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1 Introduction

Populidivn ecological theory and practice have been largely restricted lo the
study of local dynamics of oue or more species with either homogeneous inter-
actions among individuals (most population ecological models; see e.g. May,
1981) or individuals aggregating at resource patches but mixing completely in
cach generation (Hassell, 1978, Hanski, 1981, 1987; Aikiuson and Shorrocks,
LU81; Shorrocks and Rosewell, 1987, Ives, 1988). Natural populations of most
species have a hierarchical structure, several local populations comprising a
metapopulation (Levins, 1964, Gilpin and Hanski, 1991). Local populations
in a inetapopulation are counected by dispersal, but it is not exlensive enough
to entirely obliterate generation-to-generation dynamics in local populations.

"The melapopulation perspective has a long pedigree in population ecology
{Andrewartha and Birch, 1954; den Boer, 1968), but much of the concep-
tual and mathemalical development has relied on the very simplified “patch”
models pioneered by Levins (1969). Levins (1969, 1970) assumed that the
environnieut cousists of discrete habitat patehes that may support local popu-
lations. Levins's innovation was Lo simplify the description of metapopulation
dynamics by ignoring changes in the sizes of local populations and instead
focusing on the scalar variablc.@t), the fraction of patches occupied at time

{. This approach led to the ordinary diferential equation

(1.1} dppfdt = (L “*gl) - u@,

where mand e are colonization aud extinction parameters, respectively, .
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{1.1) has served as a starting point for Ltheoretical studies of single-species
(Hanski, 1991, and references therein), competitive (Horn and MacArthur,
1972; Slatkin, 1974; Hanski, 1983) and predator-prey dynamics (Vandermeer,
1973; Tlastings, 1977; Zeigher, 1977; see Taylor, 1988, for a review).

Squation (1.1) makes four major simplifying assumptions. First, the spa-
tial arrangement of habitat patches and hence local populations is ignored.
"I'his assumption is difficult to relax without resorting to simulation techniques
{DeAngelis et al, 1979; Ray et al, 1991). If dispersal occurs mostly amang
closely situated patches (stepping-stone dispersal), Eq. {1.1) overestimates col-
onization rate when g}iis small (Nishet and Gurney, 1982). Secondly, Levins's
model assumes that all patches are similar to each other, while in nature
there is always variation in patch size and quality (arrison, 1991). Thirdly,
Fq. (L.1) ignores local dynamics, apart from the colonization and extinction
cvenls, and it therefore assumes implicitly that Jocal dynamics occurs at a
muich faster Lime scale than the dynamics at the metapopulation level (Han-
ski, 1983). The fourth assumption is that local dynamics are not affected by
emigration and immigration, conflicting with a wide range of observations from
natural populations (llanski, 1991, and relerences therein).

The last two simplifying assumnptions of the Levins model (Table 1) may be
relaxed by turning to the structured population theory in the spirit ol Metz and
Dickmann (1986) and by considering the total population as a metapopulation
of local populations structured by population size. We start by modelling the
tocal dynamics within a habital pateh and then derive balance equations for

dispersing individuals and the metapopulation. Hastings and Wolin (19%9)
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have previously analyzed a structured metapopulation model, but they re-
tained the Levins assumplion of migration not affecting the dynamics of exist-
ing local populations (Table 1). We shall describe in Seclion 2 a general model
which does not make this restrictive assumption, and we shall analyse the equi-
libria of this model in Section 3. To obtain wore transparent results with clear
biological interpretation we simplify the model in Section 4 by considering the
I‘imil,ing case in which local dynamics is much faster than metapopulation dy-
namics (Table 1). This simplified model still retains the role of migration in
local dynamics, and it turns out that this is a more critical factor than the
time scales of local and metapopulation dynamics in determining the quali-
tative behaviour of the metapopulation. Ecologica! predictions of our maodels

are discussed in Section 5.

Table 1. Simplilying assumptions made in the models of Levins (1969),
lastings and Wolin (1989) and the present models, Sections 3 and 4. Note
that all models ignore the spatial arrangement of habitat patches and assume

that the patches are of the same size and quality.

Assumption Madel
Levins  Hastings and Wolin - Sect. 3 Sect, 4

Distinet times scales Yes No No Yes
of local and

metapopnulation dyua.fnirs

Migration has no effect Yes Yes No No
on local dynamics
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2 The model

‘Throughout this paper, we use “population” for the local population vecupy-
ing a discrete habitat patch and “metapopulation” for the set of extant local
populations. We assume that there is a fixed number N of habitat patches,
which may be empty or occupied. The sive of a local population in an occu-
pied patch is denoted by r, which is a number in [1, 00). ‘Fhisdntervatiscabied--
4he populetion space. The state of the metapopulation at time ¢ is given by
n(t, z), the size distribution of local populations. Observe that Lin{t x)ds s
the number of populations with size between z, and z; at time . Therefore
Nty = ["n(t,z)dr is the total number of occupied patches and N — Nt
is the number of emply patches at time t. We assume that local dynatnics 15
density-dependent. Thus reproduction, mortality and emigration rates as well
as the probability of local extinction depend on population size z.

We let g(z) denote the intrinsic growth rate of a population of size ¥, due
to reproduction and mortality only. Therefore, if one ignores migration and
random catastrophies causing a local extinction, the population within a patch
grows aceording to the ordinary differential equation

% = g(x).
T'his intrinsic growth may be logistic in which case g(r) = r.r(l - f), but it
may be something else as well.

We let v{z) denote the rate of emigration from a population of size &, and

g(!) the rate of immigration at time ¢, The immigration rale depends u:;tllc
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wunber of dispersers and will be specitied later. With these assimptions 1he
growth of a population in an inhabited pateh is governed by the equation
. de
(2.1) = = 9le) = vle) + gl

Per unit of titne, ™ y(z)n(2, z)dzr individuals leave their patch and become
dispersers scarching for a new patch, We let » denote the death rate of dis-
persers and o be the rate at which dispersers arrive at a patch. T'he balance
equalion for the number M (1) of dispersers at time ¢ thus reads

aM

(2.2) == et M + /lw‘)(;r)n(!,:r)dx.

We assume that dispersive individuals chouse a new palel al randomn, and
in particular that there is no inclination towards choosing either emply or
inhabited patches. Per unit of tine, aM (£) individuals arrive at a pateh. Thus

aM(l)

the wnmigration rate in Bq. (2.1) is ¢(t) = I Finally, we assume that

local populations may go extinct due Lo random catastrophies. Denoting the

density-dependent catastrophy rate by p(x) we oblain the balance equation

J () atl
an(ta~l’)+a{‘;((9(‘c) - 7(£)+“'N-(_[))“(twc))

{2.3)
= —plz)n(t, r).
Colonization of empty patches is modelled by a boundary condition of the

partial differential equation (2.3). The rate al which individuals arrive at



cmply palches is given by oM (1) . We assume thal not every such

N — N(D)
N
colonizalion allempt is successful but that there is a probability p that the
arriving individual survives and gives rise Lo a new population. Thus §: = pa
is the rate of successful colonization per disperser and proportion of empty

palches. The flux through the boundary {1} of the population state space

Nt
[1,00) must equal the colonization rate ﬁfW(t)[l - -—-}\%—)1 .

Thus
]\.7
(2.4) o) — (1) + “"‘;,(”]n(z, 1) = ﬂM(i)[l - 7\(*9]

To make sense, the flux must be positive. To achieve this we make the natural

asswnption

g(1) — (1) >0,
that is, in small local populations birth dominates over death and emigration
and the population tends to grow.
To simplify the equations we divide them by N and introduce the new vari-
ables p(t,z): = n{t,z}/N, P(t):= N(t)/N and D(t):= M(t)/N. Our model

can now be writien as follows:

i
(2.5)  wplt,e) +

3 (;—)I ((!i(i‘-) — y(z) + aD(O)p(t, r)) = —plalplt 1),

(2.6) (at1) =2y +alO)pit,1) = BOW(1 = 1),

8

d,) ]
(2.7) Ll = —(a+0)Dit) +fl y{a)plt, #)d,
(2.8) p(0,z) = 4(=),
(2.9) D{0Y = Do,

where ¢(x) s the initial size distribution of local populations and Dy is the
initial nuinber of dispersers per total nuber of patches.

Equations (2.5) - (2.9} definc a complicated system with nonlinearities both
in the population growth rate and in the boundary condition. An extra com-
plication is due to the fact that the population growth rate may change sign.
Thus even results on existence and uniqueness of solutions are dillicult. In this
paper we shall not dwell on questions concerning existence and uniqueness but
we shall concentrate on equilibrium solutions and their stability. A rigorous

existence and uniqueness proof will appear in a forlhcoming paper.

3 Existence of equilibria and the equilibrium
population size distribution

We consider the existence of equilibria, that is time independent solutions
pit,7) = p*(z), D{t) = D" for all t > 0. We assume realistically that g~y is a
concave function on {1, co) with a unique maximum and that lim,_,.,, (g(.r] -

’y(.r)) = —o0o. This assumption implies Lhat for each level D* of 1lisp:"r»m!rs

9



there exists a unique population size 2 = (D) for which the growth rate is

zero, that s

{3.1) gy —y(E)+ad) =0

holds (see Figure 3.1). If the size x of a local population is less than (1))
u:hcn there are D dispersers (per patch) the local population will grow, and
if it is greater than (D) it will decrease. £ is called the carrying capacity of
the patch, It is an increasing function of D. Conversely, D is an increasing

function of & given by

I .
(3.2) D= —ly(z) - g(#)].
The carrying capacity of the trivial solution is denoted by Iy: = £(0). & is the
unique population size at which g{Za) = v(Zo). Obviously £(D*) > Z,.

Next we observe that at equilibrium we must have

(3.3) prle) =0 for x> &),

since if a population would have size z > #{(43°) it would shrink and siuce
there is no input in the region z > Z(D*) this cannot be compensated for and
hence p*(r) would change with time contradicting the assuinption that it is an
equilibrium. Hence (3.3) holds,

Putting D(t) = [, r_fl!t_) =0, and p(t,») = p*(+) in Hq. (2.7) one oblains

10
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3 i =
( ) o+ v

D%
/; 2 )p (o )dr.

Sunilarily, (2.5) and (2.6) yield the cquilibrium populution size distribution

. . _j‘ at9; e
(o) )= LU T g =A@ et

[
9(£) = 1(e) + aD*
“'Ill'll‘
i HD*)
(i1.6) P f p(r)de.
1]
Substituting {3.5) into (3.4) one obtains

D" = 1)‘~L{1 - P
o+ v

HD*) 1
(@1 I e Ea s

f’ #(£) .

o s L

¢ 9 =) a7,y

The condition D* = 0 obviously implics £ == 0, so aly nontrivial equilibrinmn

must satisly

(3.8) RO Py =1,

where

11



RUD,P)i= il = P)
Hi 1
(3.9) /1 M T @ v ab

3 /: n(£) A&

¢ v 9ll) =) ral) Ty,

We call H(D, P) the net population reproduction number. It has a very natural
hiological interpretation as has the relation {3.8). Let I and P be arbitrary
but fixed. Consider a newly colonized patch. The mean number of dispersers
this local population will produce during its lifetime (before it goes extinct due

Lo a catastrophy) is given by

E(D):=
{17} 1
(3.10) jl TSE 4@ ¥ oD

j" ui€) d
L gl =@ el gy

€

The probability that a disperser finds a patch before dying is H{IET The

probabilily that the patch it arrives at is empty is 1 — P and the probability
that colonization is successful is p. Thus, on average, every newly colonized
patch will give rise to l:‘(l))a-%j;(l — P)p = R(D, P) new local populations.
Helation (3.8) says that a necessary coudition for the existence of a nontrivial
cquilibrinm is that this nnmber equals one, that s, every local popolation

(‘Xﬂ('L]y rf‘[)lil('l'ﬁ il"\(lf

ln order to obtain another relation between £* and PP* we substitute the

cxpression (3.5) for p*(x) inte the definition (3.6) of F*. This yields

(511) P= (- POD D,

where

) | _/I H____E@Mh(ff
(3.12) F(D)::j; Ry gl&) = +aD ™y,

is the expected lifetime of a population given that the nuwinber of dispersers
per pateh is held fixed at D. Since #(1 —~ P*)D* is the colonization rate and
1* the proportion of occupied patches, (3.11) is an analogue of the wellknown
refation in epidemiology: the prevalence of a disease cquals the ncidence rate
times the duration of the disease.

The equations (3.8) and (3.11) represent curves in the £, P—plane. The
points of intersection correspond to equilibria of the system (2.5} - (2.7). Elim-

inating P from(3.8) and (3.1!) one finds the relation

1

(.13 o

E(D*) = % + D).

Ouce 27 has been solved from (3.13), £ is obtained from (3.01).

Depending on the vabues of the parameters there can be none, one or several
nontrivial equilibria.

Equation (3.1} (or equivalently (3.2)) defines a one-fo-ote correspondence

.
between the number of dispersers per pateh and the canying capacity of a

13



Ik :

$16 b 7)) = |,
( ') o+ V( JELE)
and
patch. [L 15 therefore possible to formulate the equilibrium conditions {3.8)
and (3.11) i terms of the variables £ and # instead of P and D. This is L 3 . i e .
(3.17) Bl ) - gtenlet) = 17,
preferable since ¥ bul not 13 is measurable in the field, and since there exist .
extensive data va the relation between the proportion of occupied patches and respeclively, Eliminating £2* from (3.16) and (3.17) one finds the anajogne of
the average size of local populations {for a review see Hanski et al. 1991). (3.13):
Moreover, il the local dynamics (reproduction, death and emigration) is fast
compared with the dynamics at the metapapulation level (colonization and (3.18) 1 E'(.E') = l + lh(j;‘) - y(j‘)]é(j-‘}_
a+v J -

extinction), then most local populations will have a size close to . This idea

is elaborated further in the next seclion. We close this section by a retsark about the shape of the equilibrivm pop-
Letting ulation size distribution.

Since

E(2):= B(D(E)) =

dp* (&) —¢'(x) ~ p(x) -(2)

a1 _
! (3.19) dr g(z) - y(z) + oD "

(3.14) jx ﬂw)y(a:) = (2) - [9(2) — +(z)}

and p~(«) and g(x)~ (&) -+ al? are positive in [1, £7) the zeros of ‘—32— councide

o #(£)
e /l y(f)“W(E)—[y(i)—’r(i)}dfdx

with those of ¥'(z} — ¢'(x) — p(z). Ii follows from our assumption about the

concavity and behaviour at infinity of g —  that 4'(x) — ¢’(z) is monotouicaily

and
increasing, that (1) — ¢'(1) < 0 and that 0 < limg_e{¥'(x) — ¢'(¥)) < 0. If
i) = g D(£)) = we realistically assume that g is nonincreasing, then it follows that gﬁ—‘ has at
: | most one zero in (1, &%), I it has no zere in [, 27) then p* will be monolouically
3.15 «/1 gle) = z) —ly(2) — 1(2)] decreasing and if dp has a zero, p* will be decreasing for small po slation
r b
_f’ #(€) _ e 15
e It 9l€) = (&)~ [9(2) —+(&)] "y,
e o ] I
‘ N‘"F) w ik 4 Sy }—_‘)LB. ‘_\.l co o )]—,(’\3 R ‘)I(‘,) - r{(>

Eys. (3.8) and {3.11) turn into
I xo-r et oy Y14

~g N

oy K<L X, o~ X"
Also, an Cwpr 0 X~ DO Cus by 50D



sizes and increasing for large population sizes. We illustrate this in the case
of logistic growth, emigration proportional to population density and deasity

independent catastrophy rate, We thus assume

(3.20) g{z) = rall — F)’
(3.21) ¥(r) = ke,
(3.22) u(r) = u.

K(ir—k+p)

Then the unique root of ¥/ (z) — ¢'(z) —p(z)=0is z = o

Since

=y'(6) — g'(€) — ()
(3.23) p*(z) = pD(1 = pye/t 9(6) ~ 1) +aD"

d¢

it follows that

o ifi.>h!r—k+!t
T
(3.24) li]l}rl["{ﬂ“) =14 a pusitive constant  if 2* = K _f ta

0 ”.J.:.‘:l\ T‘—:C+;t}.

Thus the population size distribution is skewed towards larpe sizes if 77 >
I I3

Kir 7;}‘ nalf and towards small sizes of #* < !‘—(r—E’Li——L‘l Observe that this

- [ + L]
condition cannot be written explicitly in terms of the parameters v, p, k, ...

6

since it depends on the solution z° of equation (3.18) which cannot be solved

. e - . KN(ir—Fk .
analytically. However 2 is always greater Lhan 7y = = , the carrying

. . . . . p - (r— k
capacily corresponding to the trivial solution. So, il 7y > —’L(Lz}-if—[l, that
is, if =k > g, then limgyz+ p*(2) = oo for all equilibrium states, But if

r -k <y, then a more detailed analysis is necessary.

The situation is especially interesting in Lthe case where there are two non-
trivial equilibria. It is then possible that oue equilibrium has lin, jz p* (2} =0
whereas the other has limggze p*(z) = 0o. It is clear that the equilibrium with
smaller &7 has limyyz- p*(2) = 0 and the one with bigger £ has lim, ;- p*(x) =
oo. At fiest sight one might think that the behaviour of p*(z) at #* would
determine Lhe stability of the equilibrium. The next example shows that this

is nol the case.

Example Let g,y and g be as in (3.20) - (3.22) with » = log 2, & = 1000, g =
0.4, and k = 0.5, We assumie thal v = 0, o = 1 and analyse the equilibria using
p as a bifurcation parameter. Observe that r — & = 0.19 < 0.4 = y so both
limgpze p*(2) = 0 and ling;3+ p*(x) = o0 are possible. Since ﬁ%%iﬁ)_ A
428, p*{x) will tend to zero as x Lends to £° if £° < 428 and p*(z) will tend to

infinity as x tends to £° if 3* > 428.

The equation (3.18) was solved numerically for several different values of
p € (0,1]. The resulis for p = 0.01, p = 0,007 and p = 0.00543 arc represented
in Fig. 3.2 to Fig. 3.1, For large values of p there are two nontrivial equilibria;
one with 27 < 428 and the other with * > 428. As p decreases the carrying

-

capacity 27 of the two cquilibria approach each other until they merge at

7



al " = 515 when p is approximately 0.00533. Thus the population size dis-
tribution corresponding to the equilibrium with smaller ° will change shape
before the equilibrium reaches the bifurcation point. This happens when p is

approximately 0.007. The bifurcation diagram is plotted in Fig. 3.5.

4 Derivation and analysis of a simplified model

In this section we shall return to the third simplifying assumption in the Levins
model, namely that the local dynamics takes place on a much faster {ime
scale than the dynamics at the metapopulation level. We shall replace in the
system of (2.5) - (2.7), the intrinsic growth rate g{z), the emigration rate
7(z), the death rate » of dispersers, and the rate « at which dispersers arrive
at a patch, by eg{x), ey(s), cv and co, respectively, and analyse the limiting
system cbtained by formally letting ¢ — oo. Note that since 8 = pea this
means that p has to tend to zero in such a way that § remains finite. Qur
approach will be intuitive rather than rigorous. A rigorous treatment of this
singular perturbation procedure will appear in a forthcoming paper.

First note that integrating equation (2.5) from 1 to oo and taking the

boundary condition (2.6} into account one obtains

d

(4.1) -d? =41~ £) = [7 it e

Now make the replacement of parameters as described above, The dynam-

ics of a local population is described by -

18

(1.2) ldr _ Y
22 U = g{x) — (x) + aid,

while the number of dispersers per patch obey the equation

1 dD) o
+.3 _ky ,
{. ) PaT (v +v)D +/1 F(r)pit, ).

Letting ¢ — oo we infer from (4.2} that a population in a newtly colonized
pateh will immediately grow to its carrying capacity £ determined by Eq.
{3.1). "This in turn implies that the population size distribution P, ) will be

a [dirac measure concenirated at i

(1.4) Pt 2) = P1)b(2),

in the lunit (4.3) therefore becomes

(4.5) p=28,

whereas (4.1) takes the form

(1.6) — = BD(1 = P) — p(@}.

The limiting system is thus given by the scalar ordinary dilferential cquation
(4.6) supplemented by {4.5) and (3.1) (or equivalently by (3.2)) which give Ll

relations between £, 1 and &, 'lo obtain the condition for equilibrium W(rlput

19



dr’
dt
by the one given in (3.2). We get

= 0 in {4.6) and reptace 3 first by the expression given in (4.5) and then

i} e TE)
(1.7 I
1

(15) S0 Pt - i = 1

Ohserve that {4.7) and (4.8) are nothing but (3.16} and (3.17) with

ooy HE)
(4.9) I(#) = D)
and
(4.10) 4z) = ;;-(}-i

This is exactly as it should be since if one performs the same limiting procedure
as above in the definitions (3.14) and (3.15) one gets (4.9) and (4.19).
Eliminating P* from (4.7) and (4.8) (or using (3.18) with the expressions

(4.9) and (4.10) for E(F) and i), respectively) one finds

] 1 - v )
(411) l5*) = 2 (@) + =),
By (4.5) and (3.1} D and & can be considered as functions of P anly. We

therefore denote the right hand side of (4.6) by F(PY. One has F{0) = 0 and

F(0) =gt

I(’V — u(Fy). We therefore conctude that for small values of #the

20
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trivial solution will be stable but it will loose its stability as # grows beyond

the value (e + U)ﬂ}ﬁ% Moreover, since F(1) = —[L(jflI}':|) < 0, we infer
MNZTo AV A

that il the trivial equilibrium is unstable, there is at least one stable nontrivial
cquilibrin.  Also, neglecting the possibility of zeros of F' with maltiplicity
greatler than one, we see that if the trivial solution is stable there is an even
nurher of nontrivial equilibria. The smallest one is unstable, the next stable
a‘nri so on. In particular, if there are exaclly two nontrivial equilibria the
grcaler one is stable while the smaller one is unstable,

We shall now investigate the equilibria in more detail in the case of logistic
growlh of local populations, per capila emigration rate independent of pop-

ulation size and constant catastrophy rate. We thus choose g, and y as in

(3.20)-(3.22).

The equilibrivin condition (4.7) and (4.8) is then equivalent to

. i k Eoa
(1.12} }?u(l ;)+:a+yf,

) v_ﬁﬂ(rt+u) 1
(1.13) =

These equations are identical to Fas. (8) and (9) in Hanski (1991).

Next we shall investigate the solutions of (4.11). Assume first that u is

i

K
constant and v = 0. If &y < -‘j\“ and if j1 < g(g), then for p < there will be
'

At L . .
no solution, for —"— <p< '(—,- there will be two solutions and for —T-U—j <p
i gl Fa) qlre

there will be one solution to (1,13} in the permitted region & > &y, (sec I"ig,';ur('

21

)

[



4.1). As noted above the greater nontrivial solution corresponds to a stable
and the snualler one to an unstable equilibrium. Thus we have the bifurcation
diagram shown in Figure 4.2,

I, on the other hand, &y > -J-g- (relatively low emigration rate), then there
can never be more than one solution to (1.13) in > &, {l'igure 4.3). The
bilurcation diagram for this situation is sketched in Figure 4.4.

‘ [owever, these results are based on the assumption that p is constant. In
nature the probability of local extinction generally decreases with increasing
population size (Williamson 1981, Diamond 1984, Schoener 1985, Schoener
and Spiller 1987) and in this casc there can be multiple equilibria even for
Ey > % If v and g are as indicated in Figure 4.5, there are again two nontrivial

equilibria and a bifurcation diagram similar to the one shown in Figure 4.2.

If v is positive but small the above results remain qualitatively the same.

5 Discussion

Our resulls make testable predictions about three aspects of metapopulation
dynamics: the distribution of local population sizes; the relationship between
average local population size and the fraction of occupied habitat patches; and
alternative stable equilibria. We discuss these three issues in turn.

The general model in Section 3 predicted a skewed distribution of popu-
lation sizes, but depending on the magnitudes of local and metapopulation
times scales, most populations were predicted to be either large (fast local dy-
namics) or small {slow local dynamics, in comparison with the rate of change

al the metapopulation level). Hastings and Wolin (1989) concluded from their
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structured metapopulation model that small locai populations are always more
numerous than large ones. This conclusion was however based on a number
of unrealistic assumptions, including exponential growth of local populations.
Assuming the logistic model for local dynamics, as we have dune, it is clear
that there must be a possibility for most populations being close to the envi-
ronmental carrying capacity and hence being large. Unfortunately, there are
two major problems in testing the prediction about population size distribu-
tion. First, unlike assumed in our model, habitat patches are rarely if ever of
the same size in nature (Harrison 199t), hence the local carrying capacities
vary and increase differences in the sizes of local populations. Second, our
model is deterministic, apart from the local extinction events, while stochastic
variability in population size is a pervasive feature of practically all natural
populations (Hanski 1990). These considerations point to two hnportant direc-

tions in which the present type of metapopulation model should be developed,

One of the few broadly valid generalizations in population ecology is the
finding that the more widely distributed species tend to be locally more abun-
dant than species with a more restricted distribution {Hanski 1982, Brown
1934, Gaston and Lawton 1990). This relationship between distribution and
abundance has been found at all spatial scales (Hanski et al. 1991), but as
emphasized by Brown (1981), one should compare only species which share
the same basic ecology. In terms of the present model, this generalization says

that there should be a positive relationship between #* and P-.

Let us assume an assemblage of species in which the species differ from each

other in onty one of the following parameter combinations, 1 — kfv, u/Bk or
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af (4 v). 1tis clear from Egs. (444 and (4.4 that il the species show vari-
ation in only the first or the secand combination of parameters, there exists a
positive relationsinp hetween 3 and £7° among the species. 1f the species show
variation in avf{a+#), both (4. H) and (4.44) are affected, but once again con-
sequent changes in #* and P* are positively correlated. In terms of the original
parameters, only interspecific variation in k does not necessarily give a positive
r‘(‘]a.tionship hetween 7 and P*. Our hypothetical species assemblage in which
the species differ i only one of the above parameter combinations correspotids
Lo Brown's {1084) assemblage of species which are ecologically similar in most
respects. Single-species inetapopulation dynamics may therefore explain the

positive relationship between distribution and abundance of species.

If several different parameters are varied al the same time in our mode],
it is possible to generale a species assemblage in which there s a negative
relationship between #* and P*. Consider two contrasting sels of species,
some with small k/r but large u/3, while others have large &/r (but < 1) but
small i/ and small af(a + v) (Fig. 5.1). The former species tend to have
relatively large local populations even if they have a restricted equilibrium
distribution (small £27), while the latter species show the opposite characteris-
tics. Arita et al. (1990) have recently reported a negative relationslip between
distribution and abundance in Neotropical forest mamnmals. Their result is es-
sentially due to large mammals having low densities butl wide distributions,
while smaller species tend to have more restricted distributions but are uf-
ten locally abundant. This is consistent with our results: Jarge species have

larger &/ (high dispersal rate in relation o their intrinsic growth rate) bug

2

probably smaller i/ 8 than small species {large species are less afleeted by en.
vironmental stochasticily). Metapopalation dynamies may thus explain both
the usual positive ((aston and Lawton 1990) as well as exceplional negative
relalionships between distribution and abundance.

One relatively easily testable prediction is thal, for a given average local
abundance (#7), species with high dispersal rate should have a wider distri-
bution (larger P*) than less dispersive species. Table 5.1 shows that this is
the case in butterflies in the United Kingdom. The other explanations of the
positive relationship between distribution and abundance (Hanski et al. 1991)
do not make this prediction.

The simplified model analysed in Section 4 demonstrated that single-species
metapopulation dynamics may have alternative stable equilibria. This is con-
trary to what Hastings and Wolin (1989} concluded from their model. The
difference in our results is due to Hastings and Wolin’s (1989) assumption that
migration has no effect on the dynamics of existing local populations (see Ta-
ble 1). Indecd, setting a = 0 in Eq. (1.H) demonstrates that no alternative
stable equilibria are possible in our model either without the influence of im-
migration on local dynamics. ‘T'wo other metapopulation models thal manifest
Lhe passibilily for alternative stable equilibria {(Hanski 1985, Ronghgarden and
Iwasa 1988) also incorporate the influence of inunigration on local dynamics.

There are two distinct mechanisms that may create alternative stable equi-
libria in our model. First, for density-independent extinclion probability (g),
alternative stable equilibria are possible if dispersal rate 3s high. When the

.
metapopulation is small (small £7), most patches are emply and most dis-

[\
-t
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persers will die without leaving any olfspring, because the probability of suc-
cessful colonization of aud reproduction in enply patches is muoch smaller than
the probability of arriving at a patch (# << «). Thereflore, a ei.umll metapop-
ulation may decrease o size {P* approaches 0). On the other hand, when the
same melapopulalion is large (large #7), most dispersers will land on occupied
patches and will have, on average, a grealer success of reproduction than when
f;' is small. The metapopulation may now increase in size toward a stable in-
ternal equilibrium.  These considerations are relevant for the much-studied
question about the critical minimum size of a habitat patch that may support
a local population, given that a fraction of offspring always dispersers away
from the patch {Okubo 1980 and references therein). If several such patches
are connected Lo each other, the critical patch size for population survival is
decreased due to mubual migration, though there may exist alternative sta-
ble equilibria. If dispersing individuals move preferentially to occupied than
unoccupied patches (‘conspecilic attraction’; Ray et al. 1991), the domain of
alternative .stable equilibria is decreased, but so is the value of P*, because
couspecific attraction decreases the rate of colonization of emply patches (Ray

el al. 1991).

The above scenarios deal with highly dispersive species (large k). Alter-
native stable equilibria are possible also in the case of relatively sedentary
species, if the extinction probability (4) decreases with population size, as is
nearly universally observed (Schoener and Spiller 1987 and references therein).
We therefore conclude thal alternative stable equilibria in metapopulation dy-

v

namics should not be dismissed lor any species.
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Alternative stable equilibria are an important consideration in conservation
biology, because they create the possibility that a species crashes suddenly to
regional extinction from a relatively high regional abundance (if it happens to
cross the unstable equilibrium; Hauski 1985, Hastings 1991). Conversely, al-
ternative stable equilibria make a regional invasion by a spectes tore difficult,
in the same manner as various (local) Allee effects binder the establishinent
of local populations. The existing models of regional invasion deal with the
paraineters of local dynamics, such as I/a\r_:ﬁai., {f‘[t] l\\ (MacArthur and Wilson
1967, Ebenhardt 1991). If metapopulation dynamics plays an important role,
success of regional invasion may equally depend on rates of emigration {k),
imntigration (o), colonization (#) and extinction (u). Comparative investiga-
Lions of species’ invasion abilities should therefore include also the Latter set of
parameters, which they do not do at present.

Conservation biologists attempting the re-establishinent of extinct species
in their natural environment should also pay attention to possible mietapopu-
tation effects. Lo increase the survival and reproductive success of dispersers,
it would often be better to introduce Lhe species simultanecusly into sev-
etal closely situated habitat patches than to equally many far-away patches.
One cxample where such considerations are potentially important is the re
establishment of the critically endangered black-footed ferret Mustela uigripes

in North America (Clark et al. 19587, Brussaard and Gilpin 1989
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Legends

Figure 3.1 The function y = g(r} — y(x) and the definition of the carrying
capacily (1)

Figure 3.2 The curves l. y = E(z*) and 2. y = aty (% + ‘I—l{'y(;‘r'] - _q(}.'))

(44

A

in the case of togistic growth with r =log2, K = 1000, =04, & =10.5,
v =1, aw=1and p=00

Figure 3.3 The curves L.y = E{i*yand 2. y = '—'—;E—ﬂ (% + !IT(’)‘(.E?‘) —_q(j‘))
in the case of logistic growth with v = log2, K = 1000, g = 0.4, £ = 0.5,
v="0a=1and p=0.007

Figure 3.4 The curves 1. y = E(&") and 2. y = Q—“L'{- (*}; + ;];(—y(x') —y(:i:'))
in e case of logistic growth with r = log2, K = 1000, g = 04, k = 0.5,

v =0, =1 and p = 0.0053

Figure 3.5 Bilurcation diagram in the case of logistic growth with » = log 2,
K = 1000, it = 0.4, k = 0.5, v =0, a = 1. Solid lines indicate stable equilibria

aml dashed lines unstable equilibria
Figure 4.1 The curves 1. y = 4(2), 2. y = g(&), and 3. y = %

Figure 4.2 Nifurcation diagram in the case of logistic growth with constant
g = iy < !2\_’ and jt < g(Fo). Solid lines indicate stable equilibria and

dashied lines unstable equilibria
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Figure 4.3 The curves 1, y = y(£), 2. y = y(&), and 3. y = %

Figure 4.4 Bifurcation diagram in the case of logistic growth with constant
v =0, 2 < -IE‘—, and g < g(4y). Solid lines indicate stable equilibria and

dashed lines unstable equilibria

Figure 4.5 ‘The curves 1. y = 4(z), 2. y = ¢(Z), and 3. y = p(d)
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