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Yu. M. Svirezhev

Introduction

The main task of my presentation is tc show how the
mathematical ecolcogy was developped in specific condition
of my country. Our western colleagues know about it in-
sufficiently, sorry, may be because of a linguistic barrier
énd, may be, because of other reasons.

Traditionally, in my country the mathematical ecolbgy

was developped in frameworks of the pure and applied
mathematics. This was the reason 0f the strong mathematiza-
tion of it and that the problems of mathematical ecology
were mostly consicdered as mathematical problems.
Besides that the Russian school of mathematical ecoclogy
has its close "genetic" connection to classical work of
V. Volterra, V. Kostitzin, A. Kolmogorov, J. Petrovsky.
Thus russian works are traditional in this sense.

In my short presentation 1 can not talk about all
results which were obtained by our school and my choice
of examples will be sufficiently subjective, but I hope
that it will be sufficiently illustrative and represen-
tative.

1. "Prey-Predatcr" System as a Classical Object of

Mathematical Ecology

"When we study the History

of Science we discover two
mutual contrary phenomena:
either behind an apparent
complexity a simplicity is
hidden or, on the contrary,
an evident simplicity con-
ceals within itself an extra-
ordinary complexity'.

H. Poincaré



Let’'s consider the model of "prey-predator” system:

dx _ _
=L = dx - V(x)y o
j—"g z hV(‘IJ‘j -my o

where ﬁc(t)andfy(t) are population sizes of a prey and
a predator respectively,e{(x)}is a Malthusian function
for a prey,\rozhis a trophic function /or functional
response in the American literature/, m is the morta-
iity rate for a predator and k is an "efficiency coeffi-
cient". Replacing the variables: eolt =b't’ x/x* = x,
12/»\3’#41‘ V/V.. ::V‘ m/d,-_»,.]u_ where (‘I.'|1j') is a non-

zero equilibrium of (1), we obtain:

ax
d—}: = X - V(DC)‘B

(2)
jﬁ = py V(=) -1

In (2) the type ©f egquilibrium is determined by the value
of 1T=.V;(4). This equilibrium is a topological knot, if
V< 4 that it is unstable and if ¥» 4, stable. During the
transition through W=z{ we have the Andronov-Hopf bifur-
cation and in "the general position" case a limit cycle
is born out of this eguilibrium. It seems there are no
preblems here,

On the other hand in mathematical ecology there is a

very popular parametrization for atrophic function

Ve 27
K™ e’

especially in the case n =2, or, in new variables:

Vi(x) =

nzi2,. .. (3)

V(=)= x*/(1 -0« bx'), &= v*/v,,'



The bifurcation value of b is g;: %-. Hence the trophic
function which gives the eguilibrium of "centrum" type,
is 'V'c:.- 2:12/(4 + '17') . In this case the system (2)
is brought to the Abel egquation of 29-é type and it has
the integral

ﬂj + C'tj‘/ﬂ:('{-fﬂ) ﬁ%} ) f*;"'i
‘jeﬂ'(c\j) = x/V(x), pm=d

(4)

/Note that the integral of such type exists for the
trophic function (3), i.e. for the more general case./
Hence the limit cycles can not appear out of the
equilibrium /fan existance of Abel eguation integral 1is
a sufficient condition for this/.

We can show that the periodic regime can not appear
out of closed trajectories of centrum, too. Hence the
system (2) with trophic function {3) is "non-crude"
/in Andronov sense/ and it has not limit cycles. But
if the trophic function "to move about", for example,

to present it in the form

V(x) = x*/[1-8+8x'a(B-4)FC), &)

where F(x)is a finite function, F(41)=0, F(O)<<-(b*xll
F(=e) < Y% /see fig. 1/, that we can organize a
birth of cycle out of closed trajectories. As F{x)
we can get Flx) = A{('i-ﬂ/('i* ﬂ] t . Then
the birth of cycle my be achieved by the chcice of
constant A.

Note that the factor L%-%) at F(x) was introduced
in order to the Abel integral was not destroyed.



If now remove this factor, i.e. destroy the Abel integral
we can realize the birthe of’(ﬁ-i)cycles out of equilib-
rium by means of the Andronov-Hopf bifurcation. In other
words "the movement about" of trophic function in the
system (2 ) makes it "crude" and the bifurcation of b can
bear limit cycles as out of equilibrium so out of closed
trajectories /so many how we want/.

It is very interesting that the representation (3)
of trophic function gives us the whole class of structu-
rally unstable phase portraits. Really the probability
to put in a "non-crude" situation is very low but we
has put in because of the such representation is very
popular. None the less we can use it, for exampie, in
the following cases:

a/ when we consider "prey-predator" system under an
impact of stochastic perturbations /so called "parametric
excitement"/. In this case the perturbations destroy this
"non-crude” structurally unstable situation and in result
of we have got the whole system of /stable and unstable/
stochastic limit cycles.

b/ when for the analyse of dynamic behaviour of system
we use some asymptotic methods [for example, Krylov-Bogolubovw
method/. Alsc the use of asymptotics leads to the destruc-
tion of "non-crude" situation and we obtain more and less

accurate results, as a rule /in details see [1], [2] /.

2. Systems of Competing Species.

Let's consider the simplest model of two species which

compete for one resource:
%{% = x(ia\—dﬂq‘x—d‘l%}

5
i

(6)
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where X(t) and‘j(t) are the population sizes of competing

species. After a transformation of coordinates we have got

dX . x(4-x-MyY)

S k«g({ -y - T ).

I -

(%)

This system has been investigated in details, there are

not limit cycles and the equilibria have the form: &g=(0,0)

-7 i - T
S,z (4,0) €, = (0,4 ! ____;_)
' ‘ )‘ 2 ) 63 ( ?X':, A= BT
Their stability depends on the values of riand ¥
/see fig. 2/. Suppose now that ¥, and {; evolve slowlv

fcompared with changes of x and y/, so that

"m = eq >y, 0T, F A A HEN R ARARNEY

where £<<4 . Let's consider the evolution of the expanded
system (7) + (8). What will take place here?

Let the system moves along a phase trajectory which
passes tnhrough an arbitrary point E(toj = Cu,. After the
initial fast movement the point(;€ g puts into the neigh-
borhood of an eguilibrium manifold and then a slow move-
ment occurs in this neighborhood correspending to change
of parameters Y, and [, within a domain G /see fig 3/.
When the curve %(E%ﬂhich is the projection of § onto

= {I}‘ Tz} , crosses the boundaries between W, , the
equilibrium to which x and y are close may disappear or
become unstable. In such a case, however, the system imme-
diately gets into the layers above other stable pocints,
where it will move fastly, to move again slowly in the
neighborhood of another equilibrium manifeld. You can
see it on the fig. 3. _ .

Let the system move from pcint (‘T:') X}f)euaintoLuh
along the path Ei( f(z‘) is the projection of E*).



At the moment of crossing the boundary AB the €| loses
stability, the new stable point 5; appears /[at the boun-
dary when Y,z 1{ 6‘=;63/. The transition from one equilib-
rim to another occurs without fast movement and the chan-
ge of the ecosystem structure proceeds smoothly. The re-
placement of 6, by &, proceeds in a similar way when
-F('g,] crosses BC. The entire transition § &, =G, is
reversible in the sense that if the system performs a
reverse transition from (Tf,1n;} to (1ﬁ: T:) and

¥(i1) = -F(E‘)(Eiis a reverse trajectorﬂ, then trajec-
tories §1 and §4 are close to each other in the phase
space U = \x, \3 : x,«é >,OS‘

The situation will be gquite different when %(E;)passes
through the domains W, , W, and W4 . Upon crossing BE
the equilibrium 61retains its stability, but at the same
time Szbecomes unstable and the unstable saddle G}
separates from it. The part of Ez which is proiected into

W, , is in the neighborhood of equilibrium manifcld
corresponding to 61, the part which is projected into

033 , remaining in the same neighborhood. However, upon
crossing BD G& loses its stability and slow movement alocnc
this manifold changes into fast one, which leads Ez into
the neighborhood of the eguilibrium manifold corresponding
to €, . In this case the observed variables x and y change
fastly, the ecosystem structure changes in a jump, and the
transition Gk-a(Sais irreversible. /[The irreversibility
is understood in the sense that if there exists a trajecto-
ry Ez leading from ('E‘*)"Ez})to (F:"K;') , such that {-(Et):
= ¥(:EL) then a fast movement along Ea_will take place
at E rather than at D, i.e. Ez and gt will be not close
in U . This is the hysteresis phenomenon, typical for

non-linear systems.



It is clear that the hysteresis phenomena and some
other catastrophes will take place for the more complex
"competitive" communities. Slow evolution of parameters
caused, for example, by genetic processes or climatic
changes, will generates various stuctural ecological
"perestroika’s", and the non-linear effects of hysteresis

type ensuring irreversibility of these "perestroika’s".

3. Chaos in Simple Ecological Model.

"Before all things Chaos had

appeared in the Universum".

Hesiodus

Chaotic dynamics and strange attractors are not
very exotic in ecology. Let’s even remember Rikker's
model of cone population with non-overlapping generations.
One of the simplest ecological model in the class of
differential equations is the model of closed triphic
chain with 3 levels /see fig. 4/. In this model the
occurence of chaos was detected [3]. When we looked for
a strange attractor by computer we toock the treophic
functions Vi in the following forms: YV, =z oo N, |,
‘J‘:Vz z qu\,/(K + N\-') , 1=1,2. Since the conser-
vation law here says that Ne= € - ONLaN, 2N
where € = const is a total amount of matter in this

ecosystem. Then its the model can be presented in the
form:

Ol.Nt _ Nﬁ[-m‘ + cf,({ - i'Ni) - u_l]

a——’t - K+ Ny

dl = - + M* - M3

EIL B Nl[ ™ K+ Ny K+N1} (9)
d




We succeeded to prove analytically the possibility of the
birth of a cycle in result of the Andronov-Hopf bifurcation
and the existence of a stable limit cycle for large db.
Numerically the system ( 9) was investigated for

M, =04 M=myz0. 2 Vazl, K=95, 030gel.¢ 039,
€ is the bifurcation parameter. We obtained the following
results.

We represented on the plane {C , oﬂgk the curves € o (&c)
and C, (<ols) /see fig. 5/ which are the bifurcation
curves, i.e. for € = €% in the result of the androncv-Hopf
bifurcation the stable limit cycle appears, for € = (LZ
two cycles appear etc. At points 63)£23~- bifurcation
doubling takes place, i.e. for C = C1, the cycle jone or
two/ loses a stability etc... Finally, in the hatched
domain the "pre-turbulent" regime /pre-stochasticity/ takes
place, i.e. in this domain the strange attractor /resulting
from an infinite chain of the Feigenbaum’s doubling/ and
the stable limit cycle coexist. The complete stochasticity
is oberved for € > Q:; , i.e. when the stable cycle
vanishes. It is interesting that the pre-stochastic regime
is typical for the Lorenz system, however, there the stoc-
hastization process is distinguished from the Feigenbaum's
mechanism of cycle doubling. Hence, we have obtained the
new type of strange attractor which lies between Lorenz’s

and Feigenbaum’s classical attractors.

4. Lagrange Stability and Ecological Stability.

On of the most popular definition of stability in ecology
is the requirement to keep the number of species. It means
tnat on the hand not one species eliminates, on the other,
not one species grows infinitely. It means that the tra-
jectories of community must be limited above and béiow

in the positive orthant.



However, if in this orthant there are several equilibria
and some of them are unstable, then with point of view
of Lyapunov stability this community is unstable. But it
is stable with point of view of ecological stability
concept /if all trajectories were limited within the
positive orthant/. The latter type of stability has long
been known and is refered to as Lagrange stability. I
think that this concept is more suitable for ecology.
However there is not now the effective methods for the
éolution of Lanrange stability problems. Here we try-to
do it for the special case of positive orthant.

Let the dynamics of a biological community is given by

AN
Yyl FONY)

" (40)
N(D) = N, , N(¢) € P for afl £ 30

The vector N with components N, , where N;(t) is the
population size of iEh species, has to lie within the
positive orthant of n-dimensional phase space, i.e. p"
/P" is an invariant set for (10)/.

Let fl;'and 51“ be clcsed finite domains lying within
. We shall speak that the community is ecologically
stable, if for any N°¢e 9.: such the 9_“(9:) exists that
Ne Q" for a11 £>0 /I1f you want you can find the
similarity and distinction between this determinition and
the classical Lyapunov determinition for stability./

The substitution §i= &m(Ni/N:)into (10) gives:

dt o
A %(ZN) (44)



Thus in a result of this substitution we have got, firsty,
instead of one system (lO} with the set of initial condi-

tions the whole family of systems depending on N° as a

parameter, but with the one initial condition and, secondly,

the sclutions of (ll) are determined in the whole phase
space ﬂln /not only inthe positive orthant/.
Evidently that i‘::O is a trivial solution for the

systemn

Fle

- (A ) = Lo ) = y(T ) )

Then we can consider the problem of stability for the
solutiocn %*: 0 of system (11) as the problem of Lyapunov
stability under permanent perturbations B = L?(f),No).

You can see that
d o ° ¢
L) = Y(EN) + B (44")

Accordingly with the Chetaev-Malkin theorem the state
SE:O is stable /in Lyapunov’s sense/ if it is stable
asymptcotically for the system (12}, and B are sufficienty
small. What does this mean? This means that the all tra-
jectories which are started within some small neighborhood
of state §'20, will be limited in R, . If we remember
now that the negative infinity in Ef; corresponds tc the
boundaries of P /and the positive infinity in P; corres-
ponds to the one in Pn/ then we can stay that the stable
trajectory of (ll) for the determined value of parameter
No will be corresponded the limited trajectory of (10)
which is started in the point NO . Finally, if now we find
the stability domain in the space of parameters No is this
way we can build up such the set of initial conditions that
the all trajectories which are started within it, will be

Voo
limited within P". This set is none other that the set Jlo.



Thus we have reduced the problem of ecological /Lagrange/
stability tc the problem of Lyapunov stability. For latter
there are constructive metheds of solution.

The simplest example. Suppose the dynamics of one

pepulation is described by

dN Ty

a—k-: "‘LN(‘-—%)(N"h)' o¢ ReK . )
Evidently N{t)-»0 for No< R /there is not ecostability
here/, for Hn>k this population is ecostable [see fig. 6/.
After the substitution E = evx(b\/No) we have got

i_: |+ + B , where
Y = ‘L_éi (e k-ON)E OG) B=ull- F)(Ne- B),

According to Chetaev-Malkin theorem the trivial solution
§h=o is stable /in Lvapunov sense/ under permanent per-
turbation B for N_»> E%%?'. Consequently we can state
that the domain JQJ: E%B(p%<ao.is the domain cf ecostabi-
lity. You see that the real domain of ecostablity
(R< Ng < o) is larger that Q. , why? The fact is that
the Chetaev-Malkin theorem gives us only sufficient condi-
tions of stability but no necessary ones.

Clearly, the regquirement for the non-tirvial egulib-
rium N* of (lO] /if the latter exists/ to be stable is
of a necessary condition for ecostability in general.
However, there exists quite a large class of eccological
models in which the conditions of ecostability and the
existence of a positive equilibrium /stable in Lyapunov
sense/ turn out to be eguivalent. This class contains
the so-called conservative and dissipative /faccording to
Volterra/ communities. A very interest classification of
various types of stability based on "the community matrix",

carries out ‘41. T
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5. Competition for Resource, "Self-Thinningﬂ Problem

and Schroedinger Systems

Let's pass from the point systems toc the space-distributed
cnes, and consider the next model, Suppose we have the
biomass distribution N(%,t) and the consumed resource

distribution R(‘:c,‘k:), ~oe< X ¢ + oo . Let the uptake

rate of resource located in ‘g by unit of biomass located
in X , is egual to

Pix-2) VRG] an)

where '\r is a trephic function, q) is some function which

describes "lcong-action" between the rescurce and consumer

[fcr example, a normal distribution density with the center

in % and variation &% /. Then

R . g - § S VIREOING D,

>t - (44)
A g (@t VIREDINGS) A -
ot

- O

Here Q 1is the input flow of resource, k is "the efficiency
coefficient”, m is the mortality. Let &2 is sufficienty
small then the asymptotic analogy of (14) will be

R . g-vin- § R

2 =

Lyon ) 2R (45)
en{vR) « § LV ()~ —3;1“‘"‘“-

[ 1]

vy ¥

Let '\I'(R\): otR . To linearize of this system in the

vinicity of spatially uniform stationary solution

¥ = m,/bd' ,N':bQ/m we get (_i={§‘:§-'\2"‘
2, = N—‘*“})f



-y - ';‘l_;{
T > 2
3_3, = A7 + D >t (e
—dkQ/m - wm/k o) - mTY/ 2k
A = 1 b =
Ak’ Q/m O d¥*QeYom O

Since the eigenvalues of ]) are pure imaginery the system
(15) is not parabolic according to Petrovsky. Used an
analogy with quantum mechanics we refer to these systems

as "the Schroedinger systems", the solutions of its can
possess rather interesting properties. In particulary there
may exist spatially periodic sclutions and spatial chaos.
If we come back to the origin system (14) of integral-
~differential eguaticons we can prove that this system has
the spatially periodicdiscontinuous solutions belonging the
type of finite functions. Such the solutions may describe
the so-called "pathchiness" or "self-thinning" processes

in plant communities when from aninitial continuous /every-
where compact/ distribution of biomass there arises & stable

discrete structure /in details see 121/.

6. Geography of Mathematical Ecology in USSR

Above I have tryed to show style and methods which were
typical for the soviet schools of mathematical ecology.
Here I say some words about several soviet laboratories
and scientific groups.

1. Department of Mathematical Modelling in Ecology and
Medicine, Computing Center of USSR Acad. Sci. [Moscow/,

Yu. M. Svirezhev,D. O. Logofet, G. A. Alexandrov, M. A. Se-

mencv, A. A. Voinov and cthers.



The main topics: stability of ecosystems and biological
communities, non-linear waves and dissipative stuctures

in the models of space-distributed ecosystems, catastrophes,
chaos and strange attractors - complex dynamics of simple
models, stochastical models, problems of optimal harvesting.
Simulation modelling of global bicspheric processes. Thermo-
dynamics and ecology. Modelling of fresh water-body systems
and agroecosystems. Mathematical genetics /[see Kl - 5],
221, [13)y

2. Scientific Computing Center of USSR Acad. S5ci. Bio-
logical Center /Puschino, near Moscow/. A. D. Basykin,

A. M. Molchanov, A. I. Khibnik, Yu. A. Kuznetsov. The main
toplcs: application of gqualitative methods of differential
egquations to the analyse of ecological models [see [9]/.

3. Labecratory of Monitoring of All-Union Committee for
Metecrology and Environment Control [Moscow/. §. M. Semenov,
F. N. Semevsky. The main topics: application of general
theory of dynamic systems to ecological models,[%].

4. Laboratory of Bioenergetics, Geographical faculty
of Lomonosov Moscow State University. V. V. Alekseev,

I. I. Kryshev, Yu. A. Loskutov. The main topics: statistical
mechanics of ecclogical systems, strange attractors in multi-
species communities.

5. Institute of Agrophysics, All-Union Acad. of Acricul-
tural Sciences /Leningrad/. R. A. Poluektov, Yu. A. Pykh,

I. A. Vol., L. R. Ginzburg and A. Gimmelfarb are working
in USA now. The main topics: stability problems in the
models of ecoleogy and population genetics. Stochastical
models. Crop simulation modelling /see [7], [ll]/.

6. Institute of Applied Mathematics and Mechanics of
Rostov-Don State University. A. M. Gorstko, G. A. Markman,

Yu. A. Dombrovsky. T



The main topics: optimal control of ecological systems,
dissipative structures in ecoclogy. Simulation modelling
of marine ecosystems.

7. Mathematics Faculty of Jaroslavl State University.
Yu.C. Kolesov. "Time-Lag" ecological models /see [16]/.

8. Center for Ecological Studies of Lithuanien Acad.

Sci. /Lithuania/. D. I. Shvitra. "Time-Lag" ecological
models /see [16]/.

9. Theoretical Department of Institute of the Southern
Seas Bioleogy, Ukrainen Acad. Sci. [Sevastopol/. V. Belyaev,
N. Abrosov. The main topics: role of physical processes
in ecology, models of competitive communities, simulation
modelling of marine ecosystems.

10. Krasnoyarsk Center of Siberian Branch USSR Acad.
Sci. Intsitute of Biophysics, N. S. Abrosov, N. S. Pechurkin,
A. 5. Dergemendgi, R. G. Khlebopros, L. V. Nedorezov. The
main topics: modelling cof microbial communities, competitive
ecosystems, the applicaticon and development of Limiting
Factors Principle /L-systems/. Models of insect populations
/see (8], [14] /.

11. Institute of Authomatics and Informatics of Far-Eastern
Branch USSR Acad. Sci. /[Vladivostok/. A. I. Abakumov,
E. J. Frisman. The main topics: medels with non-overlapping

generations, cptimal harvesting /see {lO], [15]/.
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