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Abstract

1 provide a brief overview of mathematical models that have been
developed for partlcular plant physioleogical processes, wlth emphasls
on the difficulties involved in taking these upscale to deal with
whole plant, crop and forest growth analyses. As the issues addressed
by physiologlsts are often hlghly reductionist in nature, I point'out
the gap whlch‘has.developed between out detailed knowledge of certain
physlological processes and our general lgnorance of appropriate ways
to integrate these processes over whole plant or canopy scales. The
importance of accurate integration for crop and forest manageiment is
discussed. Finally, I review models for the spread of plant pathogens,
and Indicate how these may be modifled to take account of the spatial
nature of plant infecticn and the contlnuum of resistance types within
a natural population.

1. Introductlon

Mathematlcal models have been applied to a wlde variety of toplcs
in plant physiology {Thornley, 1976). The majority of these focus on
processes that are modeled lndependently such as photosynthesis, fluid
transport, resplration, transplration and stomatal response. The
general goal of these models {s to predict the effect of a variety of
environmental factors, lncluding radiaclon input, bumidity, wind, (:02
concentration and temperature, on the process rates. The models tend
to be more general and realistic than precise, though all are
empirical at some level. Modelers have an advantage in the wealth of
physiological data which has been collected on these processes, but at
the same time this ls cften too much of a good thing due to. a general
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1ack of accepted theory in the subject. Thus it is typically not clear
what in the plethora of detalled biochemical knowledge about speclfic
processes should pe included and what can be safely ignored or lwnped
in with othe: components of the process under consideration.

The uncertalnty of appropriate components to include in these
wmodels becomes even wmore critical when dealing with questlons on
longer time ot larger spatia) scales than those over which typlcal
physioclogical approaches operate. #Huch of the detailed physiological
models deal with processes on a cellular or organ {(such as leak)
spatial scale and the patural tiwe scales associated wlth these,
normally from seconds to daily. 1 have argued elsewhere (Gross, 1986)
that in dealing with plant processes, a natural breakdown of Ltime
scales wouid be physiologlical {within a day or soj, acclimatieon
{within genet lifespan), and evolutlonary (over many generatlons). The
appropriate time scale for many management appllcacions Ls the
accllmation one, and there has been much less work at this scale than
at the physicloglical one. My purpose here !5 in part to lndicate tho
varlety of modeling approaches which have been undertaken at the
physiological scale, and try to indicate a number of open areas
regarding how to approprlately go to acclimaclon scales from these, &
simllar problem regarding scaling is discussed in the last section,
namely how to make more realistic models for the spread of plant
diseases which take into account the spatial interactions whlch are

necessary for the disease to spread.

2. Physiologlcal Models

The aim of most physioclaogical models {5 to express the
equilibcium rate of certaim physlological processes as a function of
environmental inputs and the current physiological state of the plant.

A general form for this would be

"

EI(EI""'EK'PI""'pm‘RZ""‘R )

1 n
. (1}
R, = fnu-‘.l,...,sk,pl,...,Pm,nl,...,n“_l)
where Rl""'Rn represent equilibelium rates of various physlological
processes, El""‘Ek represent environmental factors, and Pl""'pm

represent varlous physlological states. The physiologlcal states could
be vlewed as independent of the Rl's but wmore reallstically are
controlled by the RL'S on a longer time scale than thls equlilibrium
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approach is meant to handle. For example, photosynthetic rate (s
affected by the chlorophyll concentration within a leaf, and this may
change over time scales of days due to changes in a varlety of
reaction rates over .the recent past. Thus the Rl's operate on the
above mentioned physiological time dcale, while the P,'s change an an
acclimation time scale.

The form of (1) really is derived as the equilibrfum solutlon of
A system of dlfferential equations whlch would track the
concentrations of blochemical components of the associated reactions.
It 1s somewhat rare to see a model actually appiied in this form
however, due to a general lack of knowledge about the dynamics of the
component reactions. In fact, the vast majority of models of the form
(1) are really derived as empirlcal fits to experimental data. In
reality of course, hoth the physlological state and the environmental
inputs are time-varying. A typical assumption is that these change on
a slow time scale relative to that of the reaction rates, so that the
equilibrium solution (1) just continuously tracks these changes. For a
variety of processes, including stomatal conductance and
photosynthetle rates, this assumption is not justifijed {Gross, 1986;
Kirschbaum et al., 1988). .

In addition to the dynamlc assumptlons inherent in {1). the
approach is also Jdnherently a local one, for It is assumed that the
reactions guiding the process have no spatial component. Thhat is, all
the variables of the model should be viewed as spatlal averages over
whatever scale the process is assumed to be operating. Thus
photosynthesis models at the leaf level based on biochemical reactions
typically assume unlform concentrations of the various blochemical
components of the process over the entire leaf. The nature of the
averaging which s implled by this is non-trivial due to the
nonlinearities in the models governing the process as a function of
the reactants. Another assumption of these models concerns the
simplifications of the blochemistry whlch are used in order to reduce
the number of model parameters to tractable levels and to allow them
to be estimated from avallable data. Many of the sub-reactlons which
determine the Rl's are extremely complicated, and though some aspects
of them may be known in detall, typically one rapidly reaches the
current level of ignorance when constructlng a model. Thus it becomes
necessary to lump component reactions.

Before leaving the general toplc of physlological modeling, it
should be emphasized that blophyslical approaches are the basis for
investigating the seffects of most environmental factors 1n these
models (Hobel, 1974). This Is true of water relations, In which the
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volume changes of cells is related to external osmotic pressure
through the Boyle-Van't Hoff relatlon and flux of water between
various plant parts ls governed by a transport equatlon based on the
chemical potential of water in the parts. Slmilarly, mass and heat
transfer between the plant and surrounding environment ls derived from
micrometeorologlcal approaches {Montleth, 1975},

1. Whole Plant Processes

Hlow are physiological processes scaled up to the whole plant?
Though there are a variety of approaches, none are entirely
satisfactory. One method Jg to use a macrodescriptor which 1is
essentially empirlcal: For example, a frequently used estimate of
whole plant respiration over a day is

R = kP + cW

where R ls respiration, P Is gross photosynthesls durfng the 1light
period, W is plant dry welght, and ¢ and k are constants. This was
originally obtalned from data on clover (McCree, 1970}, but has since
been applled In many simple growth models. Slmilar whole plant
descriptors have been used €or photosynthesls as a functlon of
incident radiation and temperature, for transpication as a Function of
these along with wind speed and humidity, and for a variaty of other
plant processes. These will sometimes have a mechanistic basls, but
more typlcally use a regression apptoach to determine the interactlons
of the varlety of Factors affecting any of the processes of concetn.
There are hosts of plant growth cucves derived along these
empirical Jines, viewed as describlng the time course of whole plant
or community growth {Hunt, 1982). The dlEficulty is that, without the
data to declide which curve is approprlate, one must proceed in an ad
hoc manner in choosing a curve. 1If the data are avallable, then one
really doesn't learn much new from the curve anyway, the typical use
being interpolation. It also lsn't clear how the growth curve should
be modified by considering a plant Iin somewhat different conditions
than those for the data from which the curve came. When large amounts
of data are avallable, for example on crop varleties that have been
planted in many different conditions for many years, these regression
approaches work extremely well In predicting harvests., In fact, they
are much better predictors than very complex mechanistic models such
as those mentioned below. Thils is just a speclal case of the rule
that, conditlonal on the avallabillty of adequate data and ignorance
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of the exact mechanism of a process, statistical techniques provide
far more accurate process prediction within the range of conditions
included in the data base than mechanistic approaches with poorly
understood functional forms or parameter vailues.

Alternative to descriptive approaches, one can bulld uvp to the
whole plant level wusing brute force, meaning that one simply
integrates the process of concern over the entire plant surface. For
example, to estimate whole plant photosynthetic rate from a model for
the rate of individual leaves

P = F‘El""'Ek)
where P is photosynthetic rate per unit leaf area and the EL'S are
environmental factors, one merely sums

Peot = | FIE (XD, .o E {x)) Alx) dx 12)

where ptot is the photosynthetlc rate for the whole plant, Eiixl is
the value of environmental facror i at positlon x, and A{x) gives the
amount of leaf area at positlon x. Here x will in general be in three
space, and it may be very difflcult to predict the spatial éariatlon
©of environmental factors throughout the plant, In fact there are very
sophisticated models to describe the spatial patterns of radlation
throughout plant canoples, based on the architecture of the canopy,
transmittance and reflectance of the leaves, quantity of branches,
ete.(Ross, 1981).

Typically (2) is solved ia a discrete manner, by breaking a
canopy into layers and simply consldering the Ffraction of leaf area in
each layer subject to direct beam versus diffuse radiation. Although
tests have been done of the radlation penetration portions of these
(Baldocchl et al., 1985), the photosynthetlc rate predicted from {2}
hasn't been adequately tested yet. This is due to the difficulty of
measuring whole canopy photosynthesls in field conditions. Note that
(2) is really a simpllflcatlon because the Ellxl‘s are tlme-dependent
and the functional Eorm of F will change with position in canopy.

Although approaches similar to (2} can be carrled out for many
physlological components of plant growth, tha vast amount of varlation
of both environmental factors and physlologleal state throughout a
plant canopy (I'm speaking here of commercially important crop and
forest plants) Ilmits the technique. One alternative Is to use a
highly simplifled form for the varlation in these factors, and derive
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from (2} a general reiationship which might indicate how changes In
baslc parameters affect the process. For example in the photosynthetle
case, the Monsi-Saekl theory says that light extinction in a canopy
may be approximated by an exponential decay wlth depth (measured in
units of leaf area per unlt ground area, the leaf area index L} from
the top of the canopy. If F{I) glves photosynthetic rate at irradiance
I, then (2] hecomes
Ly
4 = F{K exp({-cL)) dL (3)

where ¢ is an extinction coefficient, LT is the total leaf area Index
of the canopy and X is a species-specific constant which depends on
the transmisslon of a leaf as wall as the lrradlance ac the top of the
canopy (sce France and Thornley, 1984, chap. 7, for more detalls). One
advéntage of this method is that it ailows one to derive at least
gualltative concluslons as to how changes 1in basic plant
characteristlcs wlll affect the process. It provides a more
mechanistlcally-based descriptor of whole plant processes than a
purely empirical approach,

4. Growth arl vield Models

Just as there are several methods to move upscale Erom cellular
level phenomena to the whole plant,. there are a variety of techniques
to model growth at the plant, canopy and communlty level. Descriptive
approaches were already wentloned above, but it should bhe pointed out
that sowe of these seem to be fairly general. For example there is
strong evidence from both crop and Eorest data that annual biomass
production for a crop or stand is given by

B = aQ {4)

where Q Is the annual Interception of photosynthetlcally active
radlation by the crop [McHurktrie, 1985}, The constant of
proportionallty a will of course vary with specles, nutrlent and water
condltions at the site, and probably stand history as well. However,
estlmates ol the constants ¢ and K in {3} are available for a wide
variety of Cforests ({(Jarvis and Leverenz, 1983} from which it s
possible to estimate Q. If a time series of data are available to
estimate how a varies with time, lt is posslble to iterate (4} on a
tlme scale shorter than that aver which a changes significantly to




estimate the time course of B, and this has been done for a number of
crops [Charles-Edwards, 1982). This is an illustration of a Ltop-down
approach to growth modeling, in which the details of the physiology
are lumped into a single parameter {here a). One could proceed from
here to derive a ph#blaloglcally hased model for how a depends on
environmental factors, a method which ts utilized In some way in many
growth models (lLandsberg and McMurtile, 198%5).

Alternative to approaches based on (4), compartment models for
whole plant growth are quite common (Thornley, 1976; France and
Thotnley, 19B4). These models break up a plant or crop Iinto
compartments such as shoot and root, tracking perhaps several
components of each, such as structural and storage dry weight and
carbon and nitrogen concentratlon. They may be coupled to models for
photosynthesis, soll nutrient uptake, and other possible inputs. Then
differentlal equations are written to describe changes 1In each
compartment, with respiratory losses typlcally belng taken as
proportional to the dry welght in a compartment.

An area of controversy in this approach concerns the nature of
patrtitloning of new substrates (usually just taken to be carbon and
nitrogen) among the varlous compartments. One approach is to simply
assume that transport of these substrates follows a Flck's law of
diffusion, so for example

N

BiC, ~ €}

J_ = (5}

e

where Jc is the flux of carbon from shoot to root, c. and ct are the
carbon concentratlons 1in the shoot and root respectively, B is a
scaling factor, and L is a resistance Lo movement of carbon (France
and Thornley, 1984). An alternative to this is to prescribe the
partitioning of nutrients In a “goal-seeking" manner such that either
a fixed carbon-to-nltrogen ratio is set and the dynamic behavior of
the model is forced to seek thls ratlo (Reynolds and Thornley, 1982}
or else thls ratlc is set in a way that depends on the root-to-shoot
ratlo {(Johnson, 1985). Stlll another approach to partitloning is ko
assume that there are organizing princlples of evolutionary origin
which specify the partltioning of nutrients so as to maximize some
measure of fltness. Thls is an outgrowth of 1life history theory,
utllizes optimal control techniques, and has been applied malnly to
plants broken Into roots, shoots and reproductive compartments (see
Roughgarden, 1986, for a review),

L

Yet another apptoach to growth modellng ir a -systems one, in
which a large colleatlon of physinloglically detailed process models
are coupled. These typically have submodels for light interception and
photosyntheslis, toot activity and nutrient uptake, partitioning of
substrates, transpiration, growth and resplration, leaf area
expansion, initiation and development of plant argans, and senascence,
though not all these may be included im each model. The models then
iterate, typically aon a daily or hourly time step, keeping track of
levels cf  nutrlents and dry wirlghts of various structural
compartments. Thls amounts to solving non-autonomous difference
equations and thus is essentially limlted to belng simulated on a
computer. These models have been constructed for a wide varlety of
crops (Barrett and Peart, 198); (oomis et al.,197%9; Reynolds and
Acock, 198%), lnvolve large numbers of parameters that are sometimes
difficult ro estimate, and are mainly used as research tools to point
out which subprocesses are not well understood. As wilth many large
systems models, they are extremely difficult to validate, due to the
ability to tune the large number of parameters to the avallable data.
It is only Iin rare circumstances that data sets Independent Erom those
used to estimate the parameters are avallable for model validation.
The models are rarely spatial, merely assuming the variables are
uniform over the scale of the plot under consideration. In thls sense,
the models are limited to monocultures of fairly even age for which
spatial heterogeneity In stand structure s not a significant factor
for stand growth.

One method to take account of spatlal factors is to use
individual-based models. These track all individuals in a stand, using
some type of growth model for each species in the stand, and take into
account the competitive interactions between neighbors through shading
and root competitlion. They have bheen appllied extensively to
investigate patterns of succession in a wide varlety of Eforests
{shugart, 1984) by considering species composition in small plots in a
stand. Each plot ls typlcally only slightly larger in acrea than the
crown area of a slngle domlnant adult tree. Gaps are created when the
dominant dirs, and the models track the translents of composition In
the plot ovar a time scale of centuries. From Monte-Carlo runs Lt is
possible to make statistical predictions about the effects of
alternative disturbance regimes on forest composition. There is no
inherent reason aside from computet limitations whby thls cannot be
applied on larger spatlal plots.

These models typically use very simple individual growth models,

though more complicated ones have been applied in the case of species




for whlch a good physiological data base ls available (Makela and
Hari, 1986). Dpesplte their general 1lack of physiological detakl
however, these models produce qulte realistic predictions for forest
dynamics that have been validated in a few cases. Perhaps thelr
weakest component is the handling 6} competitive effects, for which
thete 1is not much general agreement. Recent models of plant
populations which take into account explicit nelghborhood effects on
survivorship, mortality and fecundity may provide some basic theory
appropriate in this regard (see Pacala, 1988, for a review). Despite
thelr lack of physlological detail and the fact that these models
often include so many parameters that model tuning is a real problem,
the approach offers great hope for investigating how altering
physiclogical characterlstics of the component specles will affect
communicy-tevel processes [Huston and Smith, 1987).

With regard to resource management, 1t should be clear from the
above that we are still very lgnorant about how to scale up from the
detailed knowledge avallable on cellular and organ levels to even a
whale plant, let alone to stand and reglonal scales. But when s it
really necessary to do this? Many of the models that are current iy
used by agronomlsts and foresters to predict harvests, and schedule
fertilization, lrrigatlon and pesticlde application are empirical ln
form. These modeld work well as long as the data base upon yhlch they
are based is adequate. For predictions outside the range of'aVailable
data however, mechanistically-based models are necessary. One example,
discussed below, concerns the long term effects of atmospheric CO2
increases. For management at the level of individual farmers, an
approach which couples a mechanlstic model with expert systems methods
may well be the best combination of empiricism (from the intuitlion and
experience of the expert oplnions solicited) with mechanism ( Lemnon,
1986}. A  wajor limltation in all these approaches is the
unpredictability of the enviranmental inputs. Stochastic simulators of
variables such as rainfall can be included in most approaches, leading
to estimates of the variance or even the full probability distribution
of yield. Management decisions will then depend upon the manager's
assessment of how much risk is acceptable,

It has been argued that in order to make reasonably accurate
predictions of the long-term effects of atmospheric CO2 increases on
world productivity, it is necessary to construct systems models which
are capable of extrapolative prediction on an ecosystem level, based

on mechanistic models for physiological responses to CO2 {Reynolds and
Acock, 1985). While I am sympathetic with the reductlonlst sentiment
which underlles this, I am also quite pesstmlstic that detalled
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physiological models, are elther posslble to apply or to validate at
reglonal or world scales. I belleve that the best that one could hope
for from such models 1is that they would suggest relatlvely simple
empirical rdels, that though they lack the detalls of the mechaniscle
approach, would still be fairly accurate predictors. This uses a
complicated model to determine what parameters rcally matter, and
suggest macrodescriptors that would be fairly robust. On these scales,
robust might be defined as within an order of magnitude of the actual.

On world scales, I believe jt is much more reasconable to pursue
top-down models. These may still include physiologically reasonable
formulatjons, as Landsberg and McMurtrie (1985) argue for in the case
of forest management. AS an example of how this might be formulated,
I'1] describe an (admittedly fairly obvious) approach to Ianvestlgating
world productivity changes due to COZ' My objective Is to point out
how one might integrate models on differcnt scales, In essence by
decoupling them.

Suppose that the world is broken up Into several diffcrent
vegetation types, 1 = 1,..,n, such as declduous forest, grasslands of
different types, etc. Let

A;fu) = lapd area of vegetation type | under world conditions u

Pi(ul = productivity (e.g. blomass production per unit time) per
unit area of vegetation type i under world conditions u

uft) - a time-dependent vectér of world conditions (l.e. the

distribution of temperature, preclpitation, co,, etc.

over the earth's surface} at time t.

Then u(t} would be generated by a cllimate model, and iE there were
several such models then their outputs would each be used to glve some
estimate of the potential varfance in praductivity. Then total
productivity in year t is

P(t) = £ A (u(t)) Py lult)) (6)
i

This allows a decoupling of ablotlc effects from biotic ones since the
Aiiu] might be estimated from Holdrldge-type diagrams obtained from a
climate model. In this simple cas=, direct effects of CO2 on plants
are viewed as not being lmportant in determinlng future world
distributions of vegetation types, compared to the effects of climate

change.




models on smaller scales.
some confidence interval, or range,
scales from confidence intervals on parameters in the
models. From a public policy perspective,

intervals from procedures such as the above would provide a ratlonal

To estimate Pllul, consider there to be many species types withln

the vegetation type 1. Then

Py lult)) = Pitug) + 6P, (uit}) (7)

where Piluol is the value of productivity in vegetatlon type 1 at

present and GPi!u(tlI is its change from the present to time t. The
models may well be much more accurate predictors of changes than of
absolute values of productivity and, furthermore, whatever data 1s

collected to validate the models will only be at one or a few co
levels. Then letting 2

it

tlj(u) the fraction of ground area In vegetation type |

occupied by spacies § under world condltions u

productivity per unit area of specles type § In
vegetation type i under world conditions u

Bijlul

with Gnij(ul and bfij(u) tepresenting changes In these when condltions
change from present tuo) to u, we have

6P, (u) = ?(.aalj:u) 51;|u1 + 8E150ul By tug)
+ Bfij(u) ﬁaij(ui) t {(8)

Here the sum is over all species types in the vegetation type (i
weeds, plines, grasses, etc.)

In the above, the F

.

i3 would presumably come from community-level
models taking Inte account relatlive competitive abllity changes under
elevated Coz, differential abilities for species to adapt to elevated

coz, etc. The BU could come from a relatively simple empirical model,

possibly derlved from complicated physioloegically-based models. The

above procedure allows one to set up a varlety of "nul) models” since

it decouples the community level effects from the direct effecks on

physiology. For example, one could Investigate the assumption that

relative species compositions within vegetation types will not change

und =
er elevated Coz by setting Gfij = 0. This approach also allows one

to estimate how sensitive the lazger scale results are to changes in
In thls way it may be useful in providing
for possible effects an world
lower-level
even fairly rough confldence
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basis for analyzlng the long-term effects of alternatlve governmental

responses.

5. Spatial Aspects of Plant Epidemlology

The purpose of thls section s to polnt out some relatively
unexplored problems in epldemiology that arise from considerations of
spatial scale. The vast majorlty of mathematical work In epldemlology
concerns the spread of dlsease in homogeneously mixing populations.
This assunptlon ls reasonable for manhy animal populations Lln which the
spread of the disease ls caused by contact between animals that move
about. Even so, it ls not realistic in cases for which there i5 elther
spatlal or some other structure in the population whlich causes there
to be hligher contact rates within certain groups than between these
groups. There have been a varlety of models developed to analyze the
effects of such sttucture 1n the host population on dilsease spread
{Hethcote, 1978; Post et al., 19B31: May and Anderson, 1984). 1In
contrast to the sltuatlon In animal epldemlelogy, there has been
relatively little theoretical development in the spatlal aspects of
plant epldemiology.

Plant epldemiclogy offers two Important differences Erom the
epldemiology of anlmal dlseases, at least as far as modeling ls
concerned. Flirst, since plants are fixed Ln space for much of thelr
lifespans {and in essence all of it for crops), dlsease spread does
not occur due to contacts between individuals but rather through the
dispersal of the pathogen 1ltself. There is thus an expliclt spatial
aspect In plant eplidemics that has long been noted, but genevally
ignored from a modeling perspective (Gilligan, 1985}. Secondly, plants
generally have a contlnuum of resistance levels to any partlculatr
pathogen. The effect of lnfection by a pathogen on a glven plant may
range from severe damage or death to no damage at all. In many crop
plants, lnfection leads to reduced growth and yield, but rarely to
premature death of the host. This implies that the usual mathematlcal
structure of epidemiological models - classes of infected,
susceptible, imoune and removed individueals - j§s 1inapproprlate for
most plant sltuatlons. The situatlon is simllar to the case of
macroparasitic infectlons in humans [Andarson and May, 1982}.

Due to the above, even In moncocultures of genetically unlform
crop plants, it is lnapproprlate to assume that disease is spread
either uniformly or according to a Poisson distrlbution over the host
populatlon. Despite thils, much of the wark on the temparal spread of a

disease makes thls assumption (Rouse;, 1985%; Hau et al., 1985). What
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work has been done on the spatial aspects of disease spread tends to
be elither highly empirical {i.e. statistlcal models for spore
dispersal) or based on physical transport models with very 1little
emphasis on blologlcal effects {McCartney and Fitkt, 1985). With few
exceptions (i.e. Kampmeljer and Zadoks, 1977} there has been little
work which aktempts to simulate the dispersal of a ctop dlsease and
couple Lt with the growth of the crop. At the same time, essentlally
no attempts have been mada to analyze the stochastlce mnature of the
spatial spread of crop dlsease {(Gilligan, 198%).

One approach to this ls to utilize the indivldual-based growth
models mentloned above. A somewhat preliminary investigation of this
method was undertaken by a former student of mine {Bullock, 1986). The
objective here was to lnvestigate the effects of alternatlve spatial
patterns of mixtures of resistant and non-tesistant plants on the
spread of a fungal pathogen. The method used a very simple individual
growth model, logistic In form, with no nelghborhoed competition or
physiolegical effects of environment. Pathogen was Introduced
according to a random process, with local growth dependent upon leaf
area avallable, and dispersal occucing once pathogen denslty on a host
reached a certaln fraction of the host's carrying capacity. Dispersai
was determined by an exponeﬁilal random variable, with the capability
to blas the spréﬁd due to prevaillng winds. Host growtﬁ rate was
either reduced as a Ffunctlon of pathogen load (for non-resistant
plants) or independent of pathogen density (resistant plants). Several
alternate spatlal patterns were consldered including uniform,
bordered, striped and checkerboard. Criterla investigated were mean
total biomass at end of season as well as probability that blomass at
season end was below some threshold (presumably that at which profic
s zero). Results lndicated that generally the more divided the fleld,
the smaller the amount of damage there was. Also, it was determined
that borderlng a fleld with resistant plants, as 1Is sometimes
suggested to farmers, had little effect on slowing an epidemic unless
pathogen dispersal distances were very small.

It is possible to formulate an analytic approximation to the
above sltuatlon, If one 1s willing to make certain assumptions,
Consider the situatlon In one dimension only, and suppase the pathagen
spreads according to a diffusion process with local growth dependent
upon the local densitles of the two host types. Alsc suppose there is
no nelghborhood competition in the host, so that plant growth is given
by an ordinary differential equation. Then a general Fform of the
problem fs
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with gllx,O) = kilxl. i=1,2, r{x,0) = rolx), 0 s ki < ¢, and

J lkl + kzl dx = M.

In the above, the gilx,tl's are the densitles of the two plant
types at locatlon x at time t, rix,t) is the pathogen density there, €
is the local growth rate of the pathogen, the hl's are the growth
rates of the plants, the kl‘s are the lnitial planting densitlies of
the two plant types which are bounded by € and total Inltial planting
Is M, and rolx) Is the inlctial pathogen distributlon. In addition one
could attach zero boundary conditions for the pathogen density on the
plot of length L say. The above becomes a control problem Lf the
object is to choose the initial densitles kl s0 as to maxlmize the
total blomass at end of season T

L

¥ = (qllx,T} + qzlx,T)l dx. (10}

0
In even the non-control case, thls problem is extremely dlfflcult to
analyze. In part motlvated by this model, R. S. Cantrell and C. Cosner
of the Unlversity of Mlami have lavestigated a steady-state version of
{10} Lo the simplifled case of fixed "good" and "bad" reglons for the
growth and dispersal of a pathogen. In the control problem, even
proving that bang-bang Is optimal is wvery hard. One can pretty much
intult what the answers should be in some speclal cases depending upon
the dispersal rate of the pathogen, the size of the plot, and relative
growth rates of the two plant types.

The above is partly meant to show how rapidly mathematical models
can become lnttactable, but alse that simpliflcations of the model can
lead to intriguing mathematical problems. There have been a humber of
other models for dlsease spread that essentially produce travelling
waves. One 1s a simulation approach slmilar to the individual model
described above {Minogue and Fry, 198)) and another considers the
diffusion ~f pathogen from a focus fvan den Bosch et al., 1988).
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Nelther of these consider the elfects of the pathogen on the plant

however.

f. Conclusions

In sum, I have arqued that a physiological perspective [s often
useful, even when the scales of the problem of concein are
conslderably longer temporally and larger spatially than would
normally be addressed by consideration of physiology., My key point
might be succinctly stated as "A little reductionism ls good for the
soul, too much reductlonism is bad for the heart”. Thus, we galn a
mechanistic understanding of the functioning of complex natural
systems by taking a physiological perspective. At the same time, there
ate clear limits to the utility of a reductionlst approach, evident
from the large number of poorly understood parameters and functional
forms which appear In large systems models. | argue  for  an
intermediate approach which uses physiologically-based models to
indlcate appropriate macrodescriptors for larqe-scale phenomena. When
thls is coupled with an analysls of the system's structure accordling
to the rates of the processes apptoprlate to the gquestlons belng
addressed (O'Nelll et al., 1986}, we will have avallable a truely
hlerarchical approach to natural systems.
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ECONOMICS. MATIIEMATICAL MODELS AND ENVIRONMENTAL POLICY
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Abstract

This paper briefly reviews several modcls of externality whilch provide
the theoreleal basis of environmental cconomies. An exlernality may be
dellned as a situaiion where the output or action of a Anw or Individunl affecta
the production possibilities or wellare of another Nem or Individual who hins no
direct control over the Inttial level of the output or activity. Pollution,
resulttng fran the disposal of resulual wasles, 18 a classic exiuple of
cxternality.,

Three static models examine the optlmalily conditions for (1] a two-
person externality, (2) a many-person externality (where the externallty takes
the forin of a "pure public bad*}, and (3) a two-plant polluter. In the case of a
two-person externality negotiatian Letween Uie aflected parctles may lead to
the optimal level for the externalily regardiess of the initial asslgnment of
property rights. In the many- person case, enviconmental policies, such as
direct coriirols or ecanomic tncentlvis, may be required to achleve an optimal
allocation of resources. Economic incenllves may take the form of per unit
taxes on emlssions or Lransierable discharge rights. in the third model it 1s
shown how a tax can induce optimal {least cost) treatment from a two-plant
I’OHU“?;:WD dynamic models examlne the cases where {1) a pollution stock
may accumulale or degrade according to rates of discharge and biodegradation
and {2} a toxic residual must be transported from sites where it Is gencrated
to sltes where It may be safely stored. The latter problem poses covirenmental
risks lrom spills in transit or leaknge at storage siies.

While radioactive and toxie wasles are likely to contnue to be regulated
by dircct controls same of the more "bt‘:nign" reslduals are suitable for
regulation by economics Incentives, Elluent taxes in France and the
Netherlands. translerable discharge permits on the Fox River In Wisconsin,
transferable stave permits 1 Telluride. Colorado and the EPA's cmisslon-offset
policy acre Indicatlons that economic Incentlves will play a greater role In the
future management of environmental quality.
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