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This paper concisely reviews the demography of populations with random vital
rates, highlights examples and techniques which yield insight into population
dynamics, summarizes the state of significant applications of the theory, and points
to open problems. The central picture in this theory is of a time-varying but statisti-
cally stationary equilibrium for population, sharply distinct {rom the notions of
classical demography. The deepest biological insights from the theory reveal the
temporal structure of life histories to be a rich arena for natural selection. ¢ 1989
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1. INTRODUCTION

The classical demography of Alfred Lotka has long been a powerful tool
in population analysis but it ignores variation in population vital rates (i.e..
in birth, death, growth, and similar rates). Many demographers have been
interested in extending classical demography to deal with the problems
of an uncertain life. One way to describe uncertainty is to treat wital
rates as time-dependent random variables. When a population has such
random rates, the important constructs of Lotka-Leslie theory (such as the
ubiquitous r, the stable age distribution, and reproductive value) have no
simple analogs. Instead growth rate, age distribution, and so on become
time-dependent random variables. A theory is now available which shows
how demography can be done for populations with random rates. This
theory and especially its application are the subject of this paper.

The development of demographic theory for random rates represents a
coalescence of two directions of study. One goes back as far as 1928 when
Norton examined arbitrary temporal change in rates; this study was reborn
as demographic ergodicity in the work of Coale (1957), Lopez (1961 ), and
has developed further (Seneta, 1981). The other is a more recent interest in
random rate theory, notable by Pollard (1968, 1973), Sykes (1969}
Le Bras (1971), and Lee (1974). These directions were brought together for
Markovian vital rates into a random ergodic theory of demography by
Cohen (1977a). Cohen'’s work highlighted a stimulating connection with
the theory of random matrix products, which has widespread application in
science. In particular, populations with random rates follow a lognormal
distributional law (Tuljapurkar and Orzack, 1980) derived for matrices
(Furstenberg and Kesten, 1960) and transferred to demography. The

theory of random demography has since developed on both the formal and
applied fronts.
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Why does one want a theory for demography under uncertainty?
Because substantive questions in human demography, ecology, and evolu-
tion involve uncertainty in central ways. Here are some examples.
Forecasts of human populations are routinely used for important public
and private decision-making, and are routinely incorrect; the inclusion of
statistical uncertainty in vital rates is now recognized as crucial in aiding
decisions (see, e.g., Lee, 1974, 1977). The same issue arises in the manage-
ment of populations (setting catch quotas in a fishery), in the design of
conservation programs (how big should a refuge be?), and in risk assess-
ment (can a population withstand certain kinds of environmental perturba-
tion?). Ecologists studying population change often observe varying vital
rates (Bierzychudek , 1982; Slade and Levenson, 1982; Van Sickle, personal
communication, 1986) and wish (o incorporate random rates in projection
and inference. Evolutionary thinking on the forces which shape life
histories has been strongly influenced by the putative effects of random
vaniation (Murphy, 1968; Schafler, 1974; Giesel, 1976} as a selective force
on demographic parameters. These problems are all important and have all
benefited (or will) from the use of random rate theory.

The objectives of this paper are to:

(1) concisely review the demographic theory of random rates:

(i1} highlight examples and techniques which vield insight into
population dynamics;

(ii) summarize the state of significant applications of the theory;
(iv) point to open problems.

In reading this paper the reader should be aware that several new results
are presented here (Sections 3.5, 3.8, 4.1, 4.2.2, 4.3.2, 44,452, 454, 52,
6.2.3, 7.2), the presentation is biased toward work the author knows best
and finds most interesting, and there is no effort to provide historical or
complete coverage. The references listed should serve to fill the gaps. The
organization of the paper should be clear from the table of contents listed
at the start of the paper.

2. THE MAIN IsSUES

2.1. Classical Theory: Starting Point

We begin with a quick reprise of classical demography so that the main
aspects of the random theory can be easily set out. In classical discrete-time
theory (Keyfitz, 1968; Pollard, 1973) the population at time 7 is described
by a vector of numbers in successive age/stage classes: call this vector n,.
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We will distinguish this population vector from the population structure y,;
the latter is defined as a vector of proportions in successive ages/stages,

y,=n/P,

_ (2.1.1)
P, = total population at .

Although classical theory uses m and y almost interchangeably there are
important differences in the random theory. The classical dynamics are
governed by a fixed matrix A of vital rates; examples are a Leslie projection
matrix, or a stage-structured projection matrix (Lefkovitch, 1965; Werner
and Caswell, 1977). Assuming that A is nonnegative, primitive, and
irreducible we are led to the classical results

y, —u, {(2.1.2)
log(c. n, )Y/t = r,, {2.1.3)
Iy, —ul ~exp[ —(ro —r ) 1] expiiw, 1). {2.1.4)

All these results apply in the limit as ¢ increases to infinity. The first of
these Is convergence to a stable age distribution, where the vector v is the
right eigenvector of A corresponding to the dominant eigenvalue exp(r,).
The second result says that the long-run growih rate of any part of the

population is r,. We have used the scalar product of vectors a = (a({)),
b = (b({)) defined as

(a,b)=3 a(i) b(i); (2.1.5)

i

in (2.1.3) the vector ¢ is any vector with bounded nonnegative components.
Here and elsewhere in this paper we use natural logarithms. The third
result, (2.1.4), says that rhe age distribution converges to the stable one in
damped oscillations, with exp(r ) exp(iw,) being the subdominant etgen-
value of A closest in magnitude to exp(r,). Another result of demographic
value says that the left eigenvector v of A corresponding to the dominant
eigenvalue is a vector of reproductive values: the incremental value of one
extra individual in a particular class i is proportional to v(J).

About notation: boldface indicates a vector or matrix; to the extent
possible, lowercase is used for deterministic nonrandom objects, and upper-
case for random objects. Exceptions should be clear from the context: an
obvious one is A for the nonrandom average matrix. Some exceptions, such
as A, conform to standard usage; in other cases there was a shortage of
simple symbols.
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2.2. Random Rates: Models and Questions

A formal generalization of classical demography is easily made. If we face
an uncertain life, vita] rates will change over time in potentially unpredict-
able ways. At time 1, let the population vector be N,, the population struc-
ture vector be Y,. Over the interval r to 141 demographic processes
operate on these vectors, and their overall effect is contained in a time-
dependent matrix of vital rates X, _ ,. The dynamics of population are given
by the equation

N,.1=X,,,N,. (2.2.1)

The matrix subscript is (1+ 1) rather than 7 to emphasize that these rates
apply 70 the vector N,. Thus in some cases (e.g., the IID model below) N,
and X, ., are independent. In order to proceed, we must specify the kind

of uncertainty that occurs in the vital rates. The models of most interest
here are:

The IID Model. The entries of X are chosen randomly for each s from
the same fixed (in general multivariate) distribution. There may be correla-
tions between vital rates within each period, but there is no serial correla-
tion between rates at different times. Here the environment is completely
unpredictable. The number of possible environments can be finite (e.g.. a
“good” and a “bad” state), or infinite (e.g., if there 15 a continuously
distributed variable like temperature).

The Markor Model. From one time interval to the next, vital rates
change according to time-invariant transition probabilities. There are three
subcases. according as the set of possible values of vital rates i1s finite, coun-
table but infinite (e.g., discrete environmental states but infinitely many of
them), or wuncouniable (usually continuously distributed) set. Here the

environment is predictable to the extent that there is serial autocorrelation
over time.

The ARMA Model. The elements of the vital rates follow a linear times
series model of the ARMA type (Box and Jenkins, 1970). This model is
most useful in situations where a time series of vital rate values is used to
identify and fit a statistical model (cf. Lee, 1974). Ecologists often prefer
ARMA models in situations where serial autocorrelation over several time
intervals is expected to be important.

The Semi-Markov Model. The possible values (states) of vital rates are
as in the Markov case, but the time taken to make a transition from any
one state to another in governed by a probability distribution which
depends in general on both initial and final states. Here the history of the
environment plays a stronger role.



232 SHRIPAD TULJAPURKAR

The Catastrophe Model. This is a completely unpredictable environ-
ment. One formulation is to suppose that in each time interval there is a
very small probability of an event which will cause vital rates to reach
extremely low levels; another formulation allows a probability distribution
of times between successive catastrophic events, along with a distribution
for the intensity of the catastrophic effect on vital rates. The biological view
behind this model is of a population buffered against most small changes
but vulnerable to large changes in environment.

Irrespective of the particular model used, we shall always assume that the
random process generating the vital rates converges toward an ergodic
stationary state. In general, we assume that the random process is in the
stationary state; for the approach to stationarity, see Tuljapurkar and
Orzack (1980).

The next question is, what conditions apply to the possible values of the
vital rates. The rates here are assumed to be always nonnegative, and in
addition we assume demographic weak ergodicity (alternatively we assume
that the values lie in an ergodic set (Hajnal. 1976)). Ergodicity here means
(Lopez, 1961; Keyfitz, 1968; Hajnal, 1976; Cohen, 1977a; Heyde and
Cohen, 1985} that if we multiply together enough matrices chosen accord-
ing to the rules for the X's in (2.2.1) the resulting product is a matrix with
all elements positive. This in turn guarantees that the dvnamics of (2.2.1)
are stable in the following sense. Note that we can rewrite (2.2.1) as an
equation for the age structure,

Y!+l =Xr+l Y,/(e, X!+l Y:} (222}

where we use the scalar product and e is a vector of I's. The difference
between (2.2.1) and (2.2.2) is that the Y's, being vectors of proportions, are
constrained so that (e, Y)= 1. Now in (2.2.2) pick two distinct initial struc-
tures by, ¢, and then apply the same random sequence of vital rates to
both; call the resulting sequences of structure vectors B,, C,, respectively.
Then our ergodicity condition implies that B, approaches C, as t increases.
This is stability, but of a special sort, since the age structures are stable
toward a time-varying limit; i.c., there is some sequence of structures Y.
say, and both B,, C, approach Y,.

We now want to know: is there an analog to the stable age distribution?
What is the asymptotic growth rate of population? What is the nature of
convergence in the random model? Is there something like a reproductive
value?

The answers to these questions are summarized in Section 2.3 and are
explored and applied in the rest of the paper. First, however, we ask two
basic questions: What features of (2.2.1) suggest that it will require a new
theory? Why can we not apply insights derived from classical demography

[s N
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and random but nonstructured models to get a handle on random
demography? The answers to these questions lie in the facts that the
dynamics of N are multiplicative and noncommutative, and in addition,
the dynamics of Y are nonlinear. From (2.2.1) note that N is determined
by a product of random (Le., randomly chosen) matrices, and that these
matrices do not in general commute (i.e., if we switch the order in which
the matrices appear, the resulting product will change). It may be a good
idea to convince oneself of this by, say, multiplying together two 2 x 2
Leslie matrices whose subdiagonal elements differ. From (2.2.2) note that
the difference equation for Y is nonliinear and thus more messy than (2.2.1 )
for N. In classical demography this difference is irrelevant, but in the
random case the moments of Y bear a complicated relationship to those of

N and so the linear (2.2.1 } does not shed much direct light on the nonlinear
(2.2.2).

2.3. Key Results in Random T heory

There are many alternative models for random rates. so we cannot
expect a complete and universal theory. Instead we present resuits roughly
in decreasing order of generality, alternating between stating mathematical
results, and interpreting them demographically.

2.3.1. General Results

We begin with

ASSUMPTIONS 2.3.1. (i} demographic weak ergodiciny: holds in Eq. (2.2.1),

(1) the random process generating vital rates is stationary  and
ergodic,
(1)  the logarithmic moment of vital rates is bounded,
Elog, Xl <o (2.3.1)
where E indicates an expeciation, [-1 is any matrix norm, and log ., (x)=

max {0, log x}.

Then we have (Furstenberg and Kesten, 1960; Oseledec, 1968:; Cohen,
1977a; Raghunathan, 1979: Rueile, 1979):

(A) the long-run growth rate of the logarithm of total population, or
any part of population, is almost surely given by a number ¢ independent
of the initial population vector,

a=Lim [log(c, N,)}/1 {2.3.2)
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=J—‘_{T\ (log ”X!Xl—l xl“)/t (233)
=Lim {Elog(c, N,)}/ (2.3.4)

where ¢ is any vector of bounded nonnegative numbers.

(B) starting from any initial structure Y, the population converges
to a (time-dependent) stationary random sequence of structure vectors Y,
This limiting sequence is independent of Y,,.

(C) there is a stationary measure which describes the probability

distribution of the joint sequence of vital rates and population structure
vectors (X, Y,, X,, Y,, ...

(D) there are constants p; for i=1 through /= (dimension of N)
such that

A=p, Z2ps 2 . (2.3.5)

The p’s are determined by the growth rates of exterior powers of the X's.
and are called Liapunov characteristic exponents. For example. let x A y/|
be the volume of the parallelepiped spanned by vectors, x, y. Choose two
nonproportional initial population vectors, say bg, ¢, and apply {2.2.1) to
produce two sequences of random vectors B, and C,. Then the almost sure
growth rate of the volume spanned by any two vectors is at most

a+p;=max Lim log||B, A C ||/t (2.3.6)

tbco) r—x

Similar results hold for sums of more exponents. {A notational point:
Cohen (1977a, b) writes log 4 for the quantity a.)

We get an interesting general result if we add to assumptions 2.3 the

ASSUMPTION 2.3.2.  The random process generating vital rates can be run
backwards in time, there being a unique time-reversed process which is
Stationary and ergodic.

Then (Ruelle, 1979), we have:

(E) consider the adjoint (time-reversed) process associated with
(2.2.2),

Z(=x-rrzf+l/(ei X;FZH_H) (237)

where superscript T indicates a transpose. Suppose we fix a vector at time
I=1y,say wo=12,. Then (2.3.7) runs backwards through decreasing values
of ¢, and we have that as t — —co the resulting vectors Z, converge to a
stationary random sequence of vectors Z,, say, independent of w,,.
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2.3.2. Interpretations

The central feature is that @ is identified as the almost sure growth rate
of population. It is also the average growth rate of the population. As
definitions (2.3.2)-(2.3.4) show, the value of a is a function of the random
properties of the rates.

Property (B) is the random rates counterpart of stability of population
structure. Although there is a random limit to which the structures con-
verge, there is no information on the properties of the limit. Property (C)
expresses the strong overall convergence of rates plus structures to a
statistical stationary state. Property (D) identifies an exponential con-
vergence rate for population structures. All of these properties take on sub-
stance as we become more explicit about the random process generating
vital rates,

Property (E) identifies the stochastic analog of a reproductive value and
helps to shed some light on the nature of reproductive value as a concept;
more on this will follow.

2.3.3. Mixing and Limit Theorems

In addition 10 Assumptions 2.3.1, et us make

ASSUMPTION 233, The random process generating vital rates is rapidly
mixing.

Technical aspects of the mixing condition are discussed by Furstenberg and
Kesten (1960), Billingsley (1968). Tuljapurkar and Orzack (1980). and
Heyde and Cohen (1985). Given such mixing, we have:

(F) there is some ¢ such that the asymptotic distribution of total
population is lognormal,

log {(P, —at) o \/t} — N0, 1) (2.3.8)

The interpretation of (2.3.8) is well known in biology (Lewontin and
Cohen, 1969; Tuljapurkar and Orzack, 1980). The significance of « as a
descriptor of population growth is highlighted by the skewness of the long-
run distribution of population. The quantity ¢ in (2.3.8) determines the
asymptotic variance of the logarithm of population size. A limit theorem
relevant to estimating o by Heyde and Cohen (1985) will be discussed in
Section 7.1.

2.3.4. Markovian rates

The key feature here is that statistical stationarity can be captured in a
probability distribution function. Make
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ASSUMPTION 2.34. The vital rates Jollow a countable-state Markoo
process.

Assumptions 2.3.1 and 2.3.3 are still in force. Then (Cohen, 1977a, b:
Lange, 1979)

(G) there is a joint probability distribution of vital rates and popula-
tion structures: call it H(:, A, B)=Pr{X, lies in set A, Y, lies in set B}
Then as 1 — o« this distribution converges to an equilibrium distribution,
say H*(A, B), which reproduces itself under the action of (2.2.2).

(H) the average growth rate a can be computed as the average one-
time-step growth rate. Note from (2.2.1)(2.2.2) that
P /P =(eX,, . Y,), (2.3.9)
so that one has

a=FElog(e. X, Y,) (2.3.10)

with the average taken with respect to the stationary distribution H*.

An equation for H* can be written with some notational effort. Still
more is known if we add

ASSUMPTION 2.3.5. The vital rates follow a finite state Markor process.

Then (Bharucha, 1961; Kushner, 1966; Pollard, 1968: Cohen 1977b;
Tuljapurkar, 1982a) one has:

(I)  the moments of the population vector and its tensor powers,
EN,, EN,®N,, EN,®N,®N,, .., can be computed explicitly as func-
tions of time. Asymptotically these moments change geometrically with
rates computable as dominant eigenvalues of explicitly known nonnegative
matrices.

The final simplification is
ASSUMPTION 2.3.6. The random vital rates are determined by the IID
model (see Section 2.2).

Then we have:

(J}  there is a probability distribution for the population structure
vector, say G(t, B)=Pr{Y is in set B}; and a corresponding stationary
distribution G*(B) to which G(t, B) converges as ¢ increases.

10
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Examples of G* and H* are given by Cohen (1977b), in Section 3, and by
Tuljapurkar (1984).

2.3.5. Simulations

Useful insight into the consequences of random rates has come from
numerical simulations, e.g., Boyce (1977), Cohen (1977b), Tuljapurkar and
Orzack (1980), Slade and Levenson (1982). Pollard (1973) describes a way
of simulating the more complex case of populations with “demographic”
stochasticity added in. There is a large and relevant literature on simula-
tion methodology; the book by Ripley (1987) is a concise introduction.
It is fair to say that simulations are most effective when informed by
theoretical reasoning, and when their potential limitations are kept
carefully in view. No details are given here of any simulations; the reader
may refer to the cited papers as well as others mentioned later.

2.3.6. Assessing the resulls

We have presented above the skeleton of a fairly general theory for
random rates. However, these results bear a distant relationship to the sub-
stantive problems listed in the introduction, in the same way that the
Perron-Frobenius theorem is not classical demography. In addition to the
obstacles posed by the evident complexity of random rates theory, some
theoretical issues remain unresolved. The nature of oscillatory transients in
the random theory remains unclear, although Lee (1974) has discussed
some of their properties and their significance in population dvnamics. The
significance of the reproductive value has not been explored. There is
Iimited information about the functional dependence of objects like ¢ and
the p's on the properties of the underlying vital rates.

This paper now proceeds to the nuts-and-bolts of random rates n
demography by studving stylized and practical examples, approximate and
exact analytical results, and evolutionary models. In the process we will
resolve aspects of the relation between the general theory and applications,
develop insight into the consequences of random vital rates, and partially
fill some gaps in the theory. We end this section with examples of popula-
tions for which this theory is ideally suited.

2.4. Examples

The bare bones of Section 2.3 need fleshing out. Here are examples of
structured populations usefully modeled by random matrix equations of
type (2.2.1). The matrices have a wide variety of structures but are covered
by the general assumptions of Section 2.3.
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24.1. Age Structure: Humans, Fish, Other Mammals

Human populations inspired much of demographic theory. The typical
age-structured model uses Leslie matrices of the form

HofHro S
P 0 . g
o - . Pi_y O

Here the /s are fertilities (female offspring per female per time interval) for
successive age classes and P, 1s the survival rate of individuals aged / in one
time interval,

ExampLeE 1. Human population matrices typically use S5-vear age
groups with & =10, Usually f, = f. =0 with peak fertility in age classes
4-6. In modern human populations p, reflects the relatively high infant
mortality and p, for i> 2 are very close to 1. Mortality rates are stable in
the short run with secular increase in p's at high ages. Random fluctuations
mainly affect fertilities; Lee (1974) used time series models for the fertilities.

ExXamPLE 2. Long-lived egg-laying fish such as the striped bass and the
herring are characterized by year-classes and & of 5 {herring }-20 (bass).
Age of first reproduction is at 2 or 3, with fertility increasing with age and
then becoming constant late in life. Survival rates are roughly constant,
except for the survival rate of ¢ggs to the fingerling stage. Large random
fluctuations are common in the egg survival rate.

ExampLE 3. Small mammals such as voles (Boyce, 1977, 1979) can be
described using year classes with k=3 or 4. Here both fertilities and
survival rates can show considerable year-to-year variation in response
to environmental conditions. We consider a large mammal, the elk, in
Section 8.

24.2. Sizes and Stages: Herbs, Seed Pools, Shrubs

A variety of populations are best described using size classes or stages
instead of age classes.

EXAMPLE 1. The herb Jack-in-the-pulpit (Arisaema triphyllum)
reproduces clonally as well as sexually. Bierzychudek (1982} presents a size
and stage-class model in which the time unit is 1 year. Class 1 is seeds,
classes 2 through 7 are size clagses of plants grouped by leaf area (e.g., class

/2

g-‘n
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2 has < 50cm? leaf area, class 3 has 51-130cm?2, and so on). Seeds are only
produced sexually, while clonal reproduction leads to direct entry into
class 2. The population growth matrix has the form

"”Il m2 P mk
Hho fo S
0 M3y
0 m. - my,

Here m, are sexual fertilities (seeds produced per plant); f; are the sum of
clonal fertilities, seed survival (for f,). and transitions from larger sizes
to size class 2; the other my, are transition rates from class k to class J-
Transition rates vary randomly year-to-year.

ExampLE 2. Plants with seed pools are of great interest especially in the
study of weeds (see e.g., Grime, 1979), Templeton and Levin (1979) studied
the evolutionary dynamics of annual plants which bank seeds. suggesting
that seed pools are adapted to variable environmental conditions.
Charlesworth {1980) formulated a general age-structured model for a plant
which lives several years above ground and has a seed pool in which seeds
can survive for several years while retaining some probability of germina-
tion. The resulting model involves two age-classes vectors, one for seeds
and one for germinated plants. The combined vector is acted upon by a
growth matrix of the form

- ‘ (
0.0 « - 0! £ g
0 po ~ - 01 0 0 0

|
0 0 Py 01 0 0 0
81 &> g :
|
0 | M
|
L — k col - : < Kcol~ |

Here there are k age classes for seeds, K age classes for plants above
ground. The p's are probabilities of survival plus nongermination for seeds,
the g's are probabilities of germination, the /s are seed production rates,
0 1s a block of zeros, and M contains rates for all transitions between
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plants of various age classes, except for reproduction. Vegetative reproduc-
tion if it occurs will be described by elements of M. Important sources of
temporal variability are in seed production rates which can vary widely
between seasons, and in survival and germination rates.

EXAMPLE 3. Shrubs which form thickets are an interesting example of
modular reproduction (Harper, 1977). Some shrubs are clonal, forming
dense thickets in which seed recruitment plays very little part. Huenneke
(1987) has done an interesting demographic study of stems and clumps of
the speckled alder Alus incana $Sp. rugosa. She was able to describe the
growth of clumps by measuring stem basal diameters within clumps, and
then describing clumps by the distribution of stems into 7-stem-diameter
classes. Transitions between classes occur due to stem growth or lack of
growth. stem death, and clonal growth of new stems, Huenneke observed
substantial spatial and temporal variability in growth rates. This is an
interesting use of demography to describe modular structure and was
expanded on in Huenneke and Marks {1987).

2.4.3. Dispersal

Spatial heterogeneity and related population movement have been
important themes in population ecology (Gadgil, 1971; Roff, 197s:
den Boer, 1981} and genetics (Karlin, 1982). The combined effects of
dispersal and temporal variability are thought to be important factors in
maintaining population persistence. spatial patchiness, and genetic
polymorphisms. In all these situations the population is divided into
spatially distinct groups, and there is a sequence of reproduction plus
survival within groups followed by dispersal of individuals between groups.
The actual order of events and the mating structure of the population
matters and can be analvzed as shown by Karlin {1982); here we consider
only the simplest case. Thus, let N, be the popuiation vector {by age or
stage)} in spatial group i, and suppose that growth in patch i follows the
random rate matrix X, followed by migration in which a fraction p;la)of

the population class a at site j moves to site ;. Then the dynamics are given
by

Ni(a)= Z pij(a)(leNj)(a)
Joa

where N/ is the new vector for group 1.

It would be of great interest to study this model using random rates
theory. Even the simplest case ignoring age structure in the groups is stiil
untreated analytically, and many other biologically interesting cases are
worth studying. Cohen (1982) has worked on a closely related problem of
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multiregional human population dynamics, although his results are fairly
abstract and extend the ones in Section 2.3. Another related problem is of
populations structured by birth type (Tuljapurkar and Carey, 1986): an
example is a population of Mediterranean fruit fly (Ceratitits capitata)
which has two available hosts. Individuals laid as eggs in one host have
vital rates determined mainly by that host type, but will deposit offspring
in both kinds of hosts. This leads to a variant of the dispersal problem, for
which detailed results have been obtained with a constant environment; the
case of a random environment remains open.

3. DYNAMICS WITH RANDOM RATES

It will be instructive and entertaining to begin the study of dynamics
with a simple but rich example. This section foreshadows the more general
results of the next section.

3.1. Random Fertility: A Simple Model

Consider a population with two age classes, labeled young and oid,
respectively. Let the fertilities of the two ages be random over time so the
population model can be written as

Nr~»1=xr+!Nr (3.1)

, N,(1) mF, m,yF,
N, = , X, = s
=(vep o=(5 )

Here the ni's are positive, O<p<l,and {F, r=0,1, .. } 1s a sequence of
independent random variables identically distributed with (I/F,) having a
gamma distribution with probability density function

with

(3.2)

ghw)=(n"/n—11)w"~ ! exp(—nw). (3.3)

The parameter » here measures the varance: as n — o, F, approaches the
nonrandom value 1. As n— 0 the variance of F, increases (see {3.6) and
{3.10}). To be absolutely clear about the dynamics here, consider how one
would simulate (3.1) on a computer. Start with some initial population
vector, generate a (pseudo-) random number distributed according to
density g, take the reciprocal of this and produce a Leslie mairix as in
(3.2), and then use (3.1) to generate a new population vector. Then

generate a new random number to get the next fertility and repeat.

1S
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According to property (J} of Section 2.3.4 there is a stationary distribu-
tion for the population structure. Here the structure is just one number, say
the proportion of young; we find it convenient to use instead the random
variable

R=myN(2)/m, N(1). (3.4)

Defining = = (m3i/m, p), the probability density of R may be found as in
Tuljapurkar (1984) to be

Clx)=(1/K) x" "Y1 + x) =" exp( = n=x) (3.5)

where K is determined by requiring that the area under the curve of C be
unity. The density C is the key to an analysis of the effect of random
fertilities on population structure.

3.2, Average Vital Rates

Suppose we FIX the vital rates in (3.2) at their AVERAGE values. Noting
that

(Fy=E(F)= _f: d glw) (1jw) = nf(n— 1), (3.6)

we can analyze the case of fixed average rates using standard classical
theory. In particular, the quantity R in (3.4) converges to a stable value x*
given as the positive root of

SCF)XP+(Fyx—1=0, (3.7)

which is simply a transformed version of the usual characteristic equation,
The long-run growth rate is

fo =108“-0)"_10%(’”319/”11-"*) (3.8)

and the convergence rate is determined by

r =10g(mz<F>P)—"o- (3.9)

3.3. Statistical Steady State Structure

The first step in exploring the effects of random fertility is to see how the
age structure is affected. In the steady state the age structure over time is
a sequence of values of the random variable R of Eq. (3.4). According to
the general theory, such values have a time-independent probability

16
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distribution, given explicitly here by the function C of Eq. (3.5). Figure 1
shows the density C for illustrative parameter values for »n = 10, 100, 200.
The shape of C shows how the random variation in Fis nonlinearly filtered
into variability in population structure.

Observe that C is peaked at the most probable value of R, call it x(n),
and that {x(n) — x*| decreases with increasing n. Note from (3.6) that (F)
approaches 1 as n increases, and that the variance of fertility is

Var(F)= Variance(F) = {(n—2)1- 1/n)*} = ~ (1/n). (3.10)

So for large n, the random rates model should approach the mode] with
fixed average rates in Section 3.1. Figure 2 shows the behavior of centra]
moments E(R) and Var(R): as »n increases, these converge to x* and 0,
respectively, as expected. For the curious, the use of £(R) in (3.8) does not
accurately predict the stochastic growth rate a.

2.0

! CLASSICAL STABLE RATIO

PROBABILITY DENSITY ¢

4 X (RATIOOF OLDTO YOUNG)

Fic. L Stationary probability density of scaled age structure as given by (3.5). Here
my =025, m.=1. p=0.75. and the factor of 4 on the horizonial axis comes from {3.4). We
show the classical stable ape structure with vital rares fixed a my.m.. p. The most spread-out
density is for n = 10, the next for y = 100. and the most peaked for n = 200.
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3.4. Growth Rate a

The average growth rate a is the most interesting single quantity in the
random rates model. From the definition,

a=Elog(P, /P, calculated in the steady state,
=Elog(pm2/mlR:+l)+Elog(ml +m1R,H)—~Elog(m2 +miR:}
= Elog(pm,/m,)— Elog R,, (3.11)

where we use stationarity in the last step. This equation is a special case of
a new, general result (Section 4.5.4) for age-structured demography.

For illustrative parameter values, Fig. 3 (solid curve) shows exact values
of a computed using (3.11) and (3.5) as » increases. As expected, these
values converge toward r, in the limit of large n. Notice that la—ryl
changes liearly in (1/n) for large n: recall that (1.n) measures the variance

4 X AVERAGE OF {OLD/YOUNG)

3.00”

2.95_

2,90

0 2 4 6 ] 10

100 X (1/n)
[INCREASING VARIANCE —9»

FiG. 2a. Mean of the scaled age structure (3.4). The horizontal axis shows (1/n); on this
axis, the zero is the limit of no randomness. Parameter values as for Fig. 1. The classical value
is shown.
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[ (b)

VAFNANCE OF 4 X {OLD/YOUNG)

0 2 4 & 8 10

100X 11/n) [INCREASING
VARIANCE = ——3»

FIG. 2b. Variance of the scaled age structure {3.4) as environmental variance Increases.

of the fertilities. This linear dependence is accurately predicted by a general
approximation technique discussed later.

3.5. Convergence Rates: Liapunov Exponent

The discussion of Liapunov exponents given in Section 2.3.1 was rather
terse. So we first describe the geometrical meaning of these exponents, and
then calculate them for the random fertility model. The present two-age
class model has only two such exponents, the larger being @ and the other
being p,.

Consider two n-dimensional population vectors b, ¢ which span the
shaded area in Fig. 4. The size of this area is written |b A cll as in
Eq. (2.3.6). The definition of this symbol generalizes to volumes spanned by
more than two vectors. To define the vector b A ¢ requires the Kronecker
(tensor) product of vectors:

b®c=(b(1)c, b(2)c. ...). (3.12)
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EXACT a

+ SMALL NOISE EXPANSION

P O LOGARITHMIC MEAN /

w 1
T a- ‘
[»9
I
- N
= :
g
g .
&} :
ot .
2 I ;
g 2- !
i
f
|
i
1r‘ o
[
[
i L
01
0 2 4 3] 8 10

100 X (1/n} [INCREASING VAFIANCE

Fic. 3. Exact long-run growth rate a (solid line) plotted against (I n). computed from
(3.11) with m; =02, m, =1, p=08. Also plotted are the small noise approximation (3.14)
and the logarithmic mean of eigenvalues LM from (3.15).

in terms of which

brc=b®c—-cPb. (3.13)

Notice that the object in (3.13) has n{n — 1) nonzero components, half of
which differ only in sign from the other half. The usual definition therefore
says that b A ¢ has {n(n—1)/2} components. A little algebra now shows
that

ibAacli=(bac,bac)?

equals the area in Fig. 4 (with a factor of \/2 if we include all n{n—1)
components).

Now consider convergence of population structure. Suppose we start
with the vectors b, ¢ as initial populations in (3.1} and apply the saMg
random sequence of vital rates to both. The resulting population vectors

90
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1.0

0.8

PROPORTION IN CLASS 2

oQ 0.2 04 0.8 0.8 o
PROPORTION IN CLASS 4

FiG. 4. Two initial vectors b. ¢ illustrated for a 2-class population. The components of the
vectors add to 1 and the shaded region is the area given by the wedge product in (3.13).
Under the action of population projection matrices. the angle between vectors decreases
asymptotically to zero.

are a sequence, say B,, C,. From our assumptions, we have convergence of
population structure, ie., the vectors B,, C, become proportional as
Increases. Geometrically, convergence means that if we start with vectors as
in Fig. 4, then as ¢ increases, the angle between successive pairs of vectors
B,, C, will go to zero since the two vectors ultimately coincide in direction.
The asymptotic rate of change of the area between vectors can be heuristi-
cally analyzed as follows: suppose the angle between the vectors is 8,, and
consider large r when sin{@,) ~ 6,. Then the area spanned by the vectors is
[B,fi IIC,| 8,. Both vector norms here change at a rate close to exp(ar), so
the area overall changes at rate about exp(2a +d)r where exp(dr) i1s the
rate of change of 8,. From the limit in (2.3.6) we now have that 4 is
(p2 —a)<0. Thus p, tells us how fast the angle between initially distinct
population vectors will shrink.

In the present case the population vector has n =2 components and the

<1



248 SHRIPAD TULJAPURKAR

second Liapunov exponent can be found from an identity of Oseledec's
(discussed in a demographic context by Tuljapurkar (1986)),

p; = Elog jdeterminant(X,)| —a,
= Elog(m,F, p)—a. (3.14)

Figure 5 plots values of this second exponent as » changes and shows that
p: —r, as n increases. The behavior of p, can also be accurately described
for large n by the analytical approximations discussed later.

In Section 4.3 we show that the Liapunov exponents in the classical
theory reduce to the usual convergence rates based on eigenvalues of the

vital rate matrix. The meaning of higher order exponents is also described
there.

3.6. Convergence Rates: Distribution of Age Structure

A different view of convergence in the random model is to ask: if we start
with a probability distribution of age structure other than the equilibrium

0.2890~
1
i
1
i
|

0.2885~
|

0.2880‘—

|
|
|
0.2875- |

|
0.2870-

(-1} X SECOND LIAPUNOV EXPONENT

|

|

0.2865— A i
|

CLASSICAL VALUE T, ;

0.28680~ ! . | i

Q 2 4 <] 8 0
100 X (1in) [INCREASING VARIANCE —»

FIG. 5. The second Liapunov exponent giving a convergence rate in the presence of
random variation, computed using {3.14) and parameter values as in Fig. 1. Also shown is the
classical (deterministic) convergence rate.

by4
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distribution C of (3.5), how fast does it converge toward the equilibrium
distribution? We answer this question as follows: suppose that d(1, x)
(# C) is the density of the age-structure variable R. Then Eg. (3.1)-(3.3)
lead (Tuljapurkar, 1984) to the transformation

d(t+1, x) =J':o dviglzx(1+ )] z(1 + »)}d(, y),

(3.13)
d(t+1,.}=Lg di, ),

where the second equation is a linear operator form of the first. The equi-
librium density C solves (3.15) identically. Convergence of any d(t,.)to C
is governed by the eigenvalues of the linear operator L, in (3.15). There
appears to be little information on these eigenvalues, though they can be
numerically approximated. If known these eigenvalues would provide infor-
mation on oscillatory transient in the approach to statistical stationarity.

3.7. Approximations Jor Small Noise

“Noise™ means the amplitude of randomness, measured here by (1/n).
There are two different ways of analyzing the dynamics of random rates
when the randomness is small.

In the present example, we have seen that the exact density of the age
structure is very concentrated near x* as n increases. This suggests
asymptotic expansion in » as a way of computing averages such as a.
However, this is tedious and, more importantly, limited since it requires the
compiete distribution of population structure,

A second approach, preferred here, is to use the approximations
developed in Tuljapurkar (1982b), which are based on Ruelle (1979) and
on methods exemplified by van Kampen (1981). We defer the general result
to later, and write down the approximation 1o the growth rate in the
random fertility model:

azx=ro—{(Var(F);2.3T¢)[m, + (map/ig) ] (3.16)

with 75 =2 — (m,{F>/iy). Figure 3 compares values of the exact growth
rate calculated as in Section 3.4 above with values of the small noise
approximation. Clearly (3.16) is a good approximation.

We show later that the approach used to get (3.16) can be extended to
compute moments of age structure, transients in the age structure, and
other interesting quantities.

Z53
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3.8. An “Approximation” Which does not Work

In Eq. (3.1) if we take X to be a number rather than a matrix, and N
to be a number rather than a vector, then the long-run growth rate of N
1s simply E log X. This fact has led to the suggestion (Schaffer, 1974; Boyce,
1977) that we may approximate a for the matrix case as follows, First, for
every random matrix X find the corresponding dominant eigenvalue A(X).
Then use the probability distribution of X to compute

LM = Flog A(X),
= (z dw g{w) log r(w), (3.17)
‘0

with r(w)=(m /2w)[1 + 1+ (4w/2)1 2], with -= (mi/m.p) as before.
Here we used {3.1)-(3.2) to compute r(w) in (3.17). The notation LM
indicates that the object is a logarithmic mean of the dominant eigenvalues
of the X’s. The geometric mean is exp{LM).

We now contrast LM in (3.17) with the exact a The latter must be
computed as an average over both rates and age structure, see (2.3.10).
From (3.1(3.2). and (3.4), if R,=xand F, =({,w) the one-period growth
rate s

A, xy=my[m (1 + x)+wp]; [wim, +m,x)].

Therefore

a= [x div g(w) | - dx C{x)log 4 {w. x). (3.18)

“0 =0

It is apparent that the single average in (3.17) and the double average in
(3.18) are unlikely to agree save in fortuitous circumstances. This is
illustrated in Fig. 3 which shows the exact a, the values of LM, and the
small noise approximation (3.16). We echo Cohen (1977b, 1979) in saying

that LM is NOT a useful approximation to a. See also Sections 4.2.1
and 4.5.2.

3.9. Population Size and Extinction

We have not yet considered the population’s numbers. The average
population vector, EN, changes according to the fixed average vital rates
of Section 3.2. The second moments of the population vector can be
obtained from the recursion

(N:+l®Nr+1)=(xr+1®xr+1)(Nr®Nr) (319)

24
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which shows that E(X, ®X,), which is by assumption a primitive non-
negative matrix, determines the dynamics of E(N, ® N,). Further details
may be found in Tuljapurkar (1982a).

The other central feature is the lognormality of population size leading
to a skew distribution of total population number P at long times. As
discussed by Tuljapurkar and Orzack (1980) this skew distribution partly
determines the probability of a population reaching an “extinction
threshold.” That paper discusses the use of a random walk process with
drift @ and diffusion ¢ to get estimates of the probability of reaching a
particular threshold. We expand on the extinction issue in Section 8.3.

4. GENERAL METHODS AND RESULTS

The example of Section 3 illustrates the effects of random rates in a
stylized setting. This section returns to the general problem and shows
what can be done. The more abstract results are given very brief treatment.

4.1. Limits on Population Structure

An interesting question about random rates is: how much variation can
they produce in population struciure? By structure we mean the vector of
proportions Y. One way of formalizing the question is: suppose the vital
rates are bounded, so that for each i, J on has either

(X,), =0 forall o, (4.1.1)

or

0<(L)0.s(x,),Js(U)g<oo forall . {4.1.2)

Then are there bounds such that in the statistical steady state for
each 1, ¢

i) Y (i) < e(i)? {4.1.3)

General resuits on this question are given by Seneta (1984) who provides
references to earlier work. His main result 1s that under the ergodicity con-
ditions used here, there is a nonempty limiting set of population structures
which is approached geometrically fast. However, this result does not
describe the limiting set.

Explicit bounds on steady state structure can be obtained for age-
structured populations whose Leslie matrices obey (4.1.1) except in the first

25
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row and subdiagonal. Specifically we can find an explicit equation for the
Vectors ¢ and b in (4.1.3). Details are in the Appendix.

4.2, Small Randomness Approximations

Nonlinear random problems are notorious for their difficuity in ecology,
genetics, physics, and chemistry. Simulation is a useful and increasingly
affordable approach to such problems, but there js great need for analyti-
cally based results. Random demography has available g combination of

tion methods we now present take the magnitude of ¢xternal random
effects to be small. This strategy lies behind the use of diffusion equations
in genetics and ecology, and stochastic €xpansion methods in physics and
chemistry (see, €.g. Van Kampen, 1981). The basic method was developed
in Tuljapurkar (1982b) and has been applied to the evolution of
homeostasis by Orzack (1985). to stochastic forecasting by Tuljapurkar
(1987) and Tuljapurkar and Lee (1987). to life history evolution by Orzack
and Tuljapurkar (1989), to projection by Wallace (1986). and to the
problem of population conservation byv. Lande (1987). We first analvze
growth rates and then age structure. Throughout this subsection we
consider general nonnegative matrices. except when specifically stated
otherwise.

The small randomness strategy requires splitting the random matrix X,
INto an average matrix and a deviation: with

A = E(X),
and
B=X,-4A
one writes
N,+,=(A+B,H)N,. (4.2.1)

The average vital rate matrix A is taken to have dominant eigenvalue /j, =
exp(ry), with corresponding right, left eigenvectors u, v. Assumptions 2.3.]
are taken to hold; additionally we assume that the stationary moments of
the random B'’s are known:

E(Bf) = 0:

_ (4.2.2)
E(B, ., ®B,)= S.. forinteger m.

A central assumption is that the B’s are “small” deviations, and a formal
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version of this assumption is that all moments of B are bounded, and that
the average absolute deviation in any element of X from its mean value is
small compared to that mean. A convenient way of keeping track of the
magnitude is to introduce a positive parameter ¢ which multiplies the B in
(4.2.1) and then track powers of ¢ so the results are useful when ¢ 1S near
zero. We do not do this here,

4.2.1. Growrh Rate a

The goal is to compute
a=Lim(1/t)ElogP, as o oo,

In view of demographic weak ergodicity we will get the same answer
irrespective of the initial population vector so choose Ny =u. Since we will
take the limit of large 1, we may compute the average growth rate as

a=Lim(1/1)E log(v, U,) (4.2.3)
where U, is the sequence obtained from (4.2.1) when N, = u. From (4.2.1)
U, =(A+B,)(A+B,_l)---(A+B])u
which with (4.2.3) leads to
a=ry—Lim(1/7)Elog(} +T, +Ts, + ) {4.2.4}

where for each / the T, contains al terms with exactly / of the B's. Now
expand the logarithm in {4.2.4) and evaluate successive terms in the limit
(as in Tuljapurkar (1982b)). We omit the details and go to the main result.
This requires a spectral decomposition of A in the form

Alig=P+Q (4.2.5)

where P=uvT/(v, u) is the matrix projecting onto u. Then one gels

a:rﬂ—m(v@)v)TSo(u@u)
T - i~
ZS‘(\’, 1) ¥ {E ig} B,,,Q B;} u. (4.2.6)

The first term on the right-hand side of (4.2.6) is simply the growth rate if
vital rates were fixed at their average values. The second term describes the
way in which variances and covariances of vital rates within a single time
interval affect long-run growth rate. The third term describes the effect of
between-period (serial) autocorrelation.

< ¥
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The “bottom line” for an approximation is how well it performs. In a
large number of tests by several investigators using different methods the
approximation (4.2.6} is found quantitatively accurate when vital rates
have a coefficient of variation (ie., ratio of standard deviation to average)
of 0.3 or less. For higher levels of randomness the approximations becomes
quantitatively inaccurate but continues to describe qualitative dependence
accurately.

There is a way of rewriting (4.2.6) which gives insight into the formalism
and is useful in applications. For simplicity focus on the first two terms on
the right of (4.2.6); these are the only relevant terms when there is no serial
dependence between vital rates. We use a standard fact from perturbation
theory (a general reference is Kato (1966)), which states that for the
average vital rate matrix A,

Bro/CA, = £li) ulj)/i(v. u).

The derivative Ero_,-"EA,, ts the SENSITIVITY of r to the elements of A (cf
Caswell, 1978). Now the second term of approximation (4.2.6) can be
rewritien in terms of these sensitivities. Let Vartij) be the stationary one-
period variance of (X,); and Cov{ij. k) be the stationary one-period
covariance between (X,); and (X,);,. Then a matrix multiplication shows
that for IID vital rates

I A im T
a::rn—;)—z(c’ru_,’CA”)“Var(UJ

“

- -

= Y (Cro/CA)Ery/EA,,) Covii, ki) (4.2.7)

et
igkd
(i Y o (k2

This form is very useful for qualitative interpretation. The more general
expression in (4.2.6) can be similarly recast using higher ergenvalues of the
matrix A. Since these higher eigenvalues are not as well characterized as r,,
the value of such a rewriting is moot.

The following features of (4.2.6) are tmportant,

(1) The terms in (4.2.6) are only the first three terms of a systematic
expansion which incorporates successively higher order moments of the B's.

(i) The expansion is what one obtains from Ruelle’s (1979) result
that @ is an analytic function of the rule which selects random matrices. See
Tuljapurkar (1982b) for this approach.

(iii) A particularly important point is that expansion (4.2.6) is very
different from the Taylor expansions of “utility” functions in foraging
theory (Lacey et al., 1983). The qualitative reason for this is the need to

<8
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keep track of the ordering of vital rates in this demographic calculation.
For the quantitative reason consider Markovian vital rates for which,
according to (2.3.10),

a=Elog(e, X,Y,), in the steady state,
=Elog(e, {A+B,} {EY, + ¥}
where
Yo=Y, -EY,.

Now it is tempting to assume that EY, equals u, and expand the logarithm
to second order. However, a careful analysis shows that EY, differs from
u by an amount of the same order as the second derivative terms which
come from an expansion of the logarithm. In addition, it is necessary here
to take into account the serjal autocorrelation between B, and Y. an issue
which does not arise in present formulations of foraging theory. Hence the
mean-variance “tradeofls” contained in (4.2.6) are different both in quantity
and kind from those in foraging theory.

(iv) A point related to (i1} concerns the incorrect notion that (4.2.6)
or (4.2.7) are related to the Jogarithmic mean (LM} of dominant eigen-
values, We defined LM in (3.17) and indeed a Taylor expansion in the
spirit of foraging theory shows that for small notse

LM = Elog /(X)

!
rlogiy—— ¥ (—m—) Cov(ij, kI).

32 4R
=40 kg \NCA; CAy,

This is very different from (4.2.7). In addition, LM does not take account
of serial correlations, which (4.2.6) does. See also Section 4.5.2.

4.2.2. Population Struciure: Moments, Power Spectrum

The expansion method used for « also yields information about the
steady state behavior of the population structure vector Y,. Recall that Y,
obeys Eq. (2.2.2) which is a nonlinear stochastic difference equation, so the
methods typically used for such equations (Bartlett, 1978; Eliner, 1986) can
and will be used here. However, the method of Section 4.2.1 makes a nice
and decisive use of demographic weak ergodicity, and we begin with this
method. This presentation is brief; details are in Tuljapurkar and Lee
(1987).

The objective is to obtain information on Y, for large 1; ideally we want
the stationary probability distribution but will settle for approximations to
the moments. Demographic weak ergodicity means that as ! — o the
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population’s structure becomes independent of the initial structure. We can
therefore choose an initial structure which makes the calculations gasy. As
in Section 4.2.1 take Y, =u, and observe that

Y, =M, u/(e, M,u) {(4.2.8)
where
M =XX,_, X,
=(A+B)A+B,_ ) (A+ B,)

Now expand the numerator and denominator in (4.2.8), invert the
denominator and collect terms to get to second order in the B's,

Y, zu+(1 —ue)R,, + (1 —ue' )[R, — (e, R.,R,,] {4.2.9}

with

R,=3% ¥ (A,-’i)’”"’*(B,_,-+3_,“}.)(A,.').)’(B,H,‘*}.}(A;').}*u.

These expressions depend on the choice of injtial population structure: to
get steady state information we will examine various moments and in each
case take the limit of large 1.

Consider the important features of (4.2.9). First note that the factor
(1 —ueT) which multiplies every term with B's in it has two effects: it
ensures that (e, Y,)=1; and it is a projection of sorts because

(1 —ue™)(A/i)Y =(1 - ue (P + Q/), from (4.2.5),
=(l—ue")Q". (4.2.10)

Now from (4.2.5) it should be clear that

Q=0 as j- . (4.2.11)

With these facts (4.2.9) leads to the following observations about the
population structure.

(i) The second term in (4.2.9) is the leading term in the fluctuations
of the structure vector Y about its average value. This term is essentially a
weighted average of the “shocks” to the age structure due to successive
random shifts in the vital rates, with the most recent vita] rates being most
heavily weighted.
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(i) The average population structure does not depend closely on the
recent history of vital rates, because ER,, =0. The current structure Y,
tracks the environment closely, but the average structure does not. Equa-
tions for £Y, are given in the Appendix. The difference between EY, and

u depends on the second-order moments of the B’s, as pointed out near the
end of Section 4.2.1.

(i) The variance of the population structure vector can also be
obtained from (4.2.9). It is important to recognize the difference between
the variance of Y, which is bounded in any case since the components of
Y must sum to 1, and the variance of the population vector N. They are
of course related but in a complicated way. It is relatively easy to compute
the steady state variance of population structure up to second order in
moments of the random rates, in the form

E(AY),@(AY),~(1—ueT)®(1—-ueT)R;“, (4.2.12)
where the result holds for large times 1, and
4Y, =Y, - EY,, (4.2.13)

The expression for R} is written out in the Appendix, Eq. (A9).

(iv) Finally, the autocorrelation function and power spectrum of
fluctuations in population structure can be obtained from (4.2.9). We
present here only the simplest leading order terms derjved by writing a
linear difference equation for the fluctuations in the fashion of Bartlett
(1978). Define the autocorrelation function

Com=E(Y,,,, —u)®(Y, —u), (4.2.14)
A general expression is given in the Appendix.

For serially uncorrelated rates, the autocorrelation is dominated by
transients expressed in Q (recall 4.2.5)

Cim)=(1-L®L)"' E(1 —ueT)(Q’"Bl)®Bl(u®u), (4.2.15)

with L=(1 —ue™)Q and m>0.
The multivariate power spectrum  of population fluctuations can in
principle be obtained by Fourier transforming C(m). However, it is

easier to return to the linear equation from which ope gets C and Fourier
transform it. Defining

fw)= 3 e=“(1—ueT) B,u,

(4.2.17)
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one obtains to leading order in the B's that

Z(w)= (e ~L)" ' f{w). (4.2.18)

and the various cross-spectral functions are the elements of
EZ(cu)@Z*(a)), where the asterisk indicates a complex conjugate. Note
that when {B, } is serially uncorrelated T is a constant and the spectrum will
have peaks at frequencies determined by population transients. When [B,}
is serially correlated, the structure of (4.2.18) shows that the population
power spectrum is essentially a product of the spectrum of transients {in Q)
and the power spectrum of the random rates. Lee (1974) made this obser-
vation indirectly by showing that the leading population transient, which
is Coale’s (1972) generational cycle, shows up as a peak in the population's
power spectrum when rates vary randomly. Lee (personal communication )
has also earlier derived the product result stated above.

The really challenging task of determining the interaction between the
transients in population and in random rates is open. Such interactions will
presumably be important when random variation in the rates 1s large.

4.3. Exponential Convergence and Liapunov Exponents

Sections 2.3.1 and especially 3.5 have shown that Liapunov exponents for
the product of random vital rate matrices describe the exponential rate at
which population structure (and also reproductive value) converges to its
stationary stable value. Here we describe what these exponents mean in the
classical case, followed by a small noise expansion.

4.3.1. Liapunov Exponents in Classical Demography

In the classical case as in Section 2.1 there is a fixed matrix A of vital
rates, with dominant eigenvalue ., and corresponding right, left eigen-
vectors u, v. This matrix also has additional eigenvalues 4, iz 1, which we
assume to be distinct with magnitudes ordered so that

do> il e, (4.3.1)

Consider now nonnegative nonproportional vectors b, ¢ and generate the
population vector sequences B,, C, where

B,=A'b, (4.3.2)

and C, is defined likewise. To study convergence is to study such differences
as {B,@C,—C,®B,}, where the tensor product is as defined in (3.12).
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For nonparallel vectors b, ¢, wWe can use the spectral decomposition of A
(Keyfitz, 1968} to show that

.1 )
lim 710g 1B, A C |l <log g +log |4,]. (4.3.3)

The right-hand side of (4.3.3) is the largest value possible for the left taken
over all possible starting vectors b, ¢. From definition (2.3.6) we see that
the second Liapunov exponent for a fixed vita) rate matrix is the absolute
value of the leading subdominant ergenvalue.

The higher (in fact, smaller in magnitude} eigenvalues of the vital rate
matrix A are related to the other Liapunov exponents in an analogous way.

4.3.2. Small Noise Expansion of p,

Just as expansion (4.2.6) for a provides insight into the determinants of
stochastic growth rate, one €Xpects a similar expansion of the next higher
Liapunov exponent 1o be informative about convergence. The main steps
in the latter expansion are ag follows,

The plan is to take nonparallel vectors b, ¢ and compute leading terms
in the asymptotic behavior of (M,b A M,c) where

M,=(A+B)A+B,_))---(A+B,). (4.3.4)

as in Section 4.2. For the matrix A we assume all the properties given in
Section 4.3.1. Next we choose

b=u.  c=u+ku, +k*ur, (4.3.5)

where v, is the right eigenvector of A corresponding to the eigenvalue y
closest in magnitude to 4o. This choice is the simplest possible. The
asterisks in (4.3.5} indicate complex conjugates.

Now use (4.3.4) to write (M,b A~ M,c¢) as a series of terms which are
successively linear, quadratic, - In the Bs. It is now possible to use
methods analogous to those mentioned in Section 4.2.] 10 obtain the rate
of change of this quantity when the B’s are small. Detaijls are given in
Tuljapurkar (1988). In the IID case one gets

1
lim TElog IM,b A M,c|

=a+p,
1 (v®v, Squ®u)

=~ log z‘.0+log#/ﬁll—5;-: v, u)?
-0 3

-, (4.3.6)
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where

1
¥, =3Re

{("1 v, Syu, ®U1)}
2

(1=E3)v, up)?

(v, ®v, S0u®u)) } (43.7)

R
T Re {(1 =&y, up)(v, u)

Here S, is the second moment matrix of the B/s defined in (4.2.2). Recall
now the earlier expansion (4.2.6) for a, in which only the first two terms are
needed for the 11D case. Using that result in (4.3.6), one gets finally

paxlogla, | —y,. (4.3.8)

The qualitative features of (4.3.8) need to be explored. This approximation
works accurately for the example of Section 3.

4.4, Reproductive Value

The notion of reproductive value is useful in classical demography and
population genetics. It has been particularly significant in life history
theory where reproductive value maximization has been used (see, e.g.
Stearns, 1976) to predict the direction of life history evolution. This sub-
section develops the concept as it applies to time-varying and randomly
varying rates.

4.4.1. Time-Varying Vital Rates

It is simplest to begin with a population whose vital rates are changing
in some arbitrary time-dependent manner, but with demographic weak
ergodicity hoiding (cf. Section 2.2). The population follows Eq.(2.2.1) in
which the vital rates have the interpretation

(X,); = Number of class / individuals at time ¢ per class j
individual at time ¢ —1. (4.4.1)

Consider now a quantity W (i), to be called the undiscounted reproductive
value of an individual in class / at time ¢, and defined as the total number
of descendants (i.e., children, grandchildren, and so on) produced by an
individual who is in class { at time . From this definition and the inter-
pretation of the vital rates above it follows that

Wiiy=3 XKoo Woa (). (4.4.2)

J
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The vector form of this recursion is

W:=XT+1W|'+1=XT+1XT "'X;r+mwr+m' (4.4.3)

T+ 2

To deal with the obvious possibility that the W’s are likely to be
unbounded, define instead the normalized (or discounted) reproductive
value vector

V. =W, /(e, W) (4.4.4)
which follows the recursion
Vo=XT V. /e, XTIV, ). (4.4.5)

Observe that (4.4.5) appeared earlier as (2.3.7), and is clearly very similar
to (2.2.2). The dynamics of both equations can be understood by consider-
ing matrix products.

Take two times. k and /= (kK +m)>k, and consider

Z(k, /}=X,X'rﬁ_] "'xk_',; (446)

which is a product of m matrices. Demographic weak ergodicity means
(Hajnal, 1976) that this product will have its rows all proportional as m
increases. Thus there is a number R(k,!) and vectors ¥(k, m) and u(l. m)
such that

Z(k, Iy~ R(k, I)u(l, m) vk, m) as mt.

Further we know that there is stability of age structure. meaning that
u(/, m) approaches some u(/) asymptotically independent of m; stmilarly
¥(k, m) approaches some v(k). Thus asymptotically for large m

Z{k, 1)~ R(k, 1) u(]) vI(k). (4.4.7)

Numerical insights into (4.4.7) are to be found in Kim and Skyes (1976).
Suppose now that we start with a population vector n* at time 1 = £ Then
at time / we have asymptotically a population vector

Ni~ R{k, 1)(v(k), n*) u(}),

with population structure Y, ~u(/). The growth rate here is contained in
R(k, 1), so that log R(k, 1)/(1— k)~ a for stochastic rates as ({l—k)— o
The normalized reproductive value at time k is V. ~v(k). To find vik)
stmply start with an arbitrary nonnegative vector ¥ # 0 ar time I=[»kin
(4.4.5) and iterate backwards,

Notice that the vital rate matrices X in (2.2.2) act to propagate popula-
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tion vectors forward in time, and that the stable age structure at each time
is an accumulation of the past. In contrast, the transposed vital rate
matrices X' in (4.4.5) act to propagate reproductive value backward in
time, and the reproductive value at each time is a summation of the future.

4.4.2. Random Rates

The foregoing clearly applies when vital rates follow a random process
as in Section 2.2. However, the vital rates in (4.4.5) appear in time-reversed
order and this brings us back to Assumption 2.3.2 in Section 2.3: to make
probabilistic statements about reproductive value requires that the random
process generating vital rates can be run backwards in time giving rise to
a unique, stationary, and ergodic random process. Such backwards pro-
cesses are easily defined in the Markov rates model. Given this assumption,
everything that applies to the dynamics of the population structure vector
will apply to the reproductive value vector.

In particular, there will be a joint stationary distribution of rates and
reproductive values. In the Markov case, this distribution is computable
using the appropriate version of Cohen's (1977b) equation as applicable to
(4.4.5). The small noise approximation results of the preceding subsection
will apply to provide approximations to the average reproductive value
vector. It i1s important to note, however, that the expectations in equations
such as (4.2.12) must be replaced by expectations with respect to the time-
reversed process, and correspondingly the ordering of time indices must be
reversed.

4.5. Growth Rates

4.5.1. Inequalities

Counsider a model of random vital rates formed as in {4.2.1) by adding
a random term to a deterministic matrix of vital rates, so the time-
dependent matrix of rates is

X, =A+B,.

Take a fixed population vector n, and produce the deterministic population
vector

n,=A'n,
and the stochastic population vector,
N! = er,_l v -Xll'lﬂ.

Let the corresponding total population sizes be p,, P,.
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We have focused on the long-run stochastic growth rate
.1
a=Lim < Elog(P,/po), (4.5.1)

which is relevant in most demographic, ecological, and evolutionary
problems. It is sometimes useful to consider the long-run growth rate of
average population size,

1
log 4= Lim ?log[(EP,)/po]. (4.5.2)

Now it is a consequence of Jensen’s inequality (Karlin and Taylor, 1975)
that

a<log y, (4.5.3)

with inequality expected in general. The further consequences of this
inequality are discussed by Lewontin and Cohen (1969), Tuljapurkar and
Orzack (1980).

How do these stochastic growth rates compare with the classical deter-
ministic growth rate

1
m=gg;bﬂAMJ? (4.5.4)

When vital rates are 11D,

In general (Cohen, 1979), however, serial autocorrelation in the rates can
complicate matters. Depending on the particular random rates, it is
possible to have

logu>ry>a
or
log u>a>r,.

Some conditions for these situations can be deduced, for example, by using
the expansions for log 4 in Tuljapurkar (1982a) and for a in Section 4.2.1.

4.5.2. Synergistic Effects of Environment

This paper has made several references to the distinction between the
muitidimensional dynamics of structured populations and simpler scalar
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growth models. A striking illustration of this difference is provided
by situations in which the randomness of the environment makes the
difference between population growth and decline.

Consider a population with two age classes and suppose that the popula-
tion’s vital rates are given by one of two Leslie matrices.

]
3 3I—x
A‘(& 0 )
B_ 501 1‘-6+0.09)
- 1 0 '

Take the environment to change randomly so that in each time interval the
population’s Leslie matrix is A with probability p or B with probability
(I=p). If we set x=0.142857 and p=0.5 a numerical simulation {of 5000
iterations of the stochastic growth process) yields an estimate ¢ = +0.1954
with a sample standard error of 5= 0.0047 Thus, the population should
increase with probability one over the long term. Yet computation of
dominant eigenvalues of the matrices shows

log 75(A) = —0.0209,
log /(B) = —0.0087,

Therefore in the absence of a random environment with matrix A or B
fixed forever, the population would decline. We have here a synergistic
effect of random variation. Key (1986) suggested this term in the context
of a multitype branching process using special kinds of matrices. The exam-
ple given above is easily generalized to more parameters or dimensions,
An equally important aspect of this example is that it shows decisively

that the logarithmic mean dominant eigenvalue cannot accurately describe
a, since

LM =0.5log /o(A) + log 40(B)] <0,

whereas a>0. It should also be obvious that this example derives
fundamentally from the multidimensional character of the problem, and
would not be possible without 4ge structure. See the discussion in
Sections 3.8 and 4.2.1. We have not used smail noise approximations here
since the noise is large.

4.5.3. Convexity Properties

The sensitivity of growth rate to parameters affecting vital rates is impor-
tant in classical demography. The results of Section 4.2.1 provide some
information on the sensitivity of a to stochastic properties of vital rates.
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There are many problems in which the vita] rates depend on parameters
and one wants to know how changes in these parameters will affect a.
Cohen (1980) has established the following general result which provides
some information.

Let (6,, 6, ... 6,,) =0 be a set of real parameters, and suppose that the
random vital rates in (2.2.1) depend on these:

(X,); =F,(0). (4.5.6)

Here the F,; are random functions, some of which are identically zero.
Assume that for every ¢, i, j

either F;(8)=0,
or log F,;(8) 1s a convex function of @.

Then g defined via (2.2.1) for each 8 is also a function a(@), and Cohen

proves that a(8) is a convex function of 8. A similar result holds for the
log u defined in (4.5.2).

4.54. A4 Simplification for Age-Structure: Estimating a

Given Markovian vital rates, the growth rate a is in general computed
according 1o (2.3.10) which requires an average over the joint distribution
of vital rates and population structure. However, for age-structured popula-
tions, a remarkable simplification in (2.3.10) can be obtained as follows. In
the Appendix it is shown that

a=FElog §,(1)~ Elog Z,(2), {4.5.7)

where S,(1} is the (random) survival rate of the youngest age class. and
Z,(2)=[N,(2)/N(1)] is the ratio of number in age-class 2 to the number
in age-class 1. This equation is remarkably close to the classical analog
which can be written

r=log p(1)—log[u(2)/u(1)]

where u(1), u(2) are stable proportions in age classes 1, 2. In practical cases
where one has partial census information together with some statistics on
S,(1), (4.5.7) yields a quick estimate of a. Equation (3.11) is, of course, a
special case of (4.5.7) for two age classes.

4.6. Questions

The results above show how much we do not know. Here is a partial list
of interesting questions and directions.
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(1} The distribution of age structure 1s difficult to get at either
numerically (see the 2-age class calculation in Cohen (1977b) which
looks an unlikely candidate with more age classes) or analytically (see
Tuljapurkar (1984)). Are there efficient numerical approaches to learning
about the distribution or the approach to stability? Can one establish con-
ditions under which the distribution s absolutely continuous as opposed to
singular? Will asymptotic methods work for small noise, ie, can one

expand the distribution around say a Gaussian whose variance depends on
the magnitude of noise?

(i1) Are there other ways of learning about the analytics of @ and
p's? Can one get analytical information on the behavior of these for large
noise? Is there a scaling theory for these exponents (cf. the literature on
characteristic exponents in nonlinear €quations, e.g., Napiorkowski and
Zaus (1986))?

(iii) What is the behavior of the power spectrum in higher orders
(result (4.221) is very rough and reveals nothing about the interaction
between transients induced by random rates)? Biologically, the power
spectrum tells us about cohort synchrony and population cycling, both
subjects of great practical interest.

(iv) Exact results for ¢ seem very difficult to get in biologically inter-
esting cases. Even apparently simple cases (e.g.. only one survival rate
varies and there are simplifving structural assumptions on the matrix
elements) have so far been intractable, although some cases have been
solved (see e.g., Section 3)

5. EvoLuTion

Population biologists have long been concerned with the evolution of
demographic vital rates, and so with the analysis of combined genetic-
demographic models. This section reviews available results about such
models in random environments, and an application by Orzack (1985)
to the evolution of homeostasis. Other applications are considered in
Section 7.

5.1. One Locus, Age Structure, Invasion

The simpiest situation has two alleles 1, 2 at a locus in a diploid random-
mating population. Various assumptions (e.g, the population is
monoecious, or there is a fixed relationship between vital rates in the sexes)
allow one to ignore sex differences, and the resulting deterministic theory
was studied by Norton (1928) and extended by Charlesworth (1980, and
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. references therein). Tuljapurkar (1982b) studied the case of randomly
varying vital rates with the following results.

It is only necessary to track the frequency of allele 1 in the youngest age
class. The resulting equations are complex but a boundary analysis (as in
Haldane and Jayakar, 1963; Karlin and Lieberman, 1974) can be done
with the following results. Consider invasion: the population initially is
almost all genotype 11 and we introduce a few individuals carrying allele
2. To each genotype ij one can assign a long-run stochastic growth rate a;,
which is the growth rate of 2 homogeneous population whose vital rates
are those corresponding to genotype ij. The boundary analysis shows that
allele 2 increases in frequency at the expense of allele 1 if

;> ay. {5.1.1)

Protected polymorphism occurs if a,; < a;, > 2,5.

Condition (5.1.1) shows that a plays the same role for random rates as r,
in classical deterministic evolutionary theory. Charlesworth (1980, Chap-
ter 5) discusses the latter situation and his remarks are pertinent here. In
particular a is a suitable fitness measure for studies of life history evolution
in random environments. Little is known in the stochastic case about
interior gene frequency dynamics away from the boundaries (although see
Section 5.3).

3.2. One Locus, Stage Structure, Cloning

Consider a problem which looks quite different from the one just dis-
cussed: the dynamics at one locus in a size/stage structured population in
which individuals reproduce both sexually and by cioning. A nice example
1s Jack-in-the-pulpit for which a stage structured description was given in
Section 24.2 following Bierzychudek (1982). Sexually produced offspring
here are seeds which make up stage class 1. The smallest (in leaf area)
group of plants make up stage class 2, which contains both plants
produced by germinating seeds as well as all clonally produced offspring.
In the present genetic context we have three genotypes each of which has
a growth matrix of type (2.4.2.1).

We focus on invasion and so need only track the frequency Q, of allele
1, say, in stage class 1. Let B, = B, = (number of sexually produced seeds

of genotype i/ at time ). Then

Qr+l =Z (Br'j!+l +‘BJ’H+1)/2B;+15

J

with B, ., =3, B,,. . These numbers of seeds depend of course on the
entire population structure at time 7. and thus on the clonal reproductive
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rate. Now suppose that the stage class vectors of genotypes 12, 21, and 22
are g, with very small elements compared to the numbers of genotype 11.
Linearization of the frequency recursions leads to the equations

T
May, g
812’..f+1 =L12£+[£12r+( E32,s

0
OT
€230 41 =( €32,
- S"’H-l o

Here (cf. Section 2.3.2) L,, is the growth matrix for heterozgotes, m.. is the
vector of stage-specific sexual fecundity (female seeds/female), and S..
contains clonal reproduction rates. Therefore €.,, need not decrease over
time and the invasion dynamics of (5.2.1) are not independent of the 22
homozygotes. Indeed one can have invasion of allele 2 even when a,, < a,,,
if genotype 22 has a sufficiently high cloning rate.

—
LA
()
—

s

5.3. Homeostasis or the Lack of It

An interesting application of {5.1.1) is to inquire into conditions under
which evolution might favor decreased homeostasis in vital rates. Orzack
(1985) observed that homeostasis measures the buffering (lack of response}
of vital rates (among other things) to environmental change. and thus
decreased homeostasis could correspond to increased variance in vital rates
over time. In a random environment, the fitness ¢ depends on the variance
in vital rates, so one can ask when an increase in this variance leads to an
advantage in a.

Expansion (4.2.6) shows immediately that in the absence of serial
autocorrelation, @ must decrease as variance in vital rates increases, all
other things being equal. This goes along with the classical argument that
homeostasis is selectively advantageous. However, in the presence of serial
autocorrelation, there is an additional term in (4.2.6) and Orzack shows
that with sufficiently high serial autocorrelation, decreased homeostasis can
lead to increased a. It is easy to see qualitatively how this happens. High
serial autocorrelation means that there are long periods when vital rates
change relatively little over time (the environment has “runs™), separated
by sudden large changes in the rates. Thus an organism with decreased
homeostasis might be able to exploit these runs to achieve a higher long-
run growth rate. Indeed, Orzack shows that such a less homeostatic
genotype can fix in a population in a serially correlated environment.

To illustrate the phenomenon, consider genotypes whose fertility
fluctuates over time according to a stationary random process with serial
autocorrelation s. (A specific model 1s a two-state Markov chain for
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fertility.) The result of calculations based on (4.2.6), confirmed by
stochastic simulations, is illustrated in Fig. 6. The curves shown are
schematic and based on Orzack (1985). The solid curve shows how the
least homeostatic (most variable fertility) genotype has an a which
increases with 5. The dashed curve shows how a more homeostatic
genotype has higher fitness when s =0 but that as s increases, this fitness
advantage is eventually reversed.

Orzack argues that such an effect may underlie some of the phenotypic
plasticity observed in nature. He shows that decreased homeostasis can be
selected for in both positively and negatively correlated environments. In
addition, covariation of vital rates can allow an increase in variance for a
particular vital rate. His results show that the temporal structure of a life
history is an arena for natural selection. Thus, Gillespie’s (1977) principle
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FiG. 6. Schematic illustration of the effect of serial environmental autocorrelation s on
stochastic growth rate. Here ry is the growth rate in the absence of random variation. For
§=0 the life history represented by the long-dashed line has higher fitness in the presence of
random variation than the life history represented by the short-dashed line. As s increases this
fitness difference decreases and is actually reversed for high avtocorrelation.
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that there should always be selection for increased homeostasis in offspring
number needs to be weakened for complex life histories in correlated
environments.

5.4. Open Questions

Among the most interesting ones:

(a) what happens in the interior of gene frequency space; how does
a protected polymorphism here differ from the scalar situation; will
diffusion approximations work?

(b) what happens in two-locus cases?

(¢) how does one develop a quantitative genetic theory; does deter-
ministic weak-selection theory (Lande, 1982) provide a starting point?

{(d) how does one extend the invasion (ESS) analysis of Section 5.1
to complex life cycles, especially those involving dormancy. dispersal. or a
mixed sexual-cloning pattern of reproduction?

6. Lire HisTorRY EVOLUTION

6.1. The Tangled Background

Fisher (1930) posed one of the central questions about life histories.
asking how the apportionment of reproduction over life might have
evolved. Cole (1954) framed the style of many recent studies in comparing
the evolutionary advantage of semelparity (reproducing once} and
iteroparity (reproducing more than once). Since then there has been con-
siderable work on general features of life history evolution (e.g., Williams,
1966: the review by Stearns. 1976; Begon er al, 1986), and on features
specific to certain species or genera (e.g., Denno and Dingle, 1981; Jackson
et al, 1985). It is clear from Lewontin (1963) that classical demographic
arguments can only account for some of the life historical patterns in
nature, and later workers have tried to incorporate factors outside the
classical framework. One of these is an environment which produces
random variations in vital rates and thereby generates selection pressures
on life histories.

Although there has been considerable interest in the evolutionary conse-
quences of random vital rates, the theoretical picture has been rather con-
fusing. A review by Stearns (1976} lists features of two contradictory views
of how randomness affects life history evolution. One, the r~K view, relied
on deterministic theory to conclude that so-called “r-selected” life histories
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- were most advantageous in the presence or varability. The other, the bet-
hedging view, used some version of stochastic theory to argue that “more”
iterations life histories were more advantageous. This tentative state of the
theory 1s undoubtedly due to the fact that until recently no analysis has
dealt with (1) age structure, (2) random environmental variability, (3) life
histories of arbitrary length, (4) variation and covariation of components
of the life history, (5) a genetic basis for life history differences, to yield
predictions about the rate and direction of natural selection on particular
types of life histores.

The situation has begin to change with the work of Orzack and
Tuljapurkar (1987) on the evolution of iteroparity and Roerdink (1987) on
the difference between biennials and perennials.

6.2. Iteroparity

The problem: does environmentally driven fluctuation in vital rates
result in an evolutionary advantage for iteroparous life histories? This
question was addressed by Murphy (1968), Schaffer (1974), Giesel (1976),
Hastings and Caswell (1979), and Goodman (1984), none of whom used
the theory of stochastic demography. Orzack and Tuljapurkar (1989) have
used the theory discussed in Sections3 and 4 of this paper, taking
iteroparity to be a continuous character described by the temporal
clumping and positioning of reproduction during life. They combined
analytical and simulation results to study the relative fitness (a) of
iteroparous life histories chosen from constrained phenotype sets: they
assumed zero serial autocorrelation between environments over time. The
main conclusions were as follows.

6.2.1. Crossover

Think of a life history in a random environment as a phenotype whose
vital rates have some average values plus stochastic fluctuation around this
average. In the absence of fluctuations, the average rates determine the
Intrinsic rate of increase ro, and the usual theory (Charlesworth, 1980)
compares the relative fitness of genotypes by comparing r, values. In a
random environment the key difference (cf. Section 5) is that one must
compare a values between phenotypes. The crucial new feature that
emerges 1s that random variation in rates can completely reverse the
relative fitness ranking of life history phenotypes; call this the CROSSOVER
effect.

An illustration is provided by a set of life histories in which random
variation affects the survival of the youngest age class. Consider three life
histories (in the spirit. of Murphy (1968)) which have geometrically
declining survivorship curves, equal fertilities in all reproductive years
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(Fig. 7a) and the same average net reproduction rate R,. Suppose that the
survival rate of juveniles in these life histories is variable; this translates
into random variation of adult fertility with perfect correlation between all

pairs of fertilities. If the coefficient of variation of the fertilities is C, (4.2.6)
reduces to

2

a:logﬁ.o—ﬁ
0

(6.2.1)

where T, is the mean generation length (T, =Y im,/ /') and we consider
reproductive spans beginning at age 2 or greater. Equation (6.2.1) implies
that as C (the level of uncertainty in the environment) increases the value
of a will decrease. In addition, the decrease will be relatively greater for
populations with lower mean generation lengths. The three life histories in
Fig. 7a are labelled so that ry(1)>rg(2)>re(3). However, the figure
suggests, and calculation confirms, that the mean lengths of generation are
ordered as Ty(1)< To(2) < TH(3). Therefore (6.2.1) predicts that for

LIFE HISTORY 3

AGE SPECIFIC
FERTILITY

LIFE HISTORY 1

Q.35

0.30-
LIFE HISTCRY 2

0.25— ! 1

AGE

FiG. 7a. Three stylized life histories. Each has the same average net reproductive rate,
exponentially declining survivorship, and the deterministic r, values are ranked as 1> 2> 3.
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(b)

1000 X STOCHASTIC GROWTH RATE a

00 01 0.2 0.3 04 05 0
COEFF. OF VARIATION IN JUVENILE SURVIVAL

FiG. 7b. Stochastic growth rate a for increasing coefficient of variation C for the three jife
histories in Fig. 7a. For high C there is a crossover effect so that the fitness ranking of the life
histories is reversd from the deterministic one.

sufficiently high C one wilj have a CROSSOVER in growth rates, so that
a(l) < a(2) < a(3). This analytical prediction is nicely borne out by simula-
tions with the result shown in Fig. 7b: sufficiently high variability in the
environment reverses the relative advantages of these three life histories.

This example shows that uncertainty can have dramatic impact but it is
premature to conclude for example that iteroparity is generally advan-
tageous in a randomly varying environment. The magnitude of random
variability and the structure of the life history are important in the relative
ranking of life histories, and distinct life histories can have very similar a
for the same level of random variation.

Two relatively general conclusions:

(1) The growth rate a for life histories can be distinguished by dif-
ferences in ¢, and the degree of discounting of environmental fluctuations
by the mean generation length.

(2) There can be selection between genotypes purely on the basis of
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the sign of the covariances between vital rates. For example, assume that
environmental variability only affects fertilities. Then, a mutant hetero-
zygote with negative correlations among fertilities can enter a population
composed of a genotype with identical average fertilities which are inde-
pendent or positively correlated. Hence some cases of negative correlations
between life history components may be the product of naturai selection
instead of indicating an unavoidable constraint or “cost” of reproduction.

6.2.2. Levels of Variability

The crossover discussed above is a robust feature of random vital rates.
occurring over a wide range of life histories with fluctuations in a varety
of age-specific rates. Examination of many cases suggests three regimes of
randomness:

(a) LOW VARIABILITY: r, SELECTION. Here random varniation has some
effect but not enough to alter a ranking of life histories in terms of their r
values. We expect classical arguments, emploved for example by Lewontin
{1965), to describe much of the selective pressure on life histories.

{b) INTERMEDIATE VARIABILITY: NEUTRAL OUTCOMES. Here crossover
has just begun to occur and life histories with very different r, values have
very similar ¢ values. This regime allows distinct temporal distributions of
reproduction and survival to be selectively neutral with respect to one
another. Thus one expects sets of equally plausible evolutionary endpoints,
the precise course of evolution being determined by historical or chance
events.

(c) HIGH VARIABILITY: a SELECTION. Crossover is complete here and the
ranking of life histories by r, values is reversed. Selective advantage will lie
with those life histories for which reproduction is more spread out over life,
1e, “more” iteroparous life histories.

The identification of regimes depends on the extent of variation, and it
is important to ask: what does a coefficient of variation mean biologically?
The answer is that the variance in a vital rate is a result of (1) the variance
in the environment to which the organisms are responding, and (2) the
environmental sensitivity of the organism which translates environmental
change into change in vital rates. Thus an organism which is well buffered
might see a particular environment as type (a) above, while to a poorly
buffered organism the same environment might be type (c). In addition, the
impact of variability on a depends on the covariance of rates, so the fact
that just one vital rate has high variance can be misleading without
information on other vital rates.
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A key difference between these results and much life history theory is in
the importance of polymorphism. The peutral (with respect to a) life
histories we identify can coexist in the same sense as neutral enzyme
polymorphisms do. On the other hand, we have following (5.1.3) the condi-
tions for a protected polymorphism. When heterozygous individuals are
intermediate in average life history between constituent homozygotes in the
crossover regime of intermediate variability, it is clearly possible to have
selectively maintained polymorphisms.

These results also bear on the relationship between plasticity and genetic
polymorphism (Bradshaw, 1965; Jain, 1979; Scheiner and Goodnight,
1984). Phenotypic plasticity is measured by the individual coefficients of
variation for vital rates and the pairwise correlation between vital rates.
Since the growth rate g depends sensitively on these measures of plasticity,
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LIFE HISTORY NUMBER IN SET

Fig. 8. Life histories numbered 1 through 9 belong to a set described below. Each curve
in the figure links C (level of variation) values at which all live histories have equal a (i.e., are
selectively neutral). Each curve is labeled by the corresponding value of a. The life histories
have equal average net reproductive rate R,, and net maternity schedule (ie., /, m,) declining
with age (x). Life histories 1 to 5 have first reproduction at age a=1 and Jast reproduction

al age w=2 through 10 in steps of 2. Numbers 3 to 9 have @ =10 and « increasing from 3
10 9 in steps of 2.
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and in turn a determines conditions for polymorphism, there is a direct
relationship implied by the theory. As pointed out by Scheiner and Good-
night, the refationship is not necessarily antagonistic. Selection can be
coupled: for example, if plasticity were to increase in a variable environ-
ment, there would be an increase in C and an increasing advantage to
iteroparous life histories. In such a case, genetic variation might decrease as
plasticity increases. However, an increase in plasticity which pushed a pop-
ulation from low C to intermediate C regimes would open the population
to invasion by a wide range of life histories, and here increasing plasticity
could drive an increase in genetic polymorphism.

6.2.3. Murphy’s Result Revisited

The crossover phenomenon discussed above can be looked at in a dii-
ferent way. Consider a set of life histories which obey a common constraint,
say that their average vital rates all lead to the same net reproductive rate.
Suppose now that each life history in the set is subject to random variation

REPRGDUCTIVE SPAN

0 Il |
1.0 1.5 20 25 kX 35
SQUARED CCEFF. OF VARIATION

F1G. 9a. Plot of reproductive span against squared coefficient of variation for a fixed a.
This theoretical prediction for selectively neutral life histories is based on the a = 0.001 curve
in Fig. 8 using life histories 1-5. The straight line is an eyeball fir.
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Fic. 9b. Based on Murphy's (1968) Figure2 for various fish. The vertical axis is a
measure of reproductive span in vears, and the horizontal axis approximates the level of
random variation in survival rate of eggs. There is a strong concordance with Fig 9a,
although the measures of variation are only similar not equivalent, The straight line is an
eveball fit.

in the same vital rates with a common coefficient of variation C. By deter-
mining the value of a as a function of C for each life history, one can plot
an “indifference curve” which shows values of C at which different life
histories in the set have the same value of a. Figure 8 provides an illustra-
tion.

These indifference curves have direct application. Consider a set of life
histories such as those in Murphy (1968) which are constrained as above
and differ mainly in their length of reproductive span. The life histories for
which Fig. 8 is computed make up such a set, and in Fig. 9a the indif-
ference curves are used to plot the relationship between reproductive span
and C for a family of equally fit life histories. Note that the strong
similarity between this plot and the one in Fig. 9b which is based on
Murphy’s (1968) Figure2. Clearly, Murphy's conclusion that the
spreading-out of reproduction increases with the level of random variation
1s strongly supported by the results described here,
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6.3. Annuals versus Biennials versus Perennials

Cole (1934) found little advantage in repeated reproduction as compared
with reproducing once; later workers have argued reasons which undo this
conclusion. Holgate (1967) examined a stochastic model comparing
annuals with biennials and incorporating “demographic” stochasticity. He
found that the extinction probability for biennials was usually smaller than
that for annuals, assuming an equal r, for both. Klinkhammer and de Jong
(1983) considered the effects of a random environment which affected the
seed set of flowering plants, They compared strict biennials (lowering in
the second year of life, then death) with biennials which live for several
years with some fraction flowering every year and used simulations to show
that delayed flowering (ie., a flowering fraction less than one) can be
advantageous. Roerdink (1987) applied stochastic demographic methods to
this problem and his interesting results are sketched below.

His model considers two age classes: plants up to a year old, and plants
over a year old. Letting N, be the population vector at time ¢, f (between
0 and 1) be the fraction of plants older than [ year which flower each year.
S, be the per-capita production of seeds per flowering plant per vear, and

p the fraction of older plants surviving each vear. the random dymanics are
described by

0 fs L
' = N . 6.3.1
Niwy (p (1~f)5,) ’ (65-1)

Environmental randomness is contained in the series of S.'s: Roerdink
assumes this to be an IID random sequence with a gamma distribution
The resulting model is analyzed exactly as in Section 3. and (3.11) is used
to compare a exactly. Roerdink’s key result is that a INCREASES with /
as f increases from 0, and in general has a maximum at a value of f less
than L. Therefore delayed flowering, with some individuals waiting beyond
the second year of life to flower. is a life history which can invade a popula-
tion of annuals or strict biennials,

Note two other features of Roerdink’s paper. First, he studies the
variance of one-period growth rates (his Eq. (3.9b}) and assumes that it
equals the long-run variance ¢2 in population size (2.4.8). This is an error
since the latter variance is obtained from many-period growth rates
(S. Orzack, personal communication, October 1987); we shall say more
about variances in Section 7. The other feature is that he compares the
results of approximation (4.2.6) with his exact calculations, and finds that
for moderate values of f the approximation is excellent, but at high f it fails
to display the maximum that the exact result displays. This is disappointing
since the maximum is the biologically interesting thing.
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6.4. Other Questions

The results outlined above make clear that stochastic demography can
be used to attack important biological problems. There are many open
questions, several of which can be studied with existing theoretical results:
(a) what happens to the arguments of Sections 6.2 and 6.3 when there is
serial autocorrelation in the environment? (b) what is the importance of
random variation as force selecting for more complex life cycles? Particular
examples are the seed pools discussed briefly in Section 2.3.2, and the
“escape In time” strategies of insect diapause and dispersal (cf. Sec-
tion 2.3.3).

Istock (1967) studied complex life cycles in a general setting, considering
life histories in which different stages have different ecological requirements.
Random environmental effects are expected to be major forces in shaping
complex life cycles, examples of which are found in plants, insects, and
marine organisms. The theoretical analysis of such life histories remains
relatively undevcloped; see Istock (1981) for some interesting directions.

7. PROJECTION AND ESTIMATION

Projection and estimation are complementary. To make projections, we
need to set confidence intervals of some kind around a point projection; we
also need estimates of the model parameters. The central issue is to deter-
mine how variance in vital rates works its way into population variance.
Two approaches will be considered here: one is to focus on the long run,
in which case the key task is to estimate @ and ¢2 in order to make total
population forecasts; the other is to ask for more detailed forecasts in the
shorter run and to use estimates of randomness in vital rates as the inputs.

7.1. The Long Run: Hevde—Cohen

Heyde and Cohen (1985) provide estimators for g and ¢ starting from a
time series of counts of total population. Their theory was developed for a
closed population but will probably work for certain kinds of Immigration
patterns as well (Heyde, 1985). The estimator for growth rate is pleasantly
simple:

d=(log Py —log P)/(T—1),

where the P's are total population counts over a total of T time units.
The variance estimator is more complicated and it may be useful to
explain why. From (2.2.1) it follows (see (2.3.9)) that one can write

Pr=rere_y-rP
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where r, is the growth rate at period ¢ and depends on both the state of the
environment and the population structure. Now from the general results
(2.3.8} about the long-run lognormal distribution of population size it
follows that

o’ =Lim(1/T) Var log(P,/P,)

= Lim(1/T) {Z Var(r .} + Z Cov(r.(r_‘.)}

X# v

= Var(r,) + COV,

where Var means variance, Cov means covariance, and COV is the limit of
the second term in the middle equation. The stationary Var in the last line
is the one-period variance computed by Roerdink (1987) (see Section 6.3)
as an estimate of ¢?. In a simulation study one can estimate ¢ by the
procedure of generating many strings of r’s in successive independent
simulations, so that an estimate of COV can be obtained, However. when
one has only a relatively short series of P's, something different is needed.
Heyde and Cohen provide such an estimator:

] . T-1 .
cf=;(rr/’2)"{{log{T—l)]“ Yo
2 =
xllog P, —log P, — jai + [log(T-2)] !
T-2 ]
x 3 j *7llogP, —log P, ——jdij.

J=1

This estimator is quite unusual compared with the more common estimates
of variance. See Cohen (1986) for an application and comparisons with
other methods of generating confidence intervals.

These results are of interest in making long-run forecasts. In practical
situations, however, one would like to use recently observed population
structure and Lee (1987, personal communication) has pointed out that the
asymptotic estimators are probably not optimal in the short to medium
term. The Heyde-Cohen estimates provide information only on long-run
growth,

7.2. The Short Run: Variance Decomposition

Lee (1974) used the procedure of fitting a time series (ARMA, Box and
Jenkins, 1970) model to fertility rates and then generating population
forecasts based on these fertility models. Time series methods have since
been used by MacDonald (1979), Saboia (1977), Lee (1977), and Alho and
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Spencer (1985). Tuljapurkar (1987) pointed out that all these methods use
an approximation in which the nonlinear demographic model (22.2) is
linearized. The generation of point forecasts and confidence intervals in the
linearized model is relatively straightforward. However, the linear model
does not reflect the geometric character of a full projection, in which (2.2.2)
is used. Tuljapurkar (1987) discusses differences between the two
approaches, but important questions remain unanswered. Here we consider
only one result which lies at the heart of the difference between linear and
nonlinear models.

Lee’s pioneering 1974 paper asserts that a linearization of (2.2.2) might
be expected to work because, with random vital rates, the variance in
growth rates is dominated by variance in rates as opposed to variance in
population structure. Tuljapurkar and Lee (1987, unpublished) used the
methods in Section 4.2 to analyze the relative contributions to the variance,
with the following results. Recall notation from Section 4.2, in which the
time-dependent matrix X, of random vital rates is decomposed into an
average matrix A plus a matrix of random deviations B,. The average
matrix determines a vector u of population structure which would be stable
n the absence of random effects. The one-period population growth rate is
from (2.3.9),

;'I = (e- xf--JYr)
= (e, AU+A(Y,—U)+B,+IU+B,+](\7, —u))
=io+ A, + A5+ 4 48, (7.2.1)

where the terms in the last line correspond exactly to the terms in the line
preceding it. These terms can be interpreted as follows: 4, is the average
vital rates acting on the random variation in population structure, A4, is
the random part of vital rates acting on the average population structure,
and 4, is the interaction between variation in structure and rates. These
identifications are not exact (cf. the discussion in Section 4.2.2) but are
close enough for the purpose of asking how the two sources of variation
compare. Now define the variance in +, due to population structure fluctua-
tions as

V,=EA4? (7.2.2)
and the variance in £, due to random rate fluctuations as
Ve=EA42. (7.2.3)

The results of Section 4.2.2 are easily adapted to compute these variances
and we can now ask: what is the ratio of V4 to Vg? Tuljapurkar and Lee
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(1987) examined the case of a human population typical of the United
States in the 1960s, and found that V, is about 0.7 V. This number is com-
puted using the small noise expansions and was verified by simulations.
This means that in the situation which Lee (1974) considered, roughly a
third of the one-period variance in growth rate was due to changing age
structure. The implication is that one ought to do better at short-term
forecasts using full information on age structure than without.

The variance (7.2.3) involves the transient behavior determined by the
average vital rates. It is known (Coale, 1972) that transients are governed
by the width of the next maternity function, and so it is interesting to ask
how the ratio (V4/V ) changes as the reproductive span is concentrated
relative to the age of last reproduction. Consider a series of stylized flat net
maternity functions in which the age of last reproduction is fixed at 10, and
the age of first reproduction is increased from 2 to 8. holding the net
reproductive rate at a fixed value, and allow seriallv uncorrelated flucta-
tions in fertility at ali ages. The ratio (V' /V ) is found to increase from
0.65 for age of first reproduction 1 to a value of 0.89 for age of first
reproduction 8. Thus, there is a sizeable increase but not a dramatic one,

7.3. Simulations: From Fur Seals to Social Security

Theoretical progress on problems arising in projection has been slow. In
the absence of usable theory one can use simulation to study particuilar
populations, and an example is the work of Gerrodette er al. (1985) on the
northern fur seal Callorhinus ursinus. Average vital rates for the population
in year classes are given by a 23 age-class Leslie matrix, with first reproduc-
tion at 3 years. Fecundity has a peak at about 10 years and then falls
slowly. Survival rates increase with age till age 9-10 and then fall. All vital
rates are allowed to vary stochastically, with estimated coefficients of varia-
tion about 0.05. In addition, there is a within-period pairwise correlation
between fecundities of 0.9, between survival rates of 0.9, and between
fecundities and survival rates of 0.5, There is no serial autocorrelation
between rates over time. These authors performed simulations which con-
firmed the lognormal distribution (2.3.8). They also note that a geometric
mean transformation (raising P, to the power 1/1) was even more effective
as a normalizing transformation for small ;. These normalizing transforma-
tions were used to generate 95 and 99 % confidence intervals for the total
female fur-seal population. This kind of effort is necessary for practical
short-term projection.

A different projection important for humag populations is of particular
age-class proportions, and of ratios of numbers in different age classes.
Keyfitz (1986) considers old age pensions and social security in the United
States, which are very sensitive to the dependency ratio: the ratio of the
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retired population, say ages 65+, to the working population, say ages
15-64. The usual method of defining a high, low, and median variant of
forecast can greatly mislead. As Keyfitz shows by simulation, if we allow
rates to vary randomly within the possible range over time, the dependency
ratio acquires substantially more variance over time. He estimates
approximate confidence regions based on simulations.

For practical application, the problems of this section are very important
and open questions abound:

(a) how rapidly do linear forecasting methods fail;
(b) what are good methods for short-term forecasts?
(c) how does one make good predictions of age structure?

8. MANAGEMENT

Harvesting, resource management, conservation, and risk assessment are
all “management” issues. In many ways these are prediction problems, and
the remarks of Section7 are relevant. However, most management
questions are studied in much greater ignorance: it is often unclear what
questions need asking and what predictions will be meaningful. Here we
illustrate these problems by describing some interesting cases. As with
prediction, many significant questions remain unanswered.

8.1. The Striped Bass

The striped bass (Morone saxarilis) populations in the Potomac and
Hudson Rivers are celebrated in the business of studying environmental
impacts. These populations are under considerable fishing pressure and
also subject to potentially poor environments caused by power plants
which alter the water quality in various ways. There have been several
unpublished studies of these populations, at least one of which {Tul-
japurkar er al., 1983) used the random rates theory. Two notable published
studies by Cohen er al. (1983) and Goodyear er al. (1985) illustrate some
of the issues in applying stochastic demography to “real world” situations.

The first of these develops a stochastic age-structured model for the
Potomac fishery. The key notion is that random variation mainly affects
€gg survival rate and aduit survival rate is constant in time. Statistical tests
showed that the egg survival rate series is an uncorrelated random
sequence but did not yield an unambiguous form for the underlying
probability distribution. Observed values were used to generate a discrete
distribution, and simulations were run with survival rates drawn from this
distribution. Estimates of a were obtained and used to discuss the possible
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impacts of environmental factors on the fishery. The results obtained
depend in a clearly stated way on estimates of adult survival rates.

The second cited study focuses on the Cheaspeake Bay population and
uses the same method to estimate egg survival rates over time. Assuming
other vital rates fixed, a replacement survival rate was computed at which
the population would just replace itself. There appears to be a clear
downward secular trend in egg survival rates to well below the replacement
value. An alternative interpretation of the results is that egg survival stayed
constant but adult survival fell. In either case the results indicate populia-

tion decline and suggest the magnitudes of intervention effort required to
maintain stocks.

8.2. The Rocky Mountain Elk

There is a population of Rocky Mountain Elk. Cervis elaphus nelsoni.
living essentially unhunted in the Upper Cedar River Watershed near
Seattle. Washington. These are descendants of a transplant in 1913 of
50 elk from Yellowstone National Park. and have been studied for some
20 years. Wallace (1986) constructed and applied a random rates model for
this population.

The model divided the population into three classes: calves, vearlings,
and all adults 2 years older. This lumping of adults was necessary because
it is not possible to tell ages apart anv finer in the field. Population
estimates were used to generate rough estimates of vital rates and it was
concluded that calf survival is most variable. A regression studv of annual
calf survival against precipitation and temperature at different times of year
yielded two main environmental indices. No evidence of serial autocorrela-
tion was found in these variables and so a discrete environmental state
variable was constructed which had one of 90 possible values with spectfied
probabilities of occurrence. Corresponding estimates of calf survival rates
were available from the regression. Just as in Section 8.1, this is an IID
random rate model. All other vital rates were estimated and assumed to be
constant over time. The resulting model described the population trajectory
reasonably well, but indicated that the population might be reaching some
kind of plateau. Population projections, confidence intervals, and potential
harvest numbers were computed.

8.3. The Spotted Owl and Extinction Theory

Simberloff (1987) highlights the recent cause celebre of the Spotted Owl,
Strix occidentalis, in the Western United States. Simply stated, the owl
depends on old forests and there is considerable economic pressure to log
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these forests. The conflict between conservation and economics has
involved academic ecologists and the full machinery, such as it is, of
modern ecological science. The central scientific question is one of extinc-
tion probability. It is interesting to quote Simberloff (1987, p. 769): “there
is little treatment in the theoretical literature of environmental variation.”
He also treats demographic stochasticity as completely separate from
environmental effects. Clearly there is an awareness gap here. There are
also many open problems since a formal general theory of extinction exists
in Athreya and Karlin (1971) but application requires considerable further
effort.

Interesting studies on extinction have recently been done by Mode and
Jacobsen (1987a,b). Their age-structured model has both demographic
and environmental stochasticity. They make a technical statistical inde-
pendence assumption, but it is not clear whether this is a real limitation.
They model the random environment by a one-lag or two-lag
autoregressive process. Monte Carlo simulation is used to obtain extinction
probabilities and also critical population sizes (defined as the smallest
population from which extinction occurs with no more than some specified
tolerable probability). They find extinction probabilities Very sensitive to
the amount of environmental randomness and the serial correlation struc-
ture of the environment.

An important analytical approach by Lande and Orzack (1988) starts
with the lognormal distribution (Sections 2.3, 3, and 3.9) and asks how one
can approximate the dynamics of population size P, by a diffusion process.
The difficulty lies in finding a way to incorporate the effect of initial age
structure. Lande and Orzack make the crucial observation that differences
in Initial structure y, should be weighted by reproductive value. For small
fluctuations they model log P, as a diffusion with mean a. variance a?, and
initial point log[(v,. vo)P,], where vy is the (normalized) reproductive
value vector for the average Leslie matrix A. This model is in excellent
agreement with simulations. Their striking results do not incorporate
serially correlated environments or demographic stochasticity. It seems
clear that extinction probabilities need further study and that conservation
biology will benefit from it.

8. EPILOG

This paper has presented many questions and a few, mostly incomplete,
answers. These questions range from very abstract to rather concrete, but
all promise to yield better insights into the biological world.

The deepest insights from this theory are into the temporal structure of
life histories as an arena for natural selection. We have seen (Sections § and

=34



286 SHRIPAD TULJAPURKAK

6) the many ways in which organisms can achieve a “fit” to a varying
environment. There is a hierarchy of adaptative possibilities, from the
average distribution of reproduction and survival over the life course to the
ways in which the environment is filtered into variation, covariation, and
serial autocorrelation of vital rates. The results strongly suggest that such
‘adaptation is the key evolutionary force underlying many complex life
cycles, and such phenomena as diapause, dispersal, and seed pools are ripe
for further exploration.

At a more immediately applicable level, this theory yields novel insights
into the dynamics of real populations. The notion of a population as being
a time-varying, dynamic, yet statistically equilibrial state is very different
from the notions of classical demography. It is also the consequence of the
unpredictable and variable vital rates which we might expect in the real
world. Thus we should expect as a matter of course that: population struc-
ture tracks environment with the recent past writ large; the long-term
average of population structure is not as sensitive to runs in environmental
conditions; populations will display oscillatory behavior, including the tem-
poral dominance of cohorts. Many other conclusions from the analysis of
Section 4 are central to the analysis of observed population and the predic-
tion of future population.

Finally, there is interesting related work on disordered systems as diverse
as alloys, glasses and neural nets. See Ziman (1979), Demetrius (1987) for
physical examples, and Cohen et al. (1986) for a wider discussion.

APPENDIX

Appendix to Section 4.1

Label the age classes 1 through k, where k = {last age class which is

reproductive}, and describe population structure by the variables Z(/)
defined as

Z ()= N)/NL1),

(A1)
Z,=(Z,(2), .. Z.k)).
The basic equation (2.2.1) now becomes
Z, i+ )=S0 Z(/M ., W), i>1
=5,:.1(0) Z (i) hM, .., Z), (A2)

where S,(i)= (X)er Lo M{i)=(X,)y, the vectors are §=(S(}), M=

Lo
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(M(7)), W=(1,Z), and the function A{(m, z)=1/(m, z). Suppose that the
S’s and M’s are bounded for all ¢,

0(51-<..S;$52<1, OSmISM,$m2<0’D- (A3)

Here and elsewhere inequalities between vectors are shorthand for
inequalities which hold componentwise; similarly for matrices.

To find bounds on age structure resulting from the bounds on vital rates,
observe that 4 in (A2) is a decreasing function of Z, and also that

h(Z)=h(m,, Z)>h(M,, Z) > h(m,, Z) = hy(Z). (A4)

Starting with any initial nonzero Z, in (A2) such that 0 < Z, < o, generate
upper bounds as

Z,(2) < 55(1) b4(0) = ¢,(2),
Z5(3) <52(2) ¢,(2) h1(0) = ¢,(3),
and 50 on to get a complete vector of upper bounds, ¢, > Z,. These upper
bounds can be used to generate a set of lower bounds,
Z,(2) 2 55(1) hayley) = b,(2),
Z5(3) 2 55(2) ha{c; )= b,(3),
and so on to get a vector b, <Z,. We can now iterate this procedure to
generate a sequence of upper bounds ¢, and lower bounds b,,, m=1.2, ...
using the mappings
Cm+ 1(i+ 1 )= SZ(I') Cm+ I(I) hl(bm)s

(A5)
By i(i+1)=5,(i) By s 1{i) hy(c,,)s
where we define b,,(1)=¢, (1) for all m, and i= 1, .., k—1.Tt is easy to see
thate, ., <c,, and b,,,, > b. Thus the bounds converge to a limit which
can be computed by solving for an equilibrium in (AS). Specifically we look
for ¢ and b which reproduce themselves under the mappings given above.
A little algebra shows that if we set

[=h1(b)3
()= 1
/0 {S;(I)SJ(?.)---SJ(J'—I) if i>1

T for j=1.2,

3

of
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then we can find ¢ as the root of the polynomial equation

k

S o Lx)m(x)FQ- =1, (A6)

xml

In simple cases this equation yields a nice interpretation in terms of iterated
products of matrices (cf. Tuljapurkar, 1984),

Appendix to Section 4.2.2

The average population structure (see Eq. (4.2.11)) is
EY, =u+(l-ue")(ER, —E{R,(e,R,)}). (A7)
Taking the limit as r — 2 yields the steady state average

EY, ~u+(1-Q) ! E{i (B,../~)(1 —ueT)Q"‘[B,;’J,)}u

=1

~- Y QTUE[(B,/ANA/A) " (B, /i) u. (A8)

i=1

The variance of Y, in (4.2.12) depends on

R¥=Lim E[(1-P)R,®(1-P)R,,]

={(1—PJ®(1~P)SO
+Q®Q{I-Q®Q}'S,

+Y [1-P)@QS, +Q/®(1—P)S._ ]

+i Q’®J_i [S,-+S_,»]}(u®u). (A9)

The above expressions simplify greatly in the IID case when S,. =0 for

m #0. The general small noise expression for the autocorrelation function
of population structure is

Cim)=(1-L®L)™! {(l—ueT)®(1 —ue’)S,,

+E Y [(1—ueT)Q'"‘fB,-HJ@)B;}(u@u), (A10)
=0

)

with L=(1 —ue™)Q and m>0.

bZ
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Appendix to Section 4.5.4

Use the scaled variables
Z(i)=N(i)/N(1)

of Section 4.1, and recall Eqs. (A2)-(A3) and the corresponding notations.
The one-period growth rate is obtained by noting that

N =M, N+ TS, NG) (A11)
so that
(e N, (e N,)={(M,+1, W)+ T sm(f)z,(f)}/(e, W)
izl
=(Mr+l="vz){(eawr+1)/(e= W:)} (Al?.)

Now from (4.1.5) for i=2 one has (M,,,,W,)=S5,. (1)/Z,.,(2) and so
the logarithmic growth rate becomes

a=Elog{(e, Nr+1)/(es N:)}
=Elog S, (1)~ElogZ,, (2)
+ Elog(e, W, ,)— Elog(e, W,). (A13)

Stationarity implies that the last two terms will cancel and so finally we get
(4.5.7).
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