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Demography in stochastic enviionments

II. Growth and convergence rates
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1. Introduction

An appealing generalization of classical demography replaces the constant vital
rates of Leslie's projection matrix by randomly time-varying vital rates (Sykes
{(1969), Pollard (1973)). More recently the theary of such stochastic models has
been extensively developed (Cohen (1977a,b), Tuijapurkar and Orzack {1980),
Heyde and Cohen {1985}) along with some applications {Cohen et al. (1983},
Siade and Levenson (1982), (1984), Tuljapurkar {1982b}). A quantity of central
interest in such models is population growth rate which is, of course, a random
variable. It is known that the steady state average growth rate is the almost sure
long run growth rate of every population trajectory, and it would be useful 1o
know how this average growth rate depends on the underlying vitai rates. Although
some exact and approximate results are available (Cohen (1979, (1980}, Tul-
japurkar op. cit.) these fall short of a demographically complete characterization.
A related issue of demographic importance, about which little is known, is the
rate al which a population with random vital rates approaches the statistical
steady state. The results presented here provide ways of analyzing this rate of
convergence together with new insights into the determinants of convergence and
growth rates.

The models studied here describe an age-structured population at time f by
the vector N, of numbers in ¢ach of k age classes, and describe the dynamics of
N, by the equation

Nttl=X!+an (1)

where X is a matrix of vital rates. The sequence of X matrices experienced by
a population is determined by a random process. [n the next two sections |
analyze convergence to the stochastic steady state in (1), defining and comparing
several rates of convergence; this analysis also applies to more general versions
of (1) such as models for size-structured populations. | show in particular that
a partial analog to a classical convergence rate is found in the second fargest
characteristic exponent of (1) {definition in Sect. 3). However there is considerable
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information aboul the process which is not given by this quantity and other
measures are discussed here. Subsequent sections consider the matrices X in ¢1)
to be Leslie matrices, and present classes of matrices for which the average growth
rate and in some cases a convergence rate can be explicitly computed. These are
nontrivial examples and are presented baoth for their intrinsic interest and for the
insight they yield into the dynamics of (1). The final section summarizes the key
results.

2, Dynamics with random rates

In most applications involving time dependent vital rates the population is
assumed o be weakly ergodic in the demographic sense (Hajnal (1976)), atthough
I will later analyze one important example where this is not true. Demographic
ergodicity coupled with random rates can result in a population approaching a
statistical steady state. This is analogous to the classical process of convergence
to a stable age distribution which occurs when vital rates are fixed, and is very
similar to the convergence to a time-dependent age-structure under a particular
time series of rates (Kim and Sykes (1976}, Kim (1985)). In this section, [ first
specify assumptions under which a steady state will occur, and then briefly
summarize the dynamics of (1) under the assumptions. With this background 1
then consider definitions and measures of convergence in Sect. 3. In both Sects.
2 and 3 the matrices X in (1) need not be of the Leslie type, but can be generul
nonnegative matrices which satisfy the assumptions; such matrices arise in
Markov chains, size-structured models, and models of spatially dispersed popula-
tions.

2.1, Assumptions

For a population obeying (1) to approach some steady state, we need conditions
on demographic weak ergodicity (Hajnal (1976)) and on the memory and eventual
stationarity of the random process generating the time-dependent vital rates.
Throughout this section [ will assume (cf. Heyde and Cohen (19853) for variants
and discussion) that:
(A1) X,, X,,...,is a stationary ergodic random sequence of k x k maltrices
with nonnegative elements;
{A2) There is an integer ng such that any product of any n, matrices from
the sequence of X's has all its elements positive with probability one.
{A3) With M, = (maximum pasitive element of X;), m, = {(minimum positive
element of X.), there is a constant C, 1< C <0, such that for every
matrix X|

I1sM/ms<C

with probability 1.
(A4) Letting £ indicate an expectation with respect to the random process
generating the matrices,

Ellog M|’ <.
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{A5) The random process generating the sequence X,, Xi, ... 15 rapidly
mixing (e.g., as in condition {7), Theorem 1 of Heyde and Cohen (1983))
s0 that

(1Y 'Uog| X, -+ X, || —a+) (2)

converges in distribution to the normal N(0, 1) as t = o0, for some o >- 0
and some a, where || - || is any matrix norm.
1 will aiso consider the special case where in additionto (AS)itis assumed that:
{A6) The random process generating the sequence X, X, ... is a finite state
Markov chain.
1 will refer 1o (Al)-(AS5) as describing stationary rutes and (Al)-(A6) as
describing Markov rates.

2.2, Dynamics

Consider Eg. (1) with some (nonrandom) initial population N, and stationary
rales (assumplions (Al)-{A5)). Define the norm of a vector as |A| = (sum of the
absolute value of components of A} so that the population uge-structure is
Y, = N,/|N,|. As time 1 increases there is population convergence 10 a statistical
steady state characterized as follows:
(i) The long run average growth rate of population size converges almast
surely regardless of N, and X, to the number

a-—-Lim]‘ In\N,|:LimlrEIn|N,[, (3}
with E a5 in (Ad).

(i} This average growth rate is also the asympionc one peniod averape
growth rate

a=Lim E In|N,,[/IN]=Lim E inlX,., Y |. (4)
=% [N

(i} From any inital age-structure vector ¥, the age-structure converges 10
a (ume-dependent) stationary random sequence Y, as 1 — o The limiting
age structures are independent of yy.

{iv) The probability distribution of sequences of vital rate matrices and
age-structures {X,, Y, Xy, Yo, ...} can be described by @ measure on
the space ol sequences (¢f. Furstenberg and Kesten (1960) ). This measure
evolves under the action of (1) 10 a stationary measure.

(v) There is the central imit convergence to lognormality of total population
implied by (2}.

When random vital rates are Markov (Assumptions Al-A6) one knows more:

(vi) With Markov rates {Cohen {1977a,b)) there is a unigue sleady state
probability distribution P for the pair of random variables X,, Y,. This
distribution reproduces iiself under the action of (1) and can therefore
be computed. Any reasonable initial distribution converges to P us ¢ — 0.

{vil) With Markov rates one can compule explicitly moments of all orders
of N, (Cohen (1977b}, Tuljapurkar {19824}) and these grow asymploti-
cally al geometric rates.
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3. Convergence with random rates

Ta pul the question of convergence in perspective, recall what happens if vital
rates are fixed in (1) with X = A. Assumption A2 of Sect. 2 now guarantees that
population growth rate converges to r =In A where A is the dominant eigenvalue
of A, and age-structure Y, becomes proportional to the corresponding eigenvector
u. The convergence questions (Keyfitz (1968), Coale (1973)) are: how rapidly
does growth rate approach r and Y, approach u? What oscillations in N, are
observed as Y, - u”

When vital rates are random the analogous questions concern random vari-
ables, and one has to ask how fast average growth rate approaches a, or haow
fast statistical distributions reach a steady state. As Sect. 2.2 indicates there are
many aspects to convergence with random rates and it is not obvious how one
ought to analyze convergence. [ will describe below several natural measures of
convergence along with their properties. Some of the results below are only
applicable with Markov vital rates and are so labelled.

3.1, Characteristic exponenis

Perhaps the most abvious approach to convergence is to seek a generalization
of the subdominant cigenvatues of a fixed Leslie matrix. A partial generalization
is found in the work of Oseledec (1968) on matrix products (see also Ruelle
{1979} for a relevant discussion). Assuming stationary rates in {1}, as described
in Sect. 2.1, Oseledec’s theorem says that there are k& numbers called Liapunov
characteristic exponents,

PSP = Ep=a, (5
of which say only m <k are distinct, and associated random subspaces
Vie Ve eV, =R (6)

such that if we pick a random initial vector Mye V,/V,_, and then compute M,
using (1} (with V,={0}},

1
p, = Lim = In| M), (7)

where p, is the appropriate exponent from (5). As (7) suggesis the quantities
exp( p,t) are asymptotically the singular values of the random product matrix
XXX,

To compute the g's requires a different definition, based on Rughunathan

(1979}: choose j linearly independent vectors w,(0), ..., w0} and apply (1) to
each of these, then a+p,+- - -+ p, is the maximum over all choices of the w's of

1
Lim—lafw, () a- - aw(f}] (8)

feon b

where ||w; A+ - a w,| is the volume of the paralleleptped spanned by wy, ..., w,.

Convergence in stochastic demography 573

For numerical use of this algorithm see Benettin et al. (1980). In the special case
of (8) with j = & one pets

atp.+-- "|'15'n<=1_iml é |n{"xJW|U_-1)A' . 'AX’WL.U-”"}
wiG=1 - amli-1)|

O

I
=L1m? ZI In Det (X;} = E In Det{ X}, 8]
=ay A
where Det means determinant. This result makes intuitive sense if one recalls
that the p's are related to singular values.

I will now show that p, is an analog to the quantity s = {Inffirst subdominant
eigenvalue|} which describes convergence for a fixed Leslie matrix. Observe from
(8) thatil one picks any two vectors w,(0), w.(0), then (a+ p,) gives the maximum
possible asymptotic growth rate of the area spanned by

Wil =XX,_ - Xwi0) (10)
and W.{1) defined likewise. Now recall from Sect. 2.2 that as ¢ = o0,
[ W {N/[WL(0] - Wa(2)/[Wa(2)]]~ 0.
Therefore the area spanned by these normalized vectors
[EWAC/[ WD) A (WS WO -0 as =<,

Recalting the definitions of a and (§) it follows that

1
'le', In{[f(W,(1)/ [ WO A (WL} | WD)

N
= Lim {; In|| W, (1) » Wo(0)|| —% |n|W,(l)[—%]n§ W,(r)\} (n

=(p,ta)—2a=(p,—a).

The result (11) says that the initial difference between the direcrions of W (1},
W.(r) (i.e. the corresponding age-structures) goes to zero at the maximum rate
exp[—(a—p,)7]as 1+ Clearly (o, —a) is a convergence rale in the demographic
sense. In general for nonproportional initial vectors w,(0), w.(0) chosen arbitrarily
one expects that W (1)~ Wy(7) will in fact change at the maximum rate. If one
takes the matrices X to be fixed at A one can show thai the rate in (11) reduces
1o the classical convergence rate.

Note however two important differences between the p’s and the higher
eigenvalues of a fixed matrix. First the real p's yield no information about the
oscillatory transients in (1}. Second, the subspaces corresponding to the different
p's in (6} are tandom: they depend on the sequence ol vital rates which will
appear in (1}, and it is not possible 10 specily them at a given initial time without
knowledge of future rates. Thus the classical decay in compoenents of age-structure
orthogonal to a fixed stable structure dovs not generalize in any easy way. {11 is
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useful to compare the analysis of deterministicully varying vital rates by Kim
and Sykes (1976) where similar questions arise.)
The result (9) is particularly useful for Leslie matrices which have (1) the form

File) Fyli)
X< | P00 (12)
Pty 0

where F's are fecundiies and P's are survival rates. With {12} the result (9)
simplifies to

atp.+ --+p.=Eln(P,--- P_|F). (13)

In the k=2 case (to be discussed shonly) this yields p, directly.

3.2, Other approaches to measuring convergence rate

One is the construction of u measure on the sequence space {X,, Y, X5, Y,,.. .}
The random process of vital rates can be described by a measure on the projected
sequences {X,, X,,...} and one cun view the bivariate SEQUENce space as a
skew-product dynamicat system (Abramov and Rohiin (1967)). Ruelle (1978,
Corollary 6.23) and Furstenberg and Kesten (1960) consider the construction of
a suitable measure on the bivariate sequence space. One can now generalize the
results in Tuljapurkar (1982¢) to show that the entropy of this skew-product
system provides a lower bound on the rate at which the equilibrium measure is
approached in sequence space.,

Another approach is 1o examine the distributional convergence of total num-
bers scaled to In|N,|/v1 as in (2). A numerically based analysis for Markov vital
rates is given in Tuljapurkar and Orzack {1980).

The situation is much clearer with Markov rates {Cohen {19774, b)). Here
the state of the pair {X,, Y,} can be represented as a point in a {product) space
of k*+{k—1) dimensions {matrix plus normalized vector). Suppose that 4 is a
measure on this space which is reproduced under the action of (1}. Then it obeys
an equation of the form

,u.(dz)zJ- K(dz, v)u(dv) (14)

where K is a nonnegative transition kernel. In general one expects a family of
eigensolutions of (13)

A¢A(d2)=j K(dz, v) ¢, (dv). (15)

From the theory of positive operators (Schaefer (1974)) one has [A|= land A =1
corresponds to the solution {14). Thus a natural convergence rate is given by the
eigenvalue A for which [A| closest to 1.

A final approach is to ask how rapidly moments of N, approach their
asymptotic growth trends. With Markov rates it is known (Tuljapurkar {19%24))
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that

E(N®N @ - -®&N,) -~ Bi(Constants) + y;(Constanlts),

16
{limes (16)

with 8, and v, |y <8, explicitly computable as eigenvalues of a particular
matrix. Therefore one has a family of convergence rates given by |yl/8,. In the
above paper the B, v, are studied for the case when [X.— E(X,)| is small and
it is shown that the ratios |y;|/ 8, decline rapidly with increasing /. This suggests
that ||/ 8, may be an adequate index of convergence {or the moments. Note
that when the matrices X, are independently and identically distributed this ratio
reduces to the clasical quantity exp(r —Injsubdominant eigenvalue|) for the matrix
A=E(X,).

4. Leslie matrices with restricted reproduction

Ecologists and demographers (Cole (1954), Bernardelli (1941)) have been inter-
ested in populations where only one or a few age classes reproduce. 1 consider
two cases, assuming (Al), (A3), (Ad) of Sect. 2.] {Assumption (A2} will not hold
here).

4.1, Semelparity: one age-class fertility

The Lestie matrices for such a population have the form

0 F(1)
X, = | P 0 1, t17)
P (1) 0

where I ignore post-reproductive age classes. To solve {1Het B, = N{1) = (Births
al time f).

Then
Bo=F (P u-1)- Pli-k+1)F)B, ,. (18)
lterating this and using stationarity {the rightside below is independent of 1)
a=(l/kHEIn F(t}+ Eln Pi(1}+- -+ Eln P (1)) (19)

{(Cohen et al. (1983) solved the special case of a 2x 2, fixed Fr) = f, version of
(17)). For the special matrices (17} ali the Liapunov exponents can be calculated
as follows. Observe that the X, in (17) can be rewritten as the product

Pt
. Py1)
X,=HD,= H _
Fii)
0 0 |
1
0 1 0
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The product of & of the X's in (17} can also be written in this form with ditferent
entries in the diagonal matrix; thas

X Xy - X, =HD,, say.
lterating this,
dy (1)
XouXak-1 - Xy=HDy=H :
doy (k)

and since H is unitary one has (Raghunathan op. cit.)

1
p=Lim _k In d (£).

a-x A
From the form of D, one concludes that
p2=--=pc=a, (20)
which is precisely analogous to the eigenvalue degeneracy encountered for a
fixed matrix of the form (17). There is no convergence to a steady slate.
Observe the remarkuable fact that a is here independent of serial autocorrelation

of the random process generating the vital rates, The simplicity of {19}, (20) is
lost as soon as the matrix acquires another fertility,

4.2, Imprimitivity: two age-classes fertile

Letting n, m be any two integers with 1 < n < nm =k, consider Leslie matrices
whose first row has the form

(0---0 F(n) 0---Fye)), (21
i 1
nth (mm) = kth
column column

the rest of the matrix being as in (12} or (17). The resulting Leslie matrices are
irreducible but not primitive, so here too there is no convergence to a steady
state for the full process. Letting B, = (Births at time r) we have

B =F(H)L{)B ..+ F(OL (DB, ., {22a)
with survivorships defined by

1, =1,
= 22h
L= p o opi=2)- - pl—j+1),  1<j=k )
Now consider births at the times (=n, 20 3n,...; in general at t+=Th, T an
integer. Then define a new process Z, = By, and {rom (22) get
Zr=FnTYL,(nTYZr_y+ FAnTYLy(nTYZ .. 20

Notice that the new Z; has a stable limiting behavior as T - o since {23) can
be thought of as a version of (1) involving primitive Leslie matrices. Hence the
degeneracy of (20) disappears under a suitable time scaling; for (23) assumption
(A2) of Sect. 2.1 will apply even though it does not for (22), Hence in {23) one
has the strict ineguality a > p, since weak ergodicity now holds (cf, Sect. 3.1).

Convergence in stochastic demography 577
5. Two age-classes

In Tuljapurkar (1984) a number of 2 age-class versions of (1) are studied and
the actual steady state distribution solving (14) is found. It is obvious from (9)
and (13) that in all these cases (one of which uses Markov rates) one can find
both a and the convergence rate p,. Here | consider anly one example in which
the matrix X, of (1) has the form

(m:Fa szI)
p 0
with (1/F,) being an i.i.d. sequence with a gamma distribution; the probability
density of this gamma is
Giw)=[n"/(n-1)}w"" exp(—nw).
Define the variable (proportional 10 a ratio of old to young)
R, = (mer(z)/mlNr(l))

and put z = (m}/m,p). The paper cited above shows that the steady state probabil-
ity density of R, is

C(x)=(constant)x" (1 + x) " exp(—n=x),

From these results one has the following exact results:

a= I :de(w) I dx C{xHin[m (1 +x)+pw]—In{w/m)—In(m.+ m x}},

i} [{]

pr= J dw G(w)In{ pm,/w)—a.
0

Far large n the distribution G{w) concentrates around w = 1 while ('(x) concen-

trates around the {deterministic} value x = (1/4+1/2}"""—1/2, and it is possible

10 approximate a and p. accurately by asymptotic series. For small #n a numerical

calculation seems necessary.

6. Leslie matrices with constraints

Kim and Sykes {1978) studied an interesting class of Leslie matrices with time-
dependent vital rates. They argue that density or other autoregulation wiil con-
strain vital rates so that the NRR of the population is always unity. Both the
form of their constraint and their argutnent can be greatly generalized as follows.
Consider a collection of vital rate matrices A,, A,,...; the collection shares
reproductive value if there is a positive vector v and positive numbers A, Ay, ...
such that

vTAl:A'L:r, i=1,2,..., ||’_)|<(I“ (24)

where subscript T means trapspose. The collection shares stable structure if there
is a positive veetor u and positive numbers Ay, As,. .. such that

AM=AM i=1,2,..., fu] = . (25)
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Suppose now that there is a stationary stochastic process which choaoses the
X'sin (1) from a collection of matrices of type (24) or (25}, and that the stationary
rate assumptions of Sect. 2.1 hold. Tuke specifically the type (24) and observe
that an initial vector N, becomes

N.=4A <A N, (26)

where iy, i,, ... are integers which depend on the underlying stochastic process.
Now using (24)

v N =AA, L AT NG,

and so

1
a=Lim—In{N,|

t= §

1 .
=Lim~In{p"N,) (because|v|is bounded)

[0

I 1
=Lim= ¥ InA,,

=0 f m=]
—ElnA 27)

where the expectation is over the underlying stochastic process.

An identical result is obtained for matrices of type {25).

There are some remarkable aspects of (27). Under the stationary rate assump-
tions the average E(In A) is independent of serial autocorrelation in the vital rate
sequence. With respect to growth rate the product {26) behaves as if the matrices
commuted which they do not except in very special cases. Therefore the conditions
(24) or (25) result in an effectively one-dimensional growth rate sequence (the
relationship between one-period and tong-run growth rates in (27) is generally
true only for scalar processes) for an otherwise complex age-structured process.
For example the age-structure in (26) under condition (24) does not converge 1o
a degencrate (single vector) lmit. [t is easy to see this from Kim and Sykes's
work on 2 age-classes with time-dependent rates. Similarly in the case of (25),
although age-structure does converge to the degenerate limit u, the reproductive
values does not.

These etfects are brought about by the internal correlation structure of the
vital rates imposed by (24) or (25). [t is instructive to construct some examples.
First take case (24) for 3 age-classes and let

v =(L 1+ 1-5), >0, >0, (28)
50 that reproductive value is peaked at age class 2. Set

m,; m, my,

A=lp., 0 o} (29)
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choose positive numbers A,, and observe that (24) implies
my, = A~ (1+1)p,,
my, = (1+1)A,—{(1-s)p,,, {30}
my, = A (1-5).

For example pick r=5=02 in (28), A, =11, A2=12, A= 1.3, and p,, =05,
p2=0610ori=1,2 310 get

0.14 0.84 0.88
A=108 0 0
0 06 0
0.24 096 096
A,=108 0 0
0 06 0

034 1.08 1.04
A, =108 0 0
0 06 0

It is easily verified that AjA;# A:A| and in general that the above matrices do

pot commute. A litite more algebra would produce a set which did not share

survival rates. Yet the growth rate of a population whose vital rates were chosen

from theset {4, 4,, A, according 10 u SLALIONArY process (as in Sect. 2.1) would

I;ave a given by (27). In the present case if 7, = (long-run frequency of choosing
s

1
a=Y mlna,
el
A similar construction is easily made starting from (25).
. The general pattern of (24} is thar at every age fertility und survival rate are
inversely correlated in each time interval, On the other hand, (25) fixes survival
rates uniquely and results in negative correlations between fertility at afl ages in

¢ach time interval. In terms of possible regulatory mechanisms these differences
are substantial.

7. Summary and discussion

The resulis obtained in this paper concern the average growth rate and conver-
gence properties of age-structured populations with randomly varying vital rates.
The specific results obtained are as follows.

Result 1. Given random rates and demographic weak ergodicity it is known that
diflerent initial age-struciures will converge 10 the same time-dependent limit.
| show that the rate of this convergence is measured by the second {(Liapunov)
characteristic exponent for the population’s vital rate sequence (Sect. 3).
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Resulr 2. The sum of the characieristic exponents is shown ta be determined by
a relationship between the average growth rate a and the average value of the
determinant of the vital matrix (Sect. 3).

Result 3. The average growth rate a and all the characteristic exponents are
computed explicitly for semelparous populations (Sect. 4).

Result 4. The average growth rate a and the second characteristic exponent are
found explicitly for some 2 age-class models (Sect. 5).

Result 5. Alternative measures of convergence to the statistical steady state are
defined with respect to the statistical probability distribution of population and
vital rates, and some of their properties discussed (Sect. 3).

Result 6. Two classes of Leslie matrices are defined for which the long-run
average growth rate a is explicitly computable. These allow the construction of
nontrivial systems of random vital rates which display the effects of correlation
between vital rates on growth (Sect. 6).
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