‘w? INTERNATIONAL ATOMIC ENERGY AGLNCHY
{h@; M UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION
&

TIHiR
S INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ===
L.CT.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

SMR.478 - 36

THIRD AUTUMN COURSE ON MATHEMATICAL ECOLOGY

(29 October - 16 November 1990)

"Empirical methods for the estimation of the mixing
probabilities for socially structured populations
from a single survey sample"

C. CASTILLO-CHAVEZ
Cornell University
Centre for Applied Mathematics
Biometrics Unit
Ithaca, NY 14853-7801
U.S.A.

These are preliminary lecture notes, intended only for distribution to
participants.

Mais BuiLpise STRADA CosTiera, 11 TEL. 22401 TELEFax 224163 TeLex 460292 Apriamico GLEsT Hotse Via Grionano, @ Teo 21340 Tropran 224331 Trrew 460447
Microrrocessor Laa,  Via Berit, 31 Teo. 22447]  Teterax 224163 TiLex 460392 Gairo GUEST Hotsy Via Buiker, 7

Ter 22407 Trieran 224559 Trirw 460107



e R
1 / 0/21/70

Empirical methods for the estimation of the mixing probabilities for
socially structured populations from a single survey sample.

Stephen P. Eilyt.he1 Carlos Ca.atil.lo-Chavez2 George Casella
Department of Statistics and Biometrics Unit/Center for Biometrics Unit
Modelling Science Applied Mathematics Cornell Univerity
University of Strathclyde Cornell University U. 8. A,
Glasgow - U.S. A,

Summary

The role of variability of sexual behavior in the transmission dynamics of HIV and AIDS has been illustrated,
through the use of mathematical models, by several investigators. Models that capture heterogencities due to rates of
sexual partner change, changing behaviors, and demographic factors are invaluable in the study of the dynamics of
sexually-transmitted diseases. Models that describe the processes of mixing between individuals and/or pair
formation/dissolution have been formulated in great generality by Blythe, Busenberg, and Castillo-Chavez.
Mathematical formulas describing all forms of mixing for one- and two-sex populations as structured deviations from
random mixing have been obtained by Busenberg and Castillo-Chavez. In this paper we describe some practical
methods for estimating the deviations from random mixing from a single survey sample. This method can be potentially
very useful if one considers the difficulties—technical and political—involved in the gathering of behavioral and mixing
data. We include a description of the role of the estimated mixing probabilities in models for the spread of HIV, a
discussion of alternatives and possible extensions of the methods described in this article, and an outline of future
directions of research. We note that despite the fact that the mixing probabilities {pij(t)} are fime-dependent, we are
sble to make use of time-independent parameters—the matrix of constant quantities {¢lij} which are related to the
initie! deviations from random mixing—in the estimation of the dynamic mixing probabilities {pij(t)}.

Key wards: HIV, AIDS, proportionate mixing, non-random mixing, pair-formation, estimation, sexually-transmitted
diseases
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Projections and prediction of future trends of BIV and AIDS incidences cannot be made with
confidence due to the many uncertainties involved in the measurement of key epidemiological and
sociological parameters (1-7). Methods involving some form of extrapolation and back-calculation have
provided useful ways of obtaining short-term projections for the future temporal trends in AIDS and
HIV incidence (8-13). Current projections of HIV prevalence, for example, depend largely on two
factors: the shape of the incubation period distributions and the temporal patierns of HIV incidence of
distinct interacting subpopulations. Although the uncertainties involved in estimating incubation
period distributions for different groups are being reduced, albeit slowly, mary problems associated
with the estimation of incidences (new cases of infection per unit time) are still unresolved. The lack of
sufficiently complete longitudinal serological and behavioral data suggests that our understanding of
the consequences of these factors in disease dynamics may have to rely on experimental “data”
generated by transmission dynamics models that incorporate realistic and potentially measurable social
structures (5,6,14,15), and in the development of methods that make full use of cross-sectional data.
This paper begins to address the latter issue.

Model methodology has improved considerably over the last two years (16), yet much work
remains to be done (15-19). Models incorporating age-structure, variable infectivity, long and variable
periods of infectiousness, risk levels, vertical transmission, and other factors have been developed
(1,4,15,16,20) but important questions raised by the inherent limitations of some modeling approaches
still remain. To reduce the effects of these limitations, we need to determine ways of comparing results
across models (15,19). For example, numerical studies on a variety of models suggest the obvious, that
heterogeneity in sexual behavior is a very important factor in the transmission dynamics of HIV;
however, we need to have a ranking of the effects of these heterogeneities in HIV transmission. To
answer questions of this type, we need more data and a better understanding of the principles and
assumptions underlying different modeling approaches. The lack of political support for large scale
surveys of sexual behavior in the general population means that in the foreseable future, we will rely
mostly on mathematical models for qualitative and quantitative evaluation of the effects of
heterogeneity in its different forms.

There are numerous alternative ways of describing heterogeneity (6,7,13,15,17-19,22,23), but in
this paper we will be concerned exclusively with the development of practical methods of estimating
parameters that aim at the heart of the question of “who mixes with whom,” from a single (cross-
sectional) survey sample. To this end we have divided this article into four parts. In the first section,
we describe a multigroup one-sex model that arises in the study of the transmission dynardics of HIV.

The fact that this model incorporates very general forms of mixing allows us to explain in general
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terms, in the second section, the general estimation problem associated with the mixing parameters. In
the third section, we describe our empirical approach to the estimation of the mixing parameters,
provide some numerical examples and explain the methodology used. The paper concludes with a
discussion of future applications of this approach, alternative approaches, and research directions.

Relevant technical information is collected in two appendices.

Basic Transmission Model for HIV-Dynamics

In order t.o discuss the problem of estimating the parameters associated with the mixing/pair-
formation process we introduce a model for the spread of HIV/AIDS that focuses on these processes.
The detailed model is provided in Appendix A; here we concentrate on describing a key component of
this type of model, namely the incidence rate (new cases of infection per unit time). The mixing
probabilities, as well as other behavioral and epidemiological parameters, determine the rate at which
new infections are generated. The incidence rate is given by a nonlinear function of the different
interacting subpopulations, and it is in the context of this expression that we will describe our
empirical estimation procedure.

To illustrate the procedure, we consider a population of homosexually-active individuals (the two-
sex case can also be addressed). The population is divided into classes or subpopulations, where such
classes can be identified by race, socio-economic background, average degree of sexual activity, etc. For
more general models that take into consideration factors such as chronological age, age of infection,
variable infectivity, sex, and partnership duration the reader is referred to the work of Busenberg and
Castillo-Chavez (17-18) and Castillo-Chavez et al. (19); for the most up-to-date mathematical analysis
of this type of models see (5,24-28). The N sexually active subpopulations are divided into three
epidemiological classes: S1 (susceptible individuals), I. (HIV-seropositive asymptomatic or with mild
symptoms), and A (HIV seropositive, with severe symptoms) for i=1,.-,N. We assume that only S-
and I-individuals are sexually active, and the sexually-active populations are denoted by Ty(t) = §(t)
+ Ii(t), i=1,.,N. Bi(t) denotes the il incidence rate at time t, that is, the number of new infective
cases in subpopulation i per unit time. B;(t) is a complicated function that depends on the frequency
and type of sexual interactions that susceptible individuals in group i have with all other individuals
(including those in group i).

To describe the expression for the ith incidence rate we need more definitions: ﬁj denotes the
transmission rate per infective groupj partner (alternative definitions for this parameter are available,
see 24, 27), C-l denotes the average number of new partnerships per unit time of group i individuals,
and pij(t) denotes the fraction of partnerships of individuals in group i with individuals in group j or,
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equivalently, the probability that a group i individual will mix with a group j individual. Since C,5,(t)
denotes the “average” number of partnerships per unit time formed by susceptible individuals in group
i, CiSi(t)pij(t) denotes the average mizing rate group i susceptibles with group j individuals, and
CiSi(t)pij(t)Ij(t)/Tj(t) denotes the average miring raie with group j infectives. Multiplying this last
expression by ﬁj we obtain the average rate at which partnerships with j infectives lead to new i
infectives. Summing over all groups (j = 1,..., N} we obtain the total average rate of infection in group
i, that is, the number of new cases of infection per unit time in group i generated by the interactions of
group i susceptibles with infectives of all other groups. This time-dependent rate is prescribed by the
mixing matrix {pij(t)} (see Table 1). A summary of notation, and the explicit expression for the ith
incidence rate B(t), appears in Table 1. The full dynamic model is described by specifying the rates of
change, per unit time, of all the epidemiological classes. The formulae are provided in Appendix A.

The main objective of this paper is to specify ways of estimating the mixing probabilities pij(t).
Because the transmission-dynamic model given by equations (Al)-(A3) is deterministic, the
specification of the initial state of the system (i.e. the number of susceptible, infectives, and the
incidence at time t=0) uniquely characterizes all future states (i.e., all future population sizes of the
epidemiological classes S;(t), L(t), A,(t), as well as the sizes of the incidences B;(t)). Specifically,
knowledge of S(0), 1,(0), and the N2 quantities pij((l) uniquely determines the course of the model
epidemic provided that we have specific formulas for the pij(t.)’s. The mixing probabilities pij(t) (ij =
1,2,3,..N) depend on several factors, and generally are given by complicated functions of the sizes Ti(t)
of the N subpopulations and the necessary behavioral and epidemiological parameters. Hence to
forecast the state of the model epidemic at all future times, we need to have an explicit functional form
for these mixing probabilities. Such functional forms have generally been selected in some ad hoc

manner; in the next section we describe a systematic approach to mixing probability estimation.

Formulation of the General Estimation Problem for the Mixing/Preference Matrix
The mixing inter- and intra-group probabilities pij(t)’s must satisfy the following properties at all
times:
0< pij(t) < 1, hj=1,4-4N, i)
N.
’E:l p;(t) = 1, i=1.-N, (i)
j=

CiTi(t)Pij(t) = CjTj(t)Pji(t), i,j=1,4N. (iii)
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C,Ti(t) CjTj(t) =0 = pij(t) = pji(t.) = 0. (iv)
Properties (i) and (ii) assert that the pij(t)’s are probabilities. Property (iii) is a group reversibility
property specifying a conservation principle, that “The rate at which group i individuals mix with
group j individuals is the same as the rate at which group j individuals mix with group i individuals.”
Property (iv) says that some populations may become extinct leaving no individuals to mix with. In
the above model the Ci’s are assumed constant; if however they were allowed to vary, then Property
(iv) would also express the fact that if C, becomes zero, then the mixing rate of individuals in group i
is also zero, that is they no longer mix. The set {pij(t)} is also called a mixing/pair-formation matrix.

There is always a trivial solution of the above framework; when all the groups are isolated:

N ST
pij(t)'{l] it i

If all the Ci’s are positive then there is always a second solution: random or proportionate mixing.
In this case pij(t)’s are independent of i, and can be denoted by ’ﬁj(t), (which using properties (ii} and
(iii)) may be written in the form shown in Table 2.

The ﬁj(t)’s satisfy all the mixing properties and provide a useful null model in the study of
human sexual/social interactions. Despite the fact that humans do not mix at random, proportionate
mixing has been used extensively (and succesfully!) in addressing, through mathematical models, issues
related to the dynamics and management of communicable diseases (see 31, 32 and references therein).
However Sattenspiel {33,34) using models with social structure, has clearly demonstrated the
fundamental role played by nonrandom mixing ic disease dynamics. Consequently, nonrandom mixing
should no longer be ignored.

We remark that, in génera.l, the time dependence of the mixing probabilities is not direct, but, as
seen above, may rely on the time-dependent sizes of each subpopulation. As the size of each
supopulation changes with time so do the mixing probabilities, When we assume that the mixing
probabilities change over time as in “preferred” mixing (3,5,7,26-28,35-37) then we implicitly force
changes in behavior over time (as the reserved proportion for within group mixing remains the same
for all time) . The study of the effects that time-dependent behavioral changes have over the mixing
probabilities is, of course, of undeniable importance. We feel however, that this study should be
conducted in a framework that allows the free incorporation of arbitrary (observed and/or postulated)
patterns of change. Forms of mixing, like preferred mixing, while useful and appealing, unnecesarily
constrain the dynamics of the mixing subpopulations: Why should the proportion for within group

mixing remain the same when, as in the case of AIDS, the disease induced mortality is so high? In
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terms of our formulation, using preference (describe by the matrix ¢ below), preferred mixing
corresponds to the case in which the elements of preference matrix depend on the set {ﬁk(t): k
=1,2,..,N} in a very specific way. For a further discussion and elaboration of this point see (38).

Cleatly, to evaluate the effects of social structure, we need ways of representing, if possible, all
forms of time-dependent mixing in transparent and useful forms. We (17-19) have determined a
formula that represents all forms of mixing as deviations from random or proportionate mixing (for a
simple detailed biological derivation, see 42). This formula, giving the time-dependent mixing
probabilities, will be used as our model for mixing.

‘To describe this formula for the P; .(t)’s, we need some definitions. Let ﬁ-(t) denote proportionate
or random mixing, and ¢ = {¢u} denot.e a preference matrix (a measure of the deviation from
proportionate mixing). Let R;(t) (see Table 2) provide a weighted time-dependent measure of the i jth
deviation, due to the preferences ¢ik s, from uniform or homogeneous mixing. We require (as in 17-18)
that 0 < Ry(t) <1 for ali i = 1,2,..,N, and that at least one of the Ry(t) is greater than zero. In general,
the matrix ¢ is frequency dependent; consequently ¢ depends on the model (in our case on the set of
differential equations describing the epidemic) as the relative sizes of the different groups will change
with time. The nature of this dependency cannot be given explicitly (except for few special cases such
as in preferred mixing) and cannot be arbitrarily selected because the constraints on the R.’s have to be
maintained. These constraints imply that each of the expected values of the ¢ik’s-with respect to the
weights Ek(t), k = 1,..,N- must lie in the interval [0,1]. This situation suggests the following question:
Is there a rich enough class (for modeling purposes) of matrices ¢ that satisfy the required constraints
for all possible dynamical models? The answer is yes, a sufficient condition is that all the qﬁik’s are
constant and satisfy: 0 < ¢ik <1 i,j=1,2 3,., N. It is in this general setting, which is independent
of the choice of dynamical system, that the estimation problem is formulated. However, we first write a
formula that describes all mixing solutions pij(t) using appropriate measures of the deviations from
proportionate mixing (see Table 2). The constraint (iii) implies that tbij = ¢ji' i.e., the ¢'s are
symmetric (a rather more complicated relation must be assumed for the two-sex version of this

framework, see 43).

Remarks: Although the formula for pij(t) looks very complicated, it is actually quite intuitive (see 42).
. We note for example that random mixing, which corresponds to no-preference, is described by letting
all ¢. " equal the constant U (that is ¢, = U for i, k = 1,2,3,...,N). If we substitute these values into
the definition of Ry(t), use the condition 0% R;(t) <1, end note that mot all R;{t) can be
simultaneously equal to zero, then we must have that U satisfies 0 <U < L. Substituting U into the
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equation for pij(t), and performing some algebra one shows that pij(t) = Tij(t) for all time. Hence no
preference implies random or proportionate mixing (Figure 1). If on the other hand the ¢., ’s are chosen
to reflect some degree of preference for individuals belonging to the same group, i.e. like-with-like
mixing, then the mixing probabilities move away from proportionate mixing (Figure 4). Although the
Figures are quite appealing, some csution is in order, especially when we consider the fact that HIV
infection will usually prefigure a lethal disease, so that the dynamics and hence the mixing probabilities
can be significantly affected by disease-induced mortality in the high risk groups. Further, these Figures
only provide us with a snapshot at a particular time— ~we usually cannot deduce the plot of a movie by
a single-frame! Figures 1-6 provide snapshots, at different times, of two different families of pij(t)’s .
Finally, we note that by choosing the ¢ik's to be (possibly distinct) constants for all time, we are
implicitely assuming that the preferences of individuals do not change over time, or equivalently, that
we have formulated the mixing probabilities in terms of the initial preferences (or initial deviations
from random mixing). We will take advantage of our choice of constant ¢ matrix to estimate the d’ik’s
from a single sample, i.e. a single set of values of pik(ﬂ) data, which is denoted by the N x N matrix of
constants {dij}' To model changes in behavior we will have to model the ¢ik's as time dependent
functions; this would however require data that are not at present available. If, however, we only want
to explore the effects of theoretical behavioral changes, we can accomplish this through the use of a
time-dependent preference matrix and time-dependent average rates of partnership change.

Estimating the matrix ¢ from one sample
Qur objective is to calculate a set {¢ik} which minimizes the distance between {d;}, the data,
and the model {pik(O)}. The {éik} must be bounded, ie., 0 < ¢, <1, and symmetrical ¢, = ¢, , for
all i, j =1, 2, 3,..., N. A reasonable choice for the objective function is

N N
Si(e5h) = 3 D (- py)’, (1)

i=1j=1
that is, the mean squared residual between data and model (at a fixed time, usually ¢t = 0) used in
nonlinear regression. However, numerical simulations show that for symmetric {daij}, not surprisingly,
(1) has an infinite number of solutions. The model is underidentified with respect to the data from a
single slice of time. There are N constraints on the pij(O) (from Property i) and N{N-1)/2 from
Property iv, while the the matrix ¢ is only constrained to be symmetric with entries in [0,1]. Thus, the

same minimum value of Sl can be achieved in an infinite number of ways. Even worse, many or all of
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these may involve ¢ij that do not lie between 0 and 1, the assumed acceptable region. In mathematical
jargon the solutions lie in a surface. This lack of uniqueness does not contradict biological thought as it
can be seen from the population genetics literature regarding the relationship between mating
preferences and mating patterns (see 44-45, and references therein). For example, assortative mating
preferences may generate (due to frequency and density dependent effects) random mating patterns.
This is also (not obviously) the case for our general mixing matrix {pij(t)}. Recently, it has been
established (see 46) that all constant ¢ matrices that lead to random mixing live, in the 2-group case,
on a complicated surface in a three-dimensional space.

Of-course, in general this problem of non-uniqueness arises only when we have an estimate (from
data) of {p .(t)} at a single time. I{ one or more subsequent estimates of {p (t)} are available then,
provided t.he {p (t)} are also estimated, the objective function S; has a umque minimum. The
collection of longxtudmal {pij(t)}, {pJ(t)} and {C (t)} data constitutes a formidable task, as witnessed
by the fact that estimates for a single time have not yet been achieved. In this Section, we introduce a
technique for making the most of a single “time-slice” of mixing data, which allows us to partially
avoid the non-uniqueness and non-boundedness problems described above. The main objective of
introducing a method for estimating the matrix ¢ is to formulate the problem, to illustrate potential
sources of difficulty, and to instigate further research in this important theoretical and practical
problem. We do not wish to imply that the method of this article gives accurate results but rather to
illustrate a possible approach.

We do this by introducing a “penalization” factor to the fitting procedure, somewhat in the spirit
of those used for the smoothing of spline approximations. Formally, we replace the objective function

Equation (1) by the new peliturbed objective function
S{es)) = Syegh) +ASpllgg)), )

where SI({daij}) is (1) and S2“¢ij}) is an appropriately chosen penalty function. Unfortunately, there

is not a natural choice, and different choices will lead to different solutions. However, we feel that this

problem is too important for us to simply throw up our hands in dispair. The choice in this paper (for
illustrative purposes) is arbitrary, namely

%2 Z(du 4

Sp({4)) = < , I €)

@
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in which @ is the the average of the N? ¢-- values. The absolute value ¢ is used because we wish to
keep 5, positive, and negative ¢ may enter dunng intermediate steps in the fitting procedure. This
can introduce biases and may even lead to negative $. The parameter ) is a nonnegative penalization
parameter. It is not hard, however, to think of alternative (possibly more appropriate) penalty
functions. For example, we may wish to choose the constant ¢ matrix that is “closer™ to a ¢-matrix
that gives rise to random mixing. This ¢ matrix could be defined by letting ¢ij = & (the average of
the N2 #;; values) for all i, j = 1, 2,..., N., and then using

Sy{eh) = ;};i f:(a -4y -

i=lj=1 \91'
instead of the form used in Eq(3). We use (3), an arbitrary penalty factor, as w¢ only wish to provide a
solution to the problem of estimating the mixing probabilities. There are),course other thecretical
approaches to the definition of a penalty function for the estimation procedure of this article, and
likewise there are alternative techniques (requiring some specific assumptions), such as Maximum
Likelihood Estimation, that could also be applied. We have began our work in these directions
motivated by the fact that a unigue acceptable solution to the fitting procedure can actuaily be
identified from a single sample.

For large A, 5; becomes irrelevant to the minimizing process, and we obtain ¢ij ~ dij’ a result
which will be unique and properly bounded, but useless for dynamic modeling because the {dij} may be
very far from the {p .}. As ) is reduced towards zero, the contribution of So drops accordingly, and
minimization of Equa.t:on (3) give us a fit of {p } to {dj;} (the lower S; the better the fit), with the
contribution from Sq providing a unique solution but reducing the quality of the fit. Thus we can get a
unique set of {(bij} by paying the penalty of losing the best fit, for smali enough A.

The problem of [0,1] boundedness of the {¢ } remains. The best we can do here is simply to use
as the “best fit” the {¢;: } for the smallest A where both the uniqueness and boundedness are not
violated. We call this va.lue of A = A, Fluctuations on the value A; will be a function of the values of
{p (t)} {ﬁ ()}, and {G; (t)}, but for well-posed problems A, seems usually to be between 0.0 and 0.1.
In Appendlx B, we describe the algorithm that we utilized in this estimation procedure.

We stress the fact that the choice of the penalty factor is arbitrary. Our main objective is to
provide a solution to the problem of estimating the mixing probabilities. We re-emphasize that our

research is motivated by the fact that a unique acceptable solution to the fitting procedure of our

model can actually be obtained from a single sample. e
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Examples

In this section we illustrate our methods for three different values of N, namely N = 2, 3 and 6.
We used published “data” that was arbitrarily construcied using (in some cases) some partial
information. At present there is no data on the matrix pij(t)’s at any particular time for any set of
interacting subpopulations, that is, we do not know who is mixing with whom. Castillo-Chavez (in
collaboration with Schwager and Crawford, see 47-48) has just conducted a survey on sexual behavior
at Cornell University. Castilio-Chavez (in collaboration with Rubin, Shyu, and Umbauch, see 49, 50)
has obtained some estimates (under some restrictive assumptions) of mixing patterns for college-age
students. The estimation of these particular mixing matrices is extremely difficult because (among
other factors) the lack of information on size of “external” mixing populations, that is, the lack of
knowledge on the size of the subpopulation of non-college sexual partners of those (sexually active)
college students that participated in the survey. Because of our use of “pseudo-data”™ our results should
not be representative of any realistic situation. It is only used for illustrative purposes.

The estimation works with different degree of success in all cases. However, increasing the
dimensionality implies, in many realistic situations, smaller values for the mixing probabilities {dij}
than would probably be obtained from survey data. Small mixing probabilities place limitations on the
applicability of our one-parameter () penalization procedure for estimating the {pij(O)} from a single
sample. A more detailed discussion of these and other issues related to our approach is found in the

pext section.

N=2

This is the simplest example of a mixing framework, corresponding to a “core group plus other”
classification. We use the parameter and “data” shown in Table 3. These data are extracted from (39),
the dij are just arbitrary perturbations from random mixing. The 2x2 is a special, simple case, and the
behavior is straightforward. Figure 7 shows the variation of total S and of S; as A is decreased from
1—~ 0. We note that S and Sl here are the respective averages of 5 replicates (a set of 5 randomly
chosen initial guesses for the daik’s were taken). Here 5 is almost constant, dropping a little as A
0t (i.e. A approaches 0 while taking only positive values) and total S is almost linear. For large X,
what we see is the minimization of Sy, with Sl almost constant. This means that we fit ¢ to d
directly, and that almost any fit is about as good or bad as any other when we consider the value of
Sy. The ) is not obvious from Figure 7. We must look at the estimated {¢-u} themselves for this, In
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this simple case we do not run into the problem of unacceptable ¢’s as A 0%, where there is a region
in which uniqueness is lost. This region where uniqueness is lost is more sharply defined in Figure 8,
where we have plotted one of the ¢’s (qbll in fact) against A. ¢4 decreases with decreasing A, until we
hit A = A, after which the various different ¢ solutions introduce uncertainty. In this case the A,

can be identified with high degree of accuracy.

N=3

Again we performed a series of runs, taking 5 replicates at each A to test for uniqueness, and
noting where the ¢-acceptability was violated. Figure 9 shows the S and 5, average cases. For large A
(i.e. A = 1) they are similar to those of Figure 7 for N = 2, but curves defining S and 8; as A — ot
become more nonlinear in appearance. Again note that even for nonunique selection the Sl are the
same, and obviously as A gets smaller, 5 and S approach a common value. By plotting ¢, against A
(Figure 10) as an indicator, we can see that A, must be very small in this case (mainly because the dij
are not uniformly near zero or 1). A simple test to hunt for A; consists of looking for values of A for
which —« < ¢ij < 14 ¢, 0< e <<l. We have observed that ¢’s around 106 geem to work well.

Here we have a well-behaved solution with low A, and relatively good fidelity of estimated p’s to
data.

N=6

This case is partially based upon the artificial test data of Anderson et al. (7). The dij they used
lie in the region where th!.:' problem of unacceptable and non-unique values of ¢ij (obtained by our
algorithm) is more severe (see the discussion in the next section), so we have chosen to use the same
‘p‘j(O)’s, but have pseudo-randomly selected the rest of the required data. The mixing probabilities given
by the matrix d ={dij}) are “zandomly” selected while we require that the entries satisfy the properties
(i) and {ii) (they are probabilities and the rows of the matrix d sum to one.)

This case represents a severe test of the ¢ estimation technique because the d’s being pseudo-
randomly chosen may not reflect viable forms of mixing that would impose some structure over {he
¢i J’s. In this case, some of them are very small, which tends to enlarge the range of A where the
values of the ¢’s are unacceptable, hence increasing A.. Figure 11 shows how S and S; vary with A.
We use the data of Table 5 to illustrate the shortcomings of the method. For large N problems, it

becomes difficult to find a A. small enough (see Figure 12) that the fit of the estimated values of the
p's given by the matrix e ={°ij} to the data (matrix d) may be acceptable for dynamic modeling
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purposes. Until large N techniques are developed and/or more longitudinal data become available,
highly aggregated models probably represent the upper limit of modeling. Based on our earlier work
(6,14), we have began to work on alternative solutions for large N. For example, we may constrain the
q&ij’s to a class, say ¢ij = ¢ (|i-j|). This would reduce the number of terms to estimate, and provide
an “automatic” penalization function. In fact, to guarantee uniqueness, it is clear that for N = 2 a one-
parameter ¢ is required while for N = 3 a 3(or less)-parameter ¢ is required. From published data on
sexual behavior we may (in particular cases) postulate a realistic parametric ¢. For example, our
analysis (49, 50) shows that there is a strong like-with-like component in the mixing patterns of college
students- (not necessarily on their preferences). This pattern may be the result of a very complex or &
very simple ¢ and models can help us identify “simple” ¢’s and hence help us formulate testable
preference hypothesis. The measurment of preferences may be less difficult from the technical (and
unfortunately the political) point(s) of view.

Discussion

There are three important comments on the penalization technique teé% which must be
borne in mind. First, the quality of the output must be entirely dictated by that of available data.
Primarily, this means that there is & limit to how good a fit can be on the basis of just a “one-time”
slice of data. In many cases the matrix of estimated values of pij(O)’s, namely ¢ = {eij}’ which we
would wish to use as initial mixing values in a dynamic model (see Appendix A), will be unacceptably
far from the original dij' There is no magical way of getting around this—insufficient data will always
wreck beautiful models. Qur investigations suggest that this problem becomes marked at larges values
of N, because in many mst.ances unacceptable ¢ij values occur while X is still not small enough, For
larger N, the constraint of having only one penalization parameter to vary becomes too restrictive, as
small d; (which occur more often for larger values of N) tend to lead to larger values of A; in order to
remain within the region of acceptable values of the ¢>ij’s. This is a common problem in the biological
and social sciences involving the tradeoffs of using “realistic” (large, many parameters) versus tractable
(small, few parameters) models. In many instances tractable models are more efficient (40,41), and our
simulations suggest that N =~ 5 is about the upper limit of groupings for which parameters may be
estimated on the basis of one “time-slice,” using this penalization method. This has important
implications for modelers and social scientists.

The second comment is not unrelated to the first, and concerns testing the penalization technique.
Any evaluation requires data, which we do not yet have, so artificial or simulated data mbst be used.
Caution is advised: the obvious temptation is to choose a set of test {pij} which already satisfy the
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constraints (i-iv), and then estimate the {daij}. In fact, the use of perfect data to test our algorithm is
the worst possible thing to do. The reason for this is intimately related to the problem of the infinite
number of solutions to Equation (1), because in the case of perfect data, the {pij(ﬂ)} can match ezactly
the {dij}, the estimator is operating in a regime where non-uniqueness applies even for rather large A,
and unacceptable {qSij} are common. It is thus almost impossible to get a good estimate of {pij(ﬂ)}.

The third comment is not unrelated to the previous two, and concerns the estimation of the
mixing matrices from available data. The number of parameters involved in the estimation of the
matrix {dﬁ} increases considerably with N. Hence, from this practical point of view it becomes
unrealistic to consider more than six groups (see 48). If the objective of developing models for AIDS is
to produce some possibly useful results, we must include these data-oriented considerations in our
theoretical studies.

We conclude with some comments regarding the approach of this article. There are two features
clearly and sharply illustrating the limitations of the technique, which are useful in deciding its
applicability in any given situation. We would like to reiterate that these problems mainly occur
because we are trying to estimate {¢ij} from data at a single “time-slice.” Two {pij(t)} estimates at
different (but fairly close) times, even if rather poor, will be of greater utility than one very high
quality sample, precisely because the {¢aij} can take so many possible values.

We are at present developing alternative techniques to get wij} estimates from one-sample data,
and are also constructing the most robust surface-fitting schemes necessary to get a good estimate from
the multi time-slice data. We are also using the two-sex mixing models (19, 43), for which the
corresponding {¢ij}, is not symmetric to test this method for heterosexual populations.
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Appendix A
Basic Transmission Model for HIV-Dynamicsnobold

The model described in the text intentionally omits several important factors
(epidemiological, demographical, etc.) because our main objective is to address the general

estimation problem associated with the problem of mixing. The model may be written

ds,(t)

—3i = Ai - Bilt) - #5,(1) AD
i:lq!EI'O(ti) = By(t) - (4 + o} Ii(1) (A2)
dA-——d"—t(t) = aili(t) - miAi(t), i=1,2,-N . (A3)

This mode] assumes constant removal rates from the infective classes into the AIDS classes. This
assumption is certainly unrealistic as it implies a negative exponential incubation period

distribution for each group. For more realistic incubation period distributions see (23-

24,29,30,42). The expression for the ith incidence rate B;(t) is described in Table 1.
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Appendix B

Algorithm
We may now specify exactly how to get our best estimate for {pij(ﬂ)} which we would be
used in a dynamic mathematical model such as the model described in Appendix A. The
procedure may be implemented fairly painlessly using a standard statistics or data analysis
package such as GAUSS, SYSTAT, SAS, etc. We used GAUSS. For clarity we describe the
simplest version. Features of packages like GAUSS can easily help us to simplify this algorithm
through the direct handling of matrices.

. N = the number of groups

P ﬁj(t) = 1-dimensional array of N proportionate mixing fractions
d

d; = 92-dimensional array of NxN observed mixing fractions data

s ¢= ¢ij = 2-dimensional array of NxN parameters to be estimated

e Chooose a value for the penalization parameters A

. é= éij = 2-dimensional array of NxN initial guesses for {¢:ij} required by
minimization algorithm.

. Minimization. In Gauss, this requires the single statement
{$:8 45 H} = OPTMUM (. &<procedure name>).

In the last step we input the array ¢ and &<procedure name>, a pointer to a GAUSS
procedure writien t.o‘calculate §=8; + A 8y, The output is ¢, the matrix of ¢’ij values; 8_ . ,
the minimum value of S (as in Equation 2), ; dS, the local gradient of S at Smin‘ which should
be precisely zero at a local minimum; and H, the “Hessian” an NxN matrix of covariances of
the distributions of the matrix of estimated {¢ij}.

. Qutput e, (the matrix of {ei:}, the estimated {pij(O)}), ¢, 8y, Sq, and selected surnmary

statistics, at the minimum.

We found that in many cases, the fairly standard optimization design of starting with the
method of steepest descent, and then moving to a more efficient algorithm when convergence is

steady but slow worked well. Near )., many iterations may be necessary, and someétimes only

the steepest descent method guaranieed convergence.




Formula for Bj(t)—the i® incidence rate.

C;Si(t} = Susceptible partnerships from group i

ﬁj = Probability of transmission per infected group j-partner
Li(t)
-TJ:E)_ = Proportion of infected people in group j

]

E(t)

ﬂjﬁj = Proportion of infected people in group j
]

capable of transmitting the disease
pij(t) = probability of choosing a partner from group j:

this is how a “typical” group i individual mixes

with group j individuals

Therefore, if j = 1, 2,...,N, (i.e. N groups) then the number of new cases of infection

per unit time in group i is given by

N I(t)
= J
Bit) = G 5;(t) j§=1: pij(t) ﬂj m
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Table 2
One-sex framework
Proportionate or random mixing:
pij(t) is independent of i and is denoted by 3j(t.)
Cj Tj(t)

Blt) = g——
kz Cy Ty (t)
=1

General golution: one-sex mixin ir-formation problem:

t) Ryt
Fi(t) M‘Wﬁ

3 B ORY
k=1

p;(t)

Defipitions:

¢ = {¢ij} = Time independent initial preference matrix,

65.,\%

measures the deviation in preference from random mixing.

= ¢ji’ i.c. the ¢-matrix is symmetric. This is a consequence

of the required properiies of the mixing probabilities.

N
Rit) = 1 - kz: 'i)“k(t)d)ik : a weighted time-dependent measure of
=1

deviation from uniform mixing
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Table 3

Data for Example 1: case N =2

(Modified from Hethcote, sec (39))
Group Cj Tj P
1 1 per month 50, 400 0.4736
2 10 per month 5,600 0.52634
51 .49
d =

53 AT
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Table 4

Data for Example 2: case N =3

7 = [0.6 03 0.1]




Table §

Data for Example 3: case N =6

(The C; and the T;(0) are from Anderson et al. (M)
(The elements of d are chosen in a peendorandom form, see the text for details)

P = [0.02811 0.055087 0.07972 0.12573 0.34659  0.36898])
C;= [0.45000 3.200000 7.02000 13.8400 43.6000 81.2300]
T, = [0.55000 0.140000 0.10000 0.0800 0.076000 0.04000]

3.96x10° 2.88x10°0 6.80x10! 1.33x102 8.80x10°% 6.23x10°3
1.67x10°1 4.16x10°2 3.08x10°! 4.15x1072 4.86x10°% 1.87x1072
8.07x10-1 7.30x102 2.66x10°2 7.80x102 7.41x103 6.75x103
5.03x10°2 5.93x10°0 2.49x1071 6.05x102 9.97x10 2.90x1072

700x10°] 253x107l 3.11x102 5.61x10°° 8.29x1074 5.30x107*

175x10-] 3.68x10°1 5.92x102 2.85x107! 5.81x10% 5.49x1072
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Legends of Figures

Figure 1. Proportionate mixing 'ﬁj(O): o

i 0fori,j=1,2 3,4, 5; five groups.

We note that the T;(t) used here and in Figures 2-6 were obtained as solutions of an
epidemic model with variable population size for the spread of gonorrhea (our sole objective
is to illustrate the time dependence of the mixing matrix). We note that similar graphs
can be obtained using models for the spread of HIV/AIDS.

Figure 2. N = 5. Proportionate mixing p:(50): ¢.: = Ofori,j=1,2,3,4,5.
& i

ij
Figure 3. N = 5. Proportionate mixing ﬁj(IO(}): ¢ij = 0fori,j=1,23,4,5.
Figure 4. N = 5. Like-with-like mixing pij((}): ¢ij = 0fori,j=1,2,3,4,58;i#)
¢;= lfori=1,2,3,4,5
Figure 5. N = 5. Like-with-like mixing pij(50): "sij = Q0fori,j=1,2,3,45i#]
¢;= liori=1,2,3,4,5
Figure 6. N = 5. Like-with-like mixing pij(IUO): d’ij = 0fori,j=1,2,3,4,5;i#]
¢ = lfori=1,2,3,4,5
Figure 7. N = 2. Plot of the minimum values of S and S, against the penalization parameter
A. Data from Table 3.
Figure 8. N = 2. Plot of the mean value (5 replicates) of ¢, against A. Data from Table 3.
Figure 9. N = 3. Plot of the minimum values of § and S; against the penalization parameter
A. Data from Table 4.
Figure 10. N = 3. Plot of the mean value (5 replicates) of ¢,, against . Data from Table 4.
Figure 11. N = 6. Plot of the minimum values of § @d 5, against the penalization parameter

A. Data from Table 5.

Figure 12. N = 6. Plot of the mean value (5 replicates) of ¢4 against A. Data from Table 5.
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