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Abstract

The transmission dynamics of HIV/AIDS, and of sexually transmitted diseases {(STDs) in
general, is highly dependent on the population social/sexual mixing structure, i.e., how many
partners and who they are. STD epidemic models require mathematical descriptions of mixing
which must satisfy various natural constraints. A few such solutions to the one-sex
(homosexual) mixing problem have been found, and there has been some confusion as to which

is the “correct” one to use. Only one of the solutions is completely general, and in addition

reduces the problem of choosing a mixing function to one of choosing parameters.




The development of predictive models of the transmission dynamics of HIV, gonnorhea,
syphilis, etc. has been severly hampered by the lack of a mathematical framework allowing a
realistic description of social/sexual mixing. This is true both of one-sex (homosexual) and
two-sex (heterosexual) epidemics. The problem has been discussed in detail in the literature
(Barbour, 1978; Nold, 1980; Anderson et.al., 1989a,b,c; Blythe and Castillo-Chavez, 1989;
Hyman and Stanley, 1989; Castillo-Chavez and Blythe, 1989; Jacquez et.al., 1989; Sattenspiel,
1989; Busenberg and Castillo-Chavez, 1989) and arises because descriptions of mixing (who
everyone’s partners are) are specified only by a set of constraints (eg. Castillo-Chavez and
Blythe, 1989). In a one-sex population with N distinct groups, if pij(t) is the mixing function
(fraction of partners taken by people in group i among those in group j at time t), then the
constraints amount to making the {pij(t}} a set of probabilities, conserving the number of
partnerships between each pair of groups, and ensuring that no one can take partners from an
empty group. As N discrete groups are usually more convenient for practical modeling
purposes than a continuum description, we shall use the former throughout, noting only that
all results can easily be extended to the continuum case.

We shall also consider here only those miﬁng problems where all the possible links
between groups exist (i-e. individuals in any group may form partnerships with individuals
from any group, including their own). Some models with incomplete connectedness have been
formulated (e.g. Jacquez et.al., 1989) and the general case and its analysis will be considered
elsewhere (Blythe in prep.; Blythe et.al. in prep).

To date four solutions pij(t) to the one-sex mixing problem have been found (Table I).
The earliest, best known and most widely used is ((A) in Table I) proportionate or random
mixing (Nold, 1980; Hethcote and Yorke, 1984), where mixing among groups occurs in
proportion to the total number of partnerships formed by all the people in each group.
Although easy to apply, (A) suffers from the disadvantage that human mixing behavior is not
believed to be random. For this reason other solutions were sought.

In “preferred mixing” ((B) in Table I), the pij(t) are formed by having the members of
each group reserve a constant fraction of their partners among themselves, the rest being
spread randomly over all groups (Jacques et.al., 1988). Hyman and Stanley’s (1989) mixing
function ((C) in Table I) is a much more general form of pij(t)’ involving an arbitrary function
of i and j (in our notation; it was originally formulated in the continuum case). Koopman
et.al. (1989) also present a mixing model ((D) in Table I). In fact it may readily be shown by
manipulation that (D) and (C) are the same solution written in slightly different ways, and

interpreted quite differently by their originators. A recent approach due to Morris (pers.

comm.) is also a particular case of this type of solution.
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The fifth solution, ((E) in Table I) is generalized mixing (Blythe and Castillo-Chavez,
1989; Busenberg and Castillo-Chavez, 1989; Castillo-Chavez and Blythe, 1989). For a single-
sex population consisting of N discrete groups, within each of which all individuals have the
same level of sexual activity at any given time, and where they mix independently, (E) may be
shown to be the general solution (Busenberg and Castillo-Chavez, in press). All other
solutions may be written in this form, i.e., as multiplicative perturbations of random mixing.
The key to (E) is the set of parameters {¢ij}. These must be chosen such that none of the
functions {R;(t)} (see Table I} are negative. If the {¢ij} are constants, then because they
prescribe the multiplicative perturbation, they prescribe, in some sense, the deviation from ran
dom mixing (in some cases a rough measure (Blythe and Castillo-Chavez, MS) of this
deviation is the simple range émax - ¢min)' We discuss the biological and behavioral
interpretation of the {qbij} elsewhere (Palmer et.al., in prep.); roughly speaking, each ¢ij
specifies the degree of non-randomness in the interaction link between groups i and j.

Demonstrating that the other solutions are special cases of the General Solution (D)
involves finding a set of {¢ij} which recover them. The third column in Table I lists
appropriate {¢ij} for the various solutions. Note that as the relationship is non-unique {Blythe
et.al., MS), there exist many distinct sets of {d:ij}, which will recover any particular solution, if
information on actual mixing proportions {pij} is available only at one point in time. This is
particularly clear for proportionate mixing. Note also that the equivalent {qbij} for “preferred
mixing” (B) are time-dependent. Hence the distance from random mixing in this case varies
with time (not surprising as the reserved fractions do not depend on group population sizes).

Solutions (C) and (D) in Table I, and Morris’ (pers. comm.) solution which has ¢; = c (all
i) and {ij = a set of constants (which may be interpreted as saying that all individuals have
exactly the same number of gocial contacts per unit time ¢, and that given they meet, an
individual from group i and one from group j will have sex with fixed probability fij)’ are all
clearly members of the same family. Note that if the general solution (E) is written in the
form pij(t) = Gij(t) ﬁj(t), then the (C/D) family is

e = 6 (1)
= Pk

It may readily be shown that if fij = fji > 0 and

N
3 £ P, <2 (2)
k=1 iktk




then (1) is a representation of the general solution. It should be clear, however, that constant
{fij} implies time dependent {¢ij} (unless they are all equal, i.e. random mixing), so that the
degree of non-randomness in each inter-group link changes with time. This representation thus
has the same problem as does “preferred mixing”: by holding an arbitrary set of parameters
constant, the “distance” from random mixing, as prescribed by the {¢ij}, varies with time.
Note that simply making the {fij} time-dependent in an arbitrary manner (e.g. Koopman
et.al., 1989) does not remove this problem; only choices of time-dependent {fij} which are
congonant with constant {qSij} maintain a constant “distance” from random mixing.

The source of the problem may be made abundantly clear as follows. Suppose (as do
Koopman et.al., 1989, and Morris, pers. comm.) that sexual interaction is comprised of two
sepa.réi:é processes. First, individuals mix socially, so that we have a “pre-cursor” social
mixing matrix, {pij(l)} say. Then, individuals who have met decide whether or not to have
sex, according to some set of rules which may be summed up in some matrix. Combining
these two processes produces a sexual mixing matrix, say {pij(2)}' This has two effects: first,
the number of sexual contacts per unit time for each individual becomes, in general, a function
of time (less than or equal to the number of social contacts in the “pre-cursor” mixing); this
presents no problems. However, arbitrary choice of sexual acceptance para.met.efs has a second
effect, namely that because such a description does not take account of group-size changes
with time (or does so at best in an ad hoc manner), the overall mixing process {pij }ina
sense decouples individual behavior from population dynamics. For example, the implication is
that if a group i and a group j person meet, their overall probability of becoming sexual
partners is unrelated to the abundance or scarcity of individuals in those, or any other, groups
(or related in an ad hoc manner, c.f. Koopmen et.al., 1989). This produces time varying {¢ij}.

We feel that selection of sexual partners from social contacts will depend on the relative
abundance of perceived groups; for example, people becoming more selective if a desirable
group is abundant, and vice versa. Under the constant - {¢ij} hypothesis, there is an
underlying, invariant structure of mutual absolute preferences amongst all the groups in the
population. Changes in activity (the {c;(t)} and/or group sizes (the {T;(t)}) have no effect on
this absolute preference structure. Where the {fij} are constant, even if the {c;} do not
change, the underlying preference structure does, and may be seen to do so as the {qbij} change
with time. Ar_bitra.rily changing {fij} have exactly the same effect.

We note in passing that the empirical approach of Gupta et al. (17), where the {pij(t)}
are held constant at their initial (t=0) values by judiciously altering the group activity levels

({¢;(t)} in Table 1), does maintain a constant distance from proportionate mixing, but only at

the cost of altering the proportionate mixing functions ({p;(t)} in Table I) themselves through




their assumption of adaptive sexual behavior change.

In conclusion we offer the following. If, in the absence of social/medical factors which
cause a change in absolute preference, individuals in the population have some ranking of other
individuals a priori as regards desirability for forming sexual partnerships, then a constant
{¢ij} description should be (at least approximately) correct. The implication is that the
general solution (E) should be used as it stands for both modelling (Blythe and Castillo-
Chavez, in prep.; Palmer et.al. in prep.) and estimation of mixing structures (Blythe et.al.,
MS). The alternative representation (using {fij}) is fine if the {fij(t)} are known for all time,
and are equivalent to constant {d:ij} - but in that case no advantage is to be gained from not
using (E) directly. In the apparently beguiling case where the {fij} are constructed from
behaviors in a succession of mixing steps (4 la Koopman et.al., 1989; Morris pers. comm.), the
process of decoupling the steps (e.g. meet, talk, have sex) removes any invariance in the
underlying structure of preference for sexual pariners per se. We would suggest that while
there is a great deal of choice for solutions of the mixing axioms, for descriptive modelling or

parameter estimation the general representation solution (E) is the only one that makes sense

under all contingencies.
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Table 1

Relationship Between Mixing Functions

Mixing function pﬁ(t) ¢ii(t)
c.(t)T.:(t)
{(A) Proportionate ﬁj(t = -—%——J~— a, all i,
mixing” P ck(t)Tk(t) 0<ax<l
k=1
(1-6)3;(1) )

mixing®

(C) Stanley’s
function®

(D) Koopman et.al.

(E) General

solution

W .
1-f,)p
kgl( WPE(t)

i FiP j(t)
P ) T

kElFikl—)k(t)

y >

Py (1) = pij(t)l—’i(t)/'ﬁj(t), j<i
kgl fikﬁk(t)

~ Ri(t)Rj(t)
B0 e + )

Any solution of n
Fij=R'i (t)Rj(t)+¢ij(t)k§1Rk(t)pk(t)

where

n
R;(t) = l—kglpk(t)d’ik(t)
fij = Fij in (C)
Any ¢i-(t) such that R.(t)>0, all i

and t, 4t least one R.(t) > 0,
¢ij(t) = ¢ji(t), all i, J, t.

Particular solutions (A-C) and the general solution (D) to the N-group one-sex mixing
problem. The {p::(t)} is the mixing matrix or function itself (explanation in text), and ¢..(t) are
parameters used B the General Solution to recover the particular solutions. Y

s c:(t) and T;(t) are respectively the number of new partners taken by an individual per unit
time and the total population of group i.

» 6ij = 1ifi = j, zero elsewhere

¢ originally formulated in continuous case
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