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The following methods and models were developped by
P. Racsko, M. Semenov, L. Szeidl /Budapest./

Introduction

Agricultural production in most countries heavily depends
on climatic conditions. Even in those countries with relati-
vely well developped agriculture as Hungary, extremely un-
favourable but not improbable weather conditicns may cause
VEry serious damages. In Hungary due to the long dry period
in July and Auqust, 1990 the total yield of maize is 30% less
then expected.

However, farmers usually apply various management practices
/e.g. application of nitrogen fertilizer, irrigation, etc./
in order to reduse the danage,

Those practices menticned above, of course. are expensive
and reduce the farmer’s profit. We thought it was necessary to
develop a not too complex, easy to use decision sopport tool
to help to analyze the data available and to eveluate the
risk of the decisicns.

The decision support mechanism consists of two subsystems -
2 stochastic weather summulation modell and a crop growth
modell, both installed on a personal computer.

Stochastic
weather simulation
modell
/swsM/

.
crop growth \\
simulation

modell ,//
IgroR)

——

The two subsystems interact dyvnamically in the following
way:

Suppose the parameters of both SWSM and CROP models are
identified at a definite geoagraphical location.

On day d we are given the identified models and two sets
for empirical data, one of them is the time series of weather
and other environmental parameters measured from the sowing
date of the investigated crop plantation, while the other is
the time series of the crop growth parameters, €.g9. biomass
of the roots, leaves, as a multidimensiocnal stcchastic process,
represented by the multidimensional time series of weather
parameters, e.g. dally precipitation, daily avarage temperature,
etc. The crop growth is considered as a deterministic process,
which depends on the stochastic weather process.

As the weather process is known until day d, the time series
of the parameters, describing the crop growth process can be
camputed,

Thus, the variability of the crop production is determined
by the stochastic weather process,

Suppose we estimate the parameters A=a{ay...ap) of the
crop production. /e.g. final yield/ on day d on the basis of
all empirical information we have.

If the estimation of A is repeated on day d", where d" >4,
more exact statistical values can be expected.

Now how to improve dynamically our estimations?

Let d, and d, denote the beginning and the end of the vege-
tational period of a plant.

Let us generate at do a sufficiently great number of possible
weather processes with the SWSM, and use the generated weather
prcesses as input for CROP, and collect the simulated data.

Now we are given a set of sample data for each parameter of our



interest, and we can make the statistical analysis required
fcr the decision.

If the model is gcod enough, the simulaticn results are
statistically identical to the empirical data set, collected
for several years,

Now repeat the simulation on day d', do <d'-<dT. As far as
the weather process between d, and a* is known, obvicusly the
variability of the generated weather trajectories between a®
and dy is less, then between do and dp. As a consequence, the
estimation of A is improved.

What happens if the estimated final yield substantially
differs from the value, expected at d,?

The CROP model has control parameters, corresponding to agro-
technolegical management practices.

Having generated the set of weather prcesses one can analvze
how the management practices influence the final outcome and
find - if possible - those agrotechnological operaticns which
drive back the estimated outcome to the favourable area.

The above decision making scheme requires a weather simulation
and a crop growth simulation model.

Two moderately complex but easy to use models are described

below.
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1. The weather simulation model

Weather simulation models have been developed from the
1950 -~ ies for various purposes. Good surveys are given in
/Richardson, 1981/, Most models ara built on the followlng
simple concepts. The weather process is considered as a
Markovian chain with two states - wet days with measurable
precipitation and dry days with no or insignificant
precipitation. The transition probabillities are derived from
the local statistical data. Then, other climatic parameters,
as average temperature, quantity of the precipitation, solar
radiation, etc. analyzed and conditional probability
distributions are constructed, supposing two Markovian
states of the system /Richardson, 1981/. Due to the annual
periodicity of the weather the transition probabilities and
the distributions depend on the period of the year.

This modelling philosophy was used for two sets of
meteorological data in Hungary - Kompolt: 1951 - 1985, and
Iregszemcse: 1951 - 1985 ~ with the purpose of constructing
"weather generators", The transition probabillities of the
Markovian chain, and the probability distributions of daily
average temverature,solar radiation, and precipitation were
determined for two-week preicds. Then a Fourier seriles was
fitted to the parameter value in order to smooth the data.
As 1t occurred, the total or average type data /average
precipitation, average amount of wet and dry days during a
given period, average dally temverature and total radiation/
derived from the model very well fit the observed data set.

However, some parameters particularly important for the
plant growth and development can not be closely approximated
from this model scheme in principle. One of those character-
istics 1s the length of dry and wet series, i.e. series of
days with no precipitation and days with significant pre-
cipitation without dry periods between. The probability of
occurrence of long dry or wet series exponentially decreases
with the length of serles in Markovian chain /[Feller, 1370/.



The observed relative frequency of long dry series is
significantly higher than probability, derived from the
exponential law /see Fig,1/. The probability of occurrence
of a dry series longer the 1% days during a year is
approximately 0.03 from the model’s distribution, while

the observed relative frequency of those series is greater
the 0.5! This fact does not contradict the goodness of the
average or total type output parameters of the model. For
farming however, long dry series - drought - mean substantial
loss in the production. Even if the probability of drought
is not very high, nevertheless the consequences are signifi-
cant, particularly in Hungarian casa-study.

Thus, for modelling weather sequences we developed a
new approach. The basis of our model is the sequence of dry
and wet series of days, and other weather parameters like
precipitation and temperature are modelled as dependent on
the wet or dry series. The main problem we had to solve is
to select the type and estimates the parameters of distri-
butions of weather parameters as they depend on the length
and type of the series and position within the series, It
is cbvious that as the length of the series increases the
sample sizes decrease. That makes almost impossible to get
a reliable approximation of the distribution parametars.
Fortunately, after a careful analysls we came to the
conclusion, that the type and parameters of the distribution
of the weather factors statigtically do not depend on the
length of series. We have also concluded that the distri-
bution do not depend on the position of the day within the
series, except the first day when one type of series is
teplaced by another. Thus 1t was satisfying to find the
distributions for the first day and the following days of
the series separately.

1.1. Statistical analvsis of the weather processes in
Hungarv, serial approach.

The four dimensional weather process fdaily average
temperature, solar hours, precipitation, relative humidity
of the atmosphere/ measured between 1951 and 1985 was first
reduced to a three-~dimensional subprocess because of the
very high negative correlation between the relative humidity
and temperature. It has occurred that temperature can
"explain® more the 90% of the stochasticity of relative
humidity. It was decided to keep daily average temperature
as "independent” variable and ignore relative humidity in
the further analysis, Thus we consider the weather process
as three dimensional.

Wet series were defined as maximum continuous series
of days with precipitation not less than 0.1 mm, which is
the minimal registered per day precipitation,

It is obvious that the observed data set is too small
to make a good direct estimation of the probabilities of
fare events. For day 4 there was selected a characteristic
interval (d-R,d+R], where R > O integer, and the following
hypothesis accepted. In the interval [d-R,d+R] the proba-
bility distributions of the length of dry and wet series
do not change. R must be as large as possible to provide
as many statistical data as possible, but it must not be
too large, because the hypotheses fails for large R-s.

In our case R = 14 days was selected. Then, statistics
were computed for the interval [d-R,d+R] and identified
with the statistics for day 4.

Let N¥(d) denote the total quantity of wet series,
assoclated with day d, i.e. the quantlty of wet series in
the interval [d-R,d+R] from 195t to 1985. Let Nz(d) denote



the quantity of wet series of length i, associated with day
d. Then, pY(d) = Nr(a)/Nw(d) is the probability of occurrence
of a wet series of length 1. Similar notation is used for

dry series: Nd(d), Nf(d), pf(d). Figure 2, illustrates the
graphs of p:(d) and pf(d) functions of i for selected

values of d at the meteorological station Kompolt. The
analysis of empirical distributions at the related metecrolo-
gical station and all d values resulted in the following
consequences.

The probability distribution of the length of wet
series can be well approximated with geometric distribution.
Both x’- and Kolmogoroff-Smirnoff tests show a high signifi-
cance level of the hypothesis about the geometric distribu-
tion with the parameter obtained by the maximum likelihood
method.

The probability distribution of the length of dry
series is totally different. It may be approximated by mixing
two geometric distributions, with probability 1 -p for the
short series and probability p for long series /longer than
8 days/.

The parameters of geometric distribution A{d) of wet
series and dry series are estimated. The parameter A(d) was
approximated by a finite Fourier series, The Fourier approxi-
mation is a general technique when parameters change periodi-
cally, which is the case in weather processes,

For day d the parameter ;(d) of the geometric distribu-
tion is given by the formula:

Aa) = ag/2 + I}.1(a,cos(1ud) + b sin(ivd))
where w = 27/T, T = 365 and a,, and bi are the Fourier
coefficients of the function A(d).

The probability p(d) of occurrence of long dry series
on day d again were approximated by a finite Fourier series
g(d). Observed values and Fourter f£it see on Fig.3,

The daily precipitation quantity.

The most difficult task in our weather analysis was the
modelling of the pPreclpitation quantity, as it is necessary
to start with developing appropriate models for series of
different length, and for different days of series with the
same length,

Let us denote the length of a series by L and the index
of the day within the series 1. Figures 4 a,b give the idea
of starting with an exponential distribution for a given
pair of (L,1). For short series (L < 4) we obtained similar
pictures for all d’s. Significant difference between
exponential distribution and observed data was obtained in
the neighbourhood of O, /the observed frequency of small
precipitation quantities is significantly higher than it is
predicted from the exponential distribution/ and at the tail
of the distribution, where the data are obviously not distri-
buted exponentially. A possible model of precipitation
guantity might be the mixture of three distributions - one
for little, one for medium and one for large precipitation,

At this point we met the following theoretical problem,
connected not only with the modelling of precipitation, but
also with other parameters, There must be made separate
analysis and estimation for every 3-tuple (L,1,d). Obviously,
the number of observations decreases very fast with the
growth of L, it is impossible to make significant estimations
for long series because of the lack of data. Thus it was
declded to transfer the results of analysis of short series
for long ones. The philosophy behind that was, that the
weather parameters are more or less stable within a wet or
dry series, they change significantly only at the end of
Series. The data do not contradict to our hypothesis.

The quantity of precipitation was analyzed for ore,
two, and three-day series. The precipitation was clustered
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into three groups ~ small (< 0.4 mm), medium, (0.4 - 20 mm)
and large (> 20 mm) quantity per day. The probability of
each group was estimated from the relative frequencies for
each pair (L,1). The analysis of probabilities showed that
the dependence on L and 1 is very weak, they depend only

on d. Thus, the probability of three groups were estimated
independently of L and 1, then a Fourler series fitting

was made to smooth the data, Fig.5 illustrates the Fourier
curves.

The distribution of the small quantity group is very
close to the uniform, independently of L and 1.

Large precipitation are very rare in Hungary, in fact
there is not enough data to find an appropriate distribution.
Large precipitation was modelled by 1ts average value,

The precipitation of the medium group is approximated
by exponential distribution. The approximation was statis-
tically tested and accepted for one, two, and three-day
series. The parameter of exponential distribution rMd) was
estimated by the average precipitation of this group
A(id) = T/prm(d). Prm{d) weakly depends on L and 1, thus
this dependence was ignored.

After having finished the modelling of daily precipi-
tation the serial autocorrelation of the precipitation time
series was analyzed. As it occurred, there is only a very
wear - ignorahle - autocorrelation in the precipitation time
series,

Daily average temperature.

The analysis of daily average temperature was carried
out for dry and wet series separately. Fig.6 a,b show
frequency histograms of the datly average temperature for
various d. A normal distribution ¥(M,g) can be well fittsd
to the data. It is obious, that for wet and dry series

10
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M:(d,L,l) and ¢ = c:(d,L,l), where x = w for wet and

d for dry series, index t stand for the temperature.
As it was predicted, both daily average temperatures
and the stochastic behavior differ significantly during
wet and dry series. In summer during the wet series the
temperature decreases while during dry series increases
with the increase of 1. The daily average temperature
neither for wet, nor for dry series depends on the

length of series L, only on the position 1 in the serjes.
Besides that, it was observed that average temperatures for
1 > 1 are indentical in both types of series, Consequently

"
]

u’é(d,l), if 1= 1

M’t‘(d,L,lj = .
M(d,2), if 1> 1

Same holds for the variances,

The significant simplification described above made
possible to compute the parameters of the distribution.
Then,as usual, data were smoothed by a Fourler fitting.
IFig.7}. It is worth to mention that consegquent days are
highly correlated within the serles /correlation coefficient
0.8/.

Solar hours.

As the radiation measured in solar hours can be directly
transformed into physical units, the statistical analysis
was carried out for the original data set,

We obtained the same basic results for solar hours
analysis, as for the average temperature - weak dependence
on L and 1. The difference from the temperature analysis
Gccurs in thewinter period for wet series, when O has a very
high probability, and ruins normality.

Thus, solar hours were modelled using a mixed distribu-
tion - the O-s5 were separated from other data with a given

it
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probability, while the remaining data described by a normal
distribution with accumulation of negative values in the
zero.

The autocorrelation found in the time series was very
low, having its maximum for consequent days about 0.25.

Analysis of common distribution ©f precipitation, daily

average temperature and solar hours.

Weather process has to be treated as multidimensional
stochastic process rather then a set of parallel independent
processes. Thus further analysis was carried out to describe
the interdependence of the three analyzed processes,

First, the two dimensional distribution of temperature
and solar hours was examined. No surprise, the higher the
temperature, the more the quantity of solar hours, and this
ration is very well expressed for wet series.

The two dimensional distribution of precipitation and
solar hours shows negative correlation, however not explicit.

The analysis of temperature vs. precipitation showed
the independence of the two variables. .

No doubt, the best weather model would be a three

dimensional stochastic process, and not a 3-tuple of independent

variables. Unfortunately, the relatively short time series and

the non-standard type of 3-dimensional distribution make it
impossible.

1.2. The stochastic weather model,

Now we summarize the model of daily precipitation,
average temperature and seolar hours.

Let Pw{d) and Pd(d) denote the probability distribution
of the length of wet and dry series on day d, respectively.

- 12 =

At @ = 1 the status of the system is generated /wet or
dry series/ first, then the length of the series, n,.
Then, period [d,d+nx] is considered wet. According to the
definition of series, each wet series is followed by a dry
one. Now we generate anny value from the distribution Pyldld,
and the period [d+nw, d+nw+nd] ceonsider dry. This process
isrepeated until the end of the year.

For wet series P, {d) = Geom(I(d)), while for dry

series:

Geom(lg(d)) with probability 1-p

Pyld) =
- 5d

Geom(ll(d)) with probability p

yhere Geom (.) means geometric distribution,
Al = fitted-parameter of the distribution, w - wet, d-dry
sefles, s-short, l-long series,

After we have generated the wet - dry layout of the
year, the precipitation is modelled.

The distribution of precipitation depends on d, but
do not depend on L or 1, The distribution function is mixed:

UNI(Q, 0.3) with probability ps(d)
Pp(d) = ¢ EXP{A(d}} v Pp(d)
M{d) p,(a)

where ps(d) + pm(d) + pl(d) = 1 for each 4, the probabllities
of occurrence of "small”, "medium" and "large" precipitation,
UNI -uniform distribution of small precipitation, EXP -~
exponential distribution of "medium™ precipitation, M{d) -
average "large" precipitation,

The temperature is modelled by a normal distribution
with parameters Mt(d,l) and ctfd,l) where x stands for w
- wet and d - dry series, The dispersion of the temperature
is

2
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X X *
P(d) = HI(d,1) + o¥(d,1)*R (d)

where

R (&) = a"R__,(d) + b"F(0,1)

Rt - correlation coefficient betwaen consequgnt gays, F{0,1)
—- Gauss function with parameters 0, and 1, a“ +b° =1
parameters providing the standard normal distribution for
Rt'

Solar hours are also modelled as normal random variable,
with parameters, dependent on the type of the series on day 4,
and the position 1 within the series. Due to the wear

correlation on consequent days, their dependence was ignored:

P, (d) = M;(d,l) + c:(d,l)'F(o,1)

where M; and aﬁ are parameters of the normal distribution

of solar hours.,
As "solar hours” is always a non-negative value, the
generated below zero numbers were replaced by 0,

1.3. Model analysis and testing.

The weather model was constructed and identified for two
Hungarian meteorological stations, Kompolt and Iregszemcse.
Then, several tests were carried out to find operational
characteristics of the model.

First the average weather parameters were tested
during the vegetation pericd of a plan /maizef Fig.8. shows
the average temperature sums from April to August, for
observed and generated data. Temperature sum is a kind of
biolegical time and pPlays a significant role in the plant
growth., Fig.9 illustrates the measured and generated monthly
precipitation, and the mean for the period April - August.
Fig.10 shows the measured and generated solar hours.

(%
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In terms of sums of effective temperatures monthly
precipitation and solar hours the weather generator wvery
well reproduces the measured data.

Another group of tests was carried out for parameter
values, critical for the plant growth. The most important
one 1s the probability of occurrence of long dry series.
On Fig.1l. the graph P(x) shows the probability of occurrence
of a dry series longer then x.

The maximum and minimum temperatures during the
vegetational perilod critical for the plant. Both high and
low temperatures may damage or slow down the plant’s
development. Model experiments gave also good results in
this case.

The best of the quantity of "hot" days [days with
average temperature above 25 C°9 also was successful
{Fig.11/.

2. For the crop growth simulation modell see
/Racsko, Semenov, 1989/.

s
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Fig. 1

Probability P{x) of the occurrence of dry series longer
than x days during one year at Kompolt:

solid line - measured data, dashed - Markovian chain
medel, dotted = model based on serles.

16
17



os

o4
O3
*
»
[]
..H
oz :
[l
H
o1 Y -
* L]
H £ A
ot 2lels . 3
1 3 8 7 8 1 13 15 17 19 2 23

T I T I T
1133‘5!7192123

wrgth of saries

F“S‘Q‘ (_u.,m

Probability of the occurrence of dry (a) and wet (b)
series of varios length on a typical selected day in
June and September,

@)

%y

| ¥

PFIETITTITIN|

0.20

FTERTTTTIT

Q15

TTRTEVTITOPITN

porameter

0.10
0.0s 3
am'...n.W“."n.iﬁ.nnniﬁu.HHAh
day i
Fig. 3.

Probability of occurrence of dry series longer then 8

days in Kompolt. Solid line - Fourier fitting, points -

empirical frequencies.

]



e
WE- H - : : .

Prequerc

' w » e ¥
sreciritation

W
2}
2 o
Ly ;
fa i
" ]

. : : :

1 w o » » . #

precipitation
Piq. 4 (a,%)

Lad

&

Frequency histograms of the precipitation on 1-day long
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Fourier approximations of probability of the occurence
of precipitation group: small (dotted}, medium (solid)
and large (dashed line).
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Fig .4

Monthly average of temperature sums in Kompolt,

Monthly average of precipitation in Kompolt.
Full bars - model data, striped bars

- empirical data Full bars - medel data, striped bars -empirical data.
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Fig.10 Flg. 11

Probability P{x) of the event, that the quantity of days
with average temperature beyond 25C°exceeds X 1n Kompolt,
solid line - empirical data, dashed - model data.

Monthly average of solar hours in Kompolt,
Full bars - model data, striped bars - empirical data.
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