3. characrerisde predicden
interval set by the Lyapunov exponent). We conjecture that,
in general, such ardficiailly designed patterns of auto-
correladon wiil typically give flatter p—£ (embedding
dimension) reladons than are found for simple tme series
generated by low-dimensional atractons {ses Farmer %
Sidorowich 1989; Sugihara & May 1930},
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