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Abstract

Epidemiological and behavioral factors crucial to the dynamics of HIV/AIDS include long and
variable periods of infecciousness, variable infectivity, and the processes of pair formation and
dissolution. Most of the recent mathematical work on AIDS models has concentrated on the effects of
long periods of incubation and heterogeneous social mixing in the transmission dynamics of HIV. In
this paper we explore the role of variable infectivity in combination with a variable incubation period
in disease dynamics in a homogeneously mixing population. We keep track of time since infection, that
is, the age of infection of infected individuals, and assume a nonlinear functional relationship between
mean sexual activity and the size of the sexually-active population T that saturates at large values of
T. We show that if the basic reproductive number Ry < 1, the disease dies out, whereas if Ry > 1 the
incidence rate converges to or oscillates around a uniquely determined nonzero equilibrium. We study
the stability of this equilibrium and provide the analytical results necessary to explore the region of
parameter space in which this equilibrium is locally asymptotically stable. We observe that oscillations
cannot be excluded in all cases but may occur if the variable infectivity is concentrated at an early part

of the incubation period. Whether oscillations are possible in the presence of two infectivity peaks as

observed in HIV infected individuals has yet to be determined.




1. Introduction

Declines in the incidence of a particular disease may be difficult to explain in some cases, for
example, one may ask whether the recent decline of AIDS (acquired immunodeficiency syndrome)
incidence in homosexuals in the U.S. is due entirely to effective behavioral changes and preventive
measures or whether is partially due to the oscillatory behavior inherent in disease dynamics: Our
results strongly suggest the possibility of observing oscillations in the incidence rate because of
interacting epidemiological and behavioral factors,

Early analyses of similar models (see Castillo-Chavez et al., 1989a, b, c, d) has shown that the
long incubation period (time from infection to appearance of symptoms) of AIDS cannot excite
oscillations alone (at least not by a Hopf bifurcation). The early HIV (human immunodeficiency virus,
the etiological agent for AIDS) infectivity experiments of Francis et. al. (1984), Salahuddin et. al.
(1984), and Lange et. al. (1986) suggest the existence of two infectivity peaks, one taking place a few
weeks after exposure and the other one year or so before the onset of “full-blown” AIDS. Numerical
simulations of models that incorporate variable infectivity (see Anderson and May 1989, Blythe and
Anderson 1989b; Hyman and Stanley, 1988, 1989) demonstrate that the initial transient dynamics are
very sensitive to the timing and the shape of the first peak; however, all show the same qualitative
dynamics (even in the presence of heterogeneity in sexual behavior), that is, a steady approach to a
unique endemic equilibrium. The model of this paper extends the model of Castillo-Chavez et al.
(1989b) by incorporating infection-age-dependent-infectivity to study analytically the validity of these
results in the presence of variable infectivity.

Various mechanisms have beenr found to cause undamped oscillations in time-autonomous
epidemic models (see Hethcote et al., 1981, and Hethcote and Levin 1989, for surveys). We particularly
mention the work by Gripenberg (1980, 1981), Diekmann et al. (1982, 1984), and Hethcote and Thieme
(1985), because they find periodic solutions for models with infect.iqn-age-dependent infectivity. The
most commonly found reason for undamped oscillations is the return of infectives into the susceptible

class with or without having spent a period of immunity. Anderson etf. al. (1981) have found

undamped oscillations in a fox rabies model, which were caused by the combined effects of ‘the rapid
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turnover of the fox population and the relatively long latency period of fox rabies. Liu et. al. (1988,
1987) have shown, in their work on influenza, that generalized nonlinear incidence rates can also
generate sustained oscillations. Castillo-Chavez et. al. (1988, 1989) and Andreasen’s (1988, 1989) work
on influenza strongly suggests that the interaction between multiple viral-related strains of influenza
type A, the host immune system(cross-immunity), and age-dependent host’s mortality are needed to

generate sustained oscillations.

All these mechanisms obviously do not operate in AIDS dynamics. Further, the models described
above (except for the rabies model) assume that the disease is essentially nonfatal and the population
size is constant, assumptions that are not realistic in HIV modeling. In our model the occurrence of
undamp;;l oscillations will depend mainly on the foliowing epidemiological entities: the length
distribution of the sexual activity period of exposed individuals, the distribution of infectivity over that
period, and the functional relationship between the per capita number of contacts C = C(T) and the
number of sexually-active individuals T. Undamped oscillations can be ruled out if the probability
that an infected individual is still sexually active is a convex function of infection age or if the
infectivity is sufficiently evenly distributed over the activity period (as is already suggested by the
findings of Castillo-Chavez et al. (1989)) or if C(T)/T is close to the constant, i.e., there is no
saturation in partner acquisition. Undamped oscillations may occur if

(i) the probability that an infected individual is still sexually active is sufficiently far away from

being a convex function of infection age.

(ii) there is sufficient saturation in partner acquisition, i.e., the number C(T) of actual partners per
capita is rather independent of slight changes in the number of available partners T.

(iii) the period of sexual activity is not too short for infected individuals in relation to uninfected
ones,

(iv) the fraction of infected individuals in the sexually-active population is neither too low nor too
high.

(v} the infection-age-distributed infectivity is concentrated at an early part of the incubation period.

.

The conditions (i) and (ii) appear to be realistic for AIDS; condition (v) is rather extreme and
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had to be chosen because this paper completely relies on analytical methods, and represents our first
step towards the study of the effects of variable infectivity. Sustained oscillations can be ruled out if
any of the conditions (i) — (iv) are not satisfied. Future numerical work has to show whether or not
undamped oscillations also occur for infection-age-distributions with an early and a late peak.

Apart from this we can show the same phenomena as for the by Castillo-Chavez et al. model
(1989b), that is, we can identify a basic reproductive numer R, in terms of the model parameters such
that for R, < 1, the discase dies out and for R, > 1, the disease persists in the population. In the
latter case there is a unique endemic equilibrium which is locally asymptotically stable for R, slightly
larger than 1, but which may lose stability if R,, increases. Even if unstable, the endemic equilibrium
may be some indicator of the severity of the disease because (as we show) the incidence rate, for
example, oscillates around its equilibrium value.

This paper is organized as follows: Section 2 introduces our model with infection-age-dependent
infectivity, Section 3 deals with the existence and stability of stationary states, Secion 4 discusses the
epidemiological significance of our stability results, Sections 5 and 6 establish the validity of cur
claims, and Section 7 discusses the significance of our results and our plans for future work. Most of the

results of this paper were stated, without proofs, in Thieme and Castillo-Chavez (1989).

2. Model with infection-age-dependent infectivity

The transmission dynamics of HIV in a homogeneously-mixing male homosexual population is
modeled through the incorporation of the following ingredients:
¢ A nonlinear functional relationship between mean sexual per capita activity and the size of
the sexually-active population T. We assume that it increases for small population values
while saturating for large values of T.

¢ A stratification of the infected part of the sexually-active population according to infection

age, i.e., time since the moment of infection.
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‘@ An infection-age-dependent rate of leaving the sexually-active population due to disease

progression.

e An infection-age-dependent infectivity .

The model of this section shares the first three features with the models considered by Castillo-
Chavez et al. (1989 a, b, c, d) though the stratification according to infection age is not explicit there.
The key modification, infection-age dependent infectivity, has been added in order to study its effect in
combination with the other mechanisms. This model does not include heterogeneities other than
through the infection-age-dependent infectivity and through the population-size dependent per capita
average sexual activity C(T). Further, by restricting itself to the homosexual part of a population
which is.i'eplenished by constant recruitment, it does not reflect the joint effects of BRIV dynamics and
the population dynamics of its population (see Anderson and May 1989; Busenberg et al. 1989).

We divide the homosexually-active population under consideration into three groups: S
(uninfected but susceptible, that is, sexually active), I (HIV infected with hardly any symptoms), and
A (fully developed AIDS symptoms, and hence ill). A-individuals are assumed to be sexually inactive
and sexually-active individuals (S and I} are supposed to choose their partners at random (although the
rate of partnership change dependson T = § + I).

We use the following notation: t denotes time and 7 denotes time since the moment of infection.
Our time unit is given by the average length of the period of sexual activity for healthy individuals.
Individuals are recruited into the sexually-active population at a constant rate A, and the length of the
sexually-active period is exponentially distributed such that healthy individuals become sexually
inactive at a constant rate u, and since the average length 1/u of the sexually-activite period is 1, =
1. Infected individuals with infection-age r become sexually inactive by force of the disease at a t:;te

a(r), and consequently the proportion of those individuals still sexually active given that they were

infected r tirne units ago is given by
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We stratify the infected part of the population according to age of infection through the infection-age

density i(t,r), and therefore

=]

I(t) = J i(t,r)dr
]
denotes the number of infected individuals that are sexually active.
The proportion of sexually-active infected individuals with infection-age 7 in the age interval [r,

r467) is

i(t.r)
T(E)

with T = § + T being the size of the sexually active population. We assume that a typical susceptible

br,

(since we assume homogeneous mixing, everybody is typical) contracts the disease from a typical

infected partner with age of infection T at a mean risk A{r). The proportion of typical susceptible
individuals being infected at time t, under the condition that they had a sexual contact at that time,

is given by

w(t)
()’

where

o0

W(t) = «[o A(T)i(t,m)dT;

that is, W(t) weights each infected individual by his infectivity.

The mean per capita sexual activity is measured in terms of the mean number of sexual
contacts C(T) that a typical sexually-active individual has per unit of time. We assume that C(T) is a
function of the size of the sexually-active population: T = S 4 I. Putting all the above together, we
arrive at the following expression for the incidence rate (number of new cases of infection per unit
time):

B(Y) = C(T)S(H)

and we also arrive at the following model for the transmission dynamics of HIV/AIDS with infection-

age-dependent infectivity:

B A-B®) -sm); )

(% + '86?) i(t,7) = —(1 + a(r)) i(t,7) 5 @
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i(t0) = B(Y) = SIC(T() T2 ; ®)
T=1+S§; (4)
1= i(trdr; 5)
‘o
Wi(t) = ), A{T)i(t,r)dr ; (6)
da) = (™ a(e)ittr)dr - (L4+)AQ)
Jo

Despite the fact that A, the number of individuals with fully developed AIDS symptoms (that are
supposedly too ill to be sexually active), does not play any further role in the dynamics of the
epidemic:we give the formula for its incidence (new number of AIDS cases per unit time) because it
can be compared to data. AIDS causes a very high degree of mortality (most individuals with AIDS die
within two years of the appearance of severe symptoms); hence in our model v denotes the rate at
which individuals with fully developed AIDS symptoms die from the disease or from an opportunistic
infection.

Note that in contrast to earlier models of Anderson and May (1987), Blythe and Anderson
(1988a), and Castillo-Chavez et al. (1989a, b), this model does not assume that at the moment of

infection an individual follows a severe or a mild course of the disease. However, by assuming that

oo
J. a(r)dr < o,
this model, albeit with a different mecha.ni:m, takes into consideration the possibility that not all
individuals may develop “full-blown” AIDS.
We assume that o(7) is a nonnegative measurable function; A(r) is a nonnegative integrable
function of infection age, and that C(T) is a nondecreasing function of T, where C(T)} > 0 whenever

T>0. Later we assume that

_ C(T)
M(T) = -1
is a nonincreasing function of T, i.e., that C(T) increases in a sublinear way reflecting some kind of

saturation effect.

.
’

There are various ways of handling problem (1),---(6). The first reformulates (1),--,(6) as an
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abstract ordinary differential equation (see Thieme 1989a, b, in particular Section 7) providing a
dynamical system, in terms of S and I, useful in the study of the instability and persistence of
solutions. A second approach consists in integrating (1),---,(6) along characteristic lines (see Webb
1985), generating the same dynamical system but in a different way. Thirdly, one uses integration

along characteristic lines to reduce the system (1),--+,(6) to the following set of integral equations;

S=A-BsP +1,, (7)
V=BsP,, +1;, )
W=B+Q+1,, (9)
B = SM(S + V)W . (10)

We have used the following notation:

P () = exp(- J;a(s)ds) , (11)

Q(7) = M7)Pu (1), (12)

i
B+ P)) = [ B-oPe)s, (13)
fy(t) = (S(0) ~ A, (14)
f,(t) = L i(0,7- t)——i'f';—g:)t—)d (15)
f5(t) = J i(0,7-t)A(r )&ii;%(_)_d (16)
M(T) = %T) . (17)

Note that

fJ‘ — 0, t — o0, (18)

and that P, and P, are defined in analogy to P,.
Some of the expressions just defined above have intuitive meanings. For example, P,(s) = e™*

gives the proportion of healthy individuals that remain sexually active s time units after having entered

.
L]

the active population, while P, (7} gives the proportion of those infected individuals of infection age




7 that are still sexually active.

Substituting Equation (10) into Equations (7), (8), and (9) yields a system of Volterra integral
equations of convolution form for which a well-developed theory is available (see Miller 1971, or
Londen 1981); while the substitution of Equations (7}, (8), and (9) into Equation (10) yields a scalar
integral equation which is not of common Volterra type.

We can then easily check, from the various equations, that nonnegativity is preserved under the
solution flow. Integrating Equation (2) over r and combining it with (1) yields the differential
inequality

4T < A-T, (19)

that proﬁdes us with the important a priori estimate

S{t),I(t) € T(t) =S(t) + I{t) < A + (‘I‘(o) - A) et (20)
Using the theory found in Webb (1985) or Thieme (1985, 1989a, b) or applying standard fixed point
arguments to (7),---(10), one easily shows that our model is well posed (i.e., there is a unique
nonnegative solution for given nonnegative initial conditions). Furthermore, the mathematical theory
shows that the solution depends continuously on the initial conditions, and the functions S, I, W, B are

continuous and satisfy the estimate given by the inequality (20).

3. Stationary states, stability, and the basic reproductive number

In this section we concentrate in the study of of the existence and stability of stationary states,
that is, equilibria or time-independent solutions. It turns out that there are only two kinds of
equilibria: the infection-free state and the endemic state. Until recently, it was believed that most
epidemic models had at most two equilibria, an infection-free state and (under certain assumptions) a
unique endemic equilibrium. Earlier studies (see Hethcote and Yorke 1984, Castillo-Chavez ef. al.

1988, 1989, and references therein) supported this belief even for heterogeneously mixing populations;

however, recent studies (see Castillo-Chavez ef. al. 1989¢, d; Huang 1989; and Huang et. al. 1990} have
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shown that multiple endemic equilibria are possible.

Steady states are important because their existence is usually intimately connected to the basic
reproductive number Ry, which can be determined in terms of model parameters and because they are
candidates for the asymptotic behavior of the model. We show that for Ry < 1, the disease dies out
while for Ry > 1, the disease persists in the population. These basic stability results provided us with a
starting point for the development and evaluation of control measures, and has provide us with useful
results that have been applied in disease management (see Hethcote and Yorke 1984, and references
therein.)

When R, > 1, there is a unique endemic equilibrium which is locally asymptotically stable
provided‘iha.t R, is slightly larger than 1, but which might lose stability if Ry increases (see Section 4).
Even if possibly unstable, knowledge of the existence of the endemic equilibrium is very useful as it
provides us with an indicator of the severity of the disease because, as we show later, the incidence
rate fluctuates around the endemic equilibrium value.

Clearly, the system (1),---,(6) always has the infection-free state with coordinates
Sp=4A, Ip=0, Wy =0, Bg=0,i; =0, (21)
as a steady siate. However, to determine the existence of an endemic equilibria of system (1),:--,(6) we

have to look for solutions of the folowing nonlinear system of algebraic equations:

S* = A-B*, (22)
I*=B*P, ,(0), (23)
W* = B*Q(0), (24)
B* = %C(T*)W*, T*=S* 4T (25)

Here we have used the Laplace transform notation i.e.,

Q@z) = J-O e *TQ(r)dr , ~ (26)
Poyi(z) = L e TP, L (r)dr, .. (27)

only to simplify the notation.
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If we substitute Equation (24) into (25) and dividing by B* (which is assumed to be positive, as
otherwise there is no endemic equilibrium), we obtain the following stability equation:
_s* *1 A
1= S0(r40), (28)
hence reducing the study of the existence of endemic equilibria to the study of positive roots of
Equation (28). To facilitate the study of the roots of this equation, we introduce a dimensionless

quantity, namely the fraction of infected individuals,

= i (29)
T*

Manipulation of Equations (22), (23), and the second equation in (25) leads to the following

expressions for T

*
§—=l—-€, T = A . (30)

B 1+( 1 —1)(
i)a+1(0)

Substitution of (30) into (28) results in the following reformulation of Equation (28):

1= (1—5)(3( A )6(0), e
- (_1__. _ 1)5

Pa+l(0)

or alternatively we can also consider

S N
which we obtain by fitting (22), (23), (24) into (25). Hence we conclude that the existence of a unique
endemic equilibrium is intimately connected to the properties of C(T). Therefore, since C(T) is a
monotone nondecreasing function and since clearly 1>I‘3'(Jr +1(0), we have that the right-hand side of (31)
is a strictly decreasing function of £, and consequently, for £ = 0, the right-hand side of {31) gives the
basic reproductive number Ry of the disease-free population (in its equilibrium):

Ro = C(A)Q(0) . (33)
Biologically, R, gives the average number of secondary infections that a typical infectious individual

can produce if introduced into the disease-free population. A direct application of the iﬁtbrmedia.te

I
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value theorem leads us to the following existence result:

Theorem 1. If Ry < 1, there exists only the disease-free equilibrium. If Ry > 1, there is a unigue

endemic equilibrism.

Theorern 1 is a static resuit that does not provide us with a relation between the basic
reproductive number and the actual disease dynamics. It only provides us with information regarding
the existence of a unique state in which the disease persists. The following theorem, however, partially
connects the basic reproductive number to the HIV dynamics:

.

Theorem 2. Assume that Ry < 1, then the disease-free equilibrivm is globally atiractive. Specifically,
we have that
Bft), I{t), and W(t) — 0; and that S{t) - A when { — +o00.
Proof:. The proof follows through a direct application of Fatou’s lemma to (9) and (10), use of the
estimate (20), and the fact that C(T) is nondecreasing. We can easily see that
lim sup B(t} < R, lim sup B(t),
t—oo t-o0

from where the assertion of this theorem follows.

In most cases, it is not possible to obtain a global convergence result if Ry > 1. For this model,
however, we can show that if a trajectory is not attracted to the endemic equilibrium then it has to

oscillate around it.

Theorem 3. Let Ry > 1. The following holds:

(a) lim sup B(t) < B*.

t—o0

(b) Let A7) "ﬁ 0 and T} be the smallest 7 such that A(1) = 0 fora.a. 7> 7. Lel

T T

1.
j i(0r)dr > 0.
a
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Then
lim sup B(t) > B*.
l—rco
Proof. Let us show the validity of (b) first. If the assertion is wrong, we can find B < B* and { > 0

such that

B(t +5) » A—ﬁ(?-_l'? )C[A-—ﬁ(l—ﬁaﬂ(o))]x

(JtB(t + s - a)Q(a)a + JEB(S -a)Q(a + t)da)
] 0
fort > 0, s > t. It follows from the assumption in (b) that the initial infectives produce secondary
cases. Actually one can readily show that the existence of some § such that
B{t} > 0 for t > 5

and hence, if we choose s large enough we have that

ItB(s -a)Q(a+t)da > 0 forsomet > 0.
Since B < B*, one sees from :he expression for T* in (30) that

B(t+3) > 8 rB(t + 8- 2)Q(a)da + g(t)
with ’
AQ(O) > 1,g > 0,8 # 0.

It then follows from the celebrated renewal theorem — formulated by Lotka and first proved rigorously

by Feller (see Webb 1985, Theorem 4.10, for a proof and references)— that B(t) goes to infinity if

t—+-oo, in contradiction to our assumption.

To prove assertion (a) we proceed as follows: if the assumption in (b) is not satisfied there will
be no secondary cases and the disease will die out anyhow, and therefore we assume that (b) holds and

use the fact that

B = lim sup B(t) > 0.

t—oo

Applying Fatou’s lemma to (32) we find that '

I3
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B <o~ B !; - lsl‘1.4,1(0)) ¢ (A K- p"'“(o)))é(o)j

with
B = lim inf B(t) .
t—oo

Dividing this inequality by B, which is positive, and comparing it to (32) yields that B < B*.

Analogous staternents can now be derived for S, I, and W. Theorem 3 does not yet answer the
question of whether I, the total number of infected individuals, will be bounded away from zero if
Ry > 1, and whether this bound does or does not depend on the initial conditions. Both questions can
be better handled in the framework of dynamical systems theory, i.e., by looking at the formulation
(1), -+, {6) rather than (7), -+, (10). Fortunately, through Theorem 3 we satisfy condition (4.2) in
Theorem 4.1 of the persistence theory for dynamical systems found in Hale and Waltman (1989). This
theory allows us to show the existence of a positive lower bound for I(t). The argument goes as
follows: from the apriori estimate provided by (20) it follows that the solution flow has a bounded
attractor. The asymptotic smoothness of the solution flow can be established in the same way as in the
proof of the Proposition 3.16 found in Webb (1985), and we note that the boundary flow -1 = 0-is
attracted to the disease-free equilibrium. From the above discussion and Theorem 4.2 in Hale and

Waltman (1989) we obtain the following result:

Theorem 4. Let Ma) # 0 and ay be the smallest & such that Ma) = 0 fora.a.a > &. Let

1
(5.2) Jo I0,a)da > 0.

Then

&iminfI(t) > ¢ > 0
{—o0

with ¢ not depending on the initial conditions.

The persistence theory of dynamical systems does not give us information, however, as to whether B

and W are bounded away from zero too. o
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4. Stability of the endemic equilibrium: The epidemiology

The stability of endemic equilibria of epidemiological models is of biological interest for at
least two reasons. First, in case of locally asymptotic stability, in many instances it is the ultimate
state of the epidemic, though only a global stability analysis would provide a definite answer to this
question. In our model, this is a definite possibility, as there is only one endemic equilibrium and the
disease-free equilibirum becomes a repellor as soon as the endemic equilibrium comes into existence.
Secondly, if an endemic equilibrium is unstable, then undamped oscillations of the disease dynamics
a.roupd this equilibrium are very likely. From Theorem 3, one sees intuitively that local asymptotic
stability means that once the course of the disease comes close to the endemic equilibrium it remains
close and finally approaches it. The precise definition can be given most nicely in reference to the

model formulation (1), ---, (6).

Definition (a) The endemic equilibrium S*, I*, W*, B*, i* of (1), -+, (6) with
i*(a) = B*Pa+1(f)
is locally asymptotically stable if and only if the following two properties hold:

(i) For any ¢ > 0 there is some § > 0 such that if

|S(0) - s*|+ Im|i(0,a) ~i*(r)[dr< 6
then ’
[S(t) - $*|+ lei(t,r)—i*(r)ldrg e forall t>0.
(ii) There exists §; > 0 with the prolerty that if
oo
[S(0) - 8*|+ JO |i,r) - i*(r)|dr < &,

then

|S(t)——S*|+‘[wli(t,r)—i*(r)|dr-+0 for t—oo.
1]




(b) The endemic equilibrium is called wnstable if the following holds: there exists a sequence of

solutions S, i, to (1), ---, (6), a sequence of times t; — oo, and a positive number ¢; > 0 such that
[}
|S4(0) - S*{ + [ ig(0,7) —i*(r)|dr=0  for 1 — s,
0
but
00
|Sa(ta) - S*|+ J lin(tg ) —i*(r)|dr> ¢ forall n e N.
0

The discussion of the stability and instability of the endemic equilibria is facilitated by switching from

the original parameters of the model to the following nondimensional ones:

* *
£= % = S*I_-l-l* ) (34)
TIMI T*
=S (3)
and
o1 36
Pa+1(0) ( )

Note that £ gives the fraction of infected individuals in the sexually-active population and therefore is

a dimensionless parameter satisfying

0<E<l,
Even though all values of £ in the interval 0 < £ < 1 are feasible (as one can see from (31) and (33) by
choosing Ry, > 1) not all them are realistic. Note that L= P, +1(0) can be interpreted as the average
length of the effecive sexually-active period of infected individuals (relative to the average length of the
sexually-active period of healthy individuals, our time unit). Hence it is intuitively clear (and this
follows from the definition of P_ ., — see (11)) that ¢ > 1. The average infection has been estimated

to be about 10 years (see May and Anderson 1989 and references therein). If we assume that the mean

of the sexually-active period lies in the interval [15 years, 30 years], then we obtain values of 1/¢ in the
&1 is
1

interval [1.5, 3]. We observe tha v is also a dimensionless parameter, and since M(T) =
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nonincreasing and C is nondecreasing, we see that
0 <v<1.

The following choices for C(T) may give us a feeling for a reasonable range for 7.

(a) Mass-action type contact law
The classical epidemiological contact law is C(T) = AT, where M = constant and v = 0. This

contact law is more appropriate for communicable diseases such as influenza (see Castillo-Chavez et al.

1988, 1989).

(b) " C = constant
This may be a good approximation if the number of available partners is large enough and

everybody can make more contacts than is practically feasible. Note that in this case v = 1.

(c¢) Mickaelis Menion-type contact law

The Michaelis Menton type contact law or Holling functional response type 1 combines the two
previous formulations by assuming that, if the number of available partners is low, the number of
actual per capita partners C(T) is proportional to T, whereas if the number of available partners is
large, there is a saturation effect which makes the number of actual partners constant. In situations

like this, we may take

om =
for which
_  kT*
T=1+ £

and consequently, 7 covers the range from 0 to 1 when T* covers the range from 0 to oo, that is, any
value of 7 is feasible (as one can see from (30)).

In view of this discussion, we call v the saturation indez of the number of partners at the endemic
equilibrium. If ¥ = 0, there is no saturation at all because the number of actual ‘pfxrtners is

proportional to the number of available partners while if v = 1, there is a complete saturation because
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the number of new actual partners per unit time hardly changes if the number of available partners

does. In Sections 5 and 6 we prove the following result:
Theorem 5. The endemic equilibrium is locally asymploticelly stable if one of the following holds:

a) & is sufficiently close to 0 or to 1.

b} & is sufficiently large.

c) v is sufficiently close to 0.

d) A = const.

e} P,yq 18 conver.
From this thorem, we conclude that the endemic equilibrium is locally asymptotically stable if the
fraction of infected individuals is either low or high, or if the length of the effective sexually-active
period of infected individuals is short compared with the length of the sexually-active period of the
susceptible individuals, or if the saturation index is low. Further, we have local stability if the
infectivity is evenly distributed over the peried of sexual activity., Although P, 4] may be convex, for

example, if the length of the sexually-active period of infected individuals is exponentially distributed,

this is, of course, not always the case.

Conversely, the following result, whose proof is provided in the next sections, holds:

Theorem 6. Let 4y > {0 and

o
J. cos(sy)P, . (s)ds < 8  for some y . (87)
0

If Q is concentraled sufficiently close to 0, one can find £ and 0 (0 < £ < 1, ¢ > I} such thal the

corresponding endemic equslibrium is unstable. T

|8
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From this result we see that actually, the saturation index has a destabilizing effect. The closer it is to
1, the more likely the endemic equilibrium will be unstable. The requirement that Q is concentrated at
0, i.e., that the infectivity is concentrated in the early part of the incubation period, emphasizes the
importance of an infection-age-dependent infectivity. Future numerical studies have to show whether
or not more realistic infectivity distributions (one early and one late peak) induce instability. We
conclude our discussion with an example for which (37) holds.

We assume that the incubation period is divided into two periods: a fixed period of length
during which no symptoms show up but after which severe symptoms (leading to an

end of sexual activity) occur at a fixed rate p > 0. This is mathematically realized by setting

.
0@3={°' 0smsr (38)
P » T>T
and consequently from (11) we obtain
’
e 7 , 0 <t
Pop(r') = {e""ep(fﬁrl) , x . (39)

Hence

J:ooos(sy)Pa +1(8)ds = 1 (1 - e_’) + ze~ sin(yT)

14 y? l1+y
+1 - —r
e ren e G

from where we may have that

J cos(sy)P, ,(a)ds < 0
o

ifyr= (211 - % with n being sufficiently large.
In the next sections we prove the results just presenied and lay the analytical foundations for a

future numerical computation of the stability boundaries in the £a plane.

5. Stability of the endemic equilibrinum and the characteristic equation

Using the abstract results in the theory of ordinary differential equations, specifically, Corollary

.
1

4.3 and Section 7 in Thieme {1989 a,b) or Theorem 4.13 in Webb (1985) it is possible to approach the

19



stability of the endemic equilibrium for (1), :--, (6) in the same way as for a “classical” ordinary
differential equation. Hence we set

S=S%+4s, i=zi*4+u, I=I+v, W=W*"+w
and consider the variational equations for s, u, v, w related to (1), --, (6), in other words, we linearize

the dynamical system (1), ---, {6) around the endemic equilibrium

dits(t) = —u(t,0) - s(t) | (40)
(& + 2 hita) = -{ale) + Mucta), (a)
u(t,0) = s(t)F(TH)W* + (s + v)S*F{T*)W* + wS*F(T*), (42)
where

v(t) = I u(t,a)da (43)

1]
w(t) = J A(a)u(t,a)da . (44)

1]

To study the stability of this linear system, we look for solutions to (40), ---, (44) of the exponential
form
s(t) = e*'5, u(t,a) = e*'ii(a), (45)
where z is a complex number, ands # 0oru # 0.
The endemic equilibrium will be locally asymptotically stable provided all such solutions have a
strictly negative real part while it will be unstable if there is at least one such solution with the real
part of z being strictly positive.

Plugging (45) into (40), - -+, (44) yields
z8§ = —i(0) - §, (46)

3(a) + £1i(a) = aa) + 1i(a), (47)

@(0) = SW*M(T*) + (5 + ¥)S*M/(T*)W* + WS*M(T*), . (48)
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V= I ooﬁ(a)d.'-.l, (49)
0
W =I Aa)ir(a)da. (50)
0
From (46) we obtain
- i(0)
5= 0 Q)

and solving (47) for i and substituting this result into (49) and (50) yields
¥ = 6(0)Pg (), (52)

and

% = 6(0)Q(z) . (53)
Note that @i(0) has to be different from 0 because otherwise both § = 0 and @ = 0. Fitting (51), (52),

and (53} into (48) and dividing by G(0) # 0 yields the characteristic equation
* . -
1= P(M(T*) + S*M/(T")) + S*MU(TH)W*P ., (2) + S*M(T*)Q(2) - (54)

We note that the same characteristic equation is obtained after linearizing the limiting
equations associated with (7}, .-, (10) around the endemic equilibrium and looking for solutions of
exponential form (45). Finally, we arrive at the following relation between the stability of the endemic

equilibrium and the roots of the characteristic equation (54).

Theorem 7. (a) The endemic equilibrium is locally asymptotically stable if all the roots of the
characleristic equation have siricily negative real parts.

{b) The endemic equilibrium is unstable if the characteristic equation has at least one rool with a

strictly positive real part.

6. Analysis of the characteristic equation

.
L]

The difficulty in analyzing (54) along the lines proposed by Theorem 7 lies in the fact that W*,




S*, T* are related by the steady state equations (22), ---, (25). In this section we incorporate these
relations into (54) while trying to keep as few parameters as possible ( all of which can be modified
independently of each other.)

From (25), (17), {23), (29) we obtain

* *
W*M(T*)="B—-=L -1 - { ‘1 ,
§* §*1- Pot1(0) 1-£1- Poya(0)

From (24), (28), (17), (29) we get

r* ™ £

S*W* = S*B*Q(0) = B = " S R — ;
A0 = T = M - Boon® ~ M(T) 1= Py (0)

and from (28)

S*M(T*) = 1—.
Q(0)
Substituting these relations into the characteristic equation (54) yields
oy pf e Xyetordy 1 - P A
=T (115+T s ))+€T MED I Fer® Q) ()
Z21-P,.,(0) M(T") M(T") 1-P,.4(0) Q(0)
Further, we define the probability densities
1-P_ (8
p(s) = —o¥— 56
1-P a+1(0) (56)
and
Q(s)
q(s) = ——, 57
0 D
and set
_ T*M(T*)
7= MYy (58)
and
= 1
c = —————. 59
TP 0 59

Equation (55) takes the form




1= —f%(ﬁ )—6713(2) +i(). (60)

From the definition of P, — see (11) — it follows that ¢ > 1. We assume here, however, that ¢ >
2 because (as discussed earlier) the duration of the effective sexually-active period of healthy (that is,
susceptible) individuals seems to be more than twice that of infected individuals. Note that p and q
are probability densities in dimensionless time related to the average duration of the effective sexually
active period of infected individuals, while ¥ (given by 58) is a dimensionless parameter already. Since
M(T) = C(T)/T is nonincreasing and C is nondecreasing we have that 0 < v < 1 (see the discussion
in Section 4 concerning the dependence of 4 on the functional relation C between the numbers of actual
and potential partners and on the equilibrium value T*.)

We now let z = x + iy and separate (60) into real and imaginary parts:

- JD e cos(sy)q(s)ds = a +lx-;-2x+ yzaf (1 E ¢ —7) - &y JO e~ T*cos(sy)p(s)ds (61)
and
Jo e~ "*gin(sy)q(s)ds = iz x§2 " yzsf(l 1 g —-y) + £y JO e~ ¥*sin(sy)p(s)ds . (62)

Using the fact that q is a probability density, we see that the left-hand side of {61) is strictly positive.
Further, by the Riemann & Lebesgue lemma we conclude that
[= ] oo
J e *%sin(sy)p(s)ds — 0, J e~ **sin(sy)q(s)ds — 0, ly| — =, (63)
o

0
provided that ) is of bounded variation, and of course the same result holds if sine is replaced by
cosine. Note further that
o0
J e "“sin(sy)p(s)ds > 0, (64)
0
because p is nonincreasing. This implies that the roots of (61} and (62) satisfy x < 0 if £ (>0) is
small enough. Further, one can easily show that there exist no roots with y = 0. Suppose that there

exists some 0 < £ <1 such that (61) and (62) can be solved with x,y > 0. Since the roots of the

characteristic equation depend continuously on £ by Rouché’s theorem, and lie in the left half plane for
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small £>0, they must cross the imaginary axis as ¢ increases (y — oo is excluded by (63).)
Consequently, for some 0 < £ < 1 (different from the one we started with) (61) and (62) are solved with

x=90,y >0, ie,

1- [D cos(oy)a(e)ds = L yzu-f(l L —1) - & jo cos(sy)p(s)ds (65)
and
® N "
I . sin(sy)q(s)ds = mdé (1 = -'r) + & [0 sin(sy)p(s)ds . (66)

We can solve for £ by multiplying (65) by y and adding the two equations together:

y(l - Imcm(sy)q(s)ds) + stin(sy)q(s)ds

0 0

£ = - = . (67)
»(j sin(sy)p(s)ds - v | cos(sy)p(s)ds)
0 o
Substituting (66) into (67) makes it possible to solve for o:
I sin(sy)q(s)ds - {y I sin(sy)p(s)ds
o=-2 o . (68)
¢
s (e - &)

If we take into account the fact that 0 <£ <1, 0<+v<1, and that ¢ » 1, we have the following
result:
Proposition. There are no roots of (61) or (62) with x > 0 if one of the following holds:

(a) ¢ is sufficiently close to 0 or to 1,

(b} o is sufficiently large.

(c) 7 is sufficiently close to 0.

{d) There is no y > 0 satisfying the following simultaneously:

’ cos{sy)q(s)ds > 0,
0

sin(sy)q(s)ds > 0,

a
s OO

cos(sy)p(s)ds < 0, .
o




~L0-

y(l - Jmcos(sy)q(s)ds) + Jmsin(sy)q(s)ds
o

0

0 0

< 'r( J‘wsin(sy)p(s)ds -y Jmcos(sy)p(s)ds) <0.
(e) A = const.

(f) pis convex.

Proof. The statements a), b), c) are consequences of (61), --:, (64). Statement d) follows from the
arguments preceding Proposition 7 and (65), --, (68). The statements e) and f) are consequences of d).
If A = const, then g(s) = Ap{s), so the relative integrals cannot have different signs. This is the case

o0
considered in Castillo-Chavez et al (1989). If p is convex, then J cos(sy)p(s)ds =
e 0

[“pinentpanas > o

’ Actually, it is possible to obtain additional information by fitting £ into (68), but the formulas
become so complicated that they are of little use. One easily realizes that for (¢,0) satisfying (67) and
(68) one finds (£,0) and (£,5) close by satisfying (61) or {62) with x > 0 or x < 0, respectively.

Actually (67) and (68) provide a curve of points (£,¢) for which the characteristic equation has

roots on the imaginary axis and beyond with the endemic equilbirum being unstable. It is
questionable, however, whether there are points (£,0) for which the characteristic equation has roots in
the right-half plane and which lie in a realistic parameter range with 0 < £ < 1, as ¢ > 1 is the minimum
requirement. One realizes from (67) and (68) that this is possible if

jo cos(sy)p(s)ds < 0 (69)

and the probability density q is concentrated close to 0. The second condition means epidemiologically
that the infectivity is concentrated in an early part of the incubation period. Future numerical studies

have to show how far this condition can be relaxed.

7. Conclusions

Several mathematical studies of epidemic models have identified both mechanisms capable and

incapable of generating sustained oscillations (see Hethcote ef al. 1981, and Hethcote and . orke 1989
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for a survey), and as discussed in the introduction of this paper, most of these mechanisms are
inadequate in the case of HIV. In our medel, the saturation of mean per capita sexual activity interacts
with an infection-age-dependent rate (at which infected individuals are removed from sexual activity
by the disease) and an infection-age-dependent infectivity of infected individuals. We have shown in
this paper that the unique endemic equilibrium can loose its stability (thus generating sustained
oscillations) by a rather unique combination of conditions {see Section 1). Sustained oscillations can be
ruled out if any of the reasonable conditions (i) — (iv) are not satisfied. Condition (v) represents our
first step towards the analysis of the effects of variable infectivity on HIV dynamics. The analysis of
Castillo-Chavez et al. (1989a, b, c, d) which assumes constant infectivity, suggests that sustained
oscillations can be ruled out if the infectivity is rather evenly distributed over the activity period. Our
condition (v)—the infection-age-distributed infectivity is concentrated at an early part of the
incubation period — emphasizes the possible relevance of variable infectivity on the dynamics of an
HIV epidemic. Relying on analytical techniques exclusively, we have shown the possibility of sustained
oscillations if the infectivity distribution only has an early peak. Although, we have not analyzed the
possibility of sustained oscillations in the presence of two infectivity peaks {one early and one late), our
results show that the stability of the endemic state in the latter case cannot be taken for granted. We
plan to study numerically whether or not undamped oscillations also occur for models with an early
and a late infectivity peak. Qur stability criterion will be the analytical basis for numerically exploring
the parameter range in which oscillations occur. The £, o curves generated by equations (67) and (68)
will help to find the boundary of the £, o region within which (if at all} the endemic equilibrium is
unstable. This procedure will demand intensive numerical studies as it will have to be repeated for
different choices of v, p and q. This paper supports the selection of a saturation index v = 1 and
whether or not the endemic equilibrium is unstable in a realistic £, o range will depend crucially on the
shape of p, q a8 we recognize from (i) and (v). We don’t know whether or not the shape of p, q for
which the endemic equilibrium is unstable is realistic as our analytic results so far suggest instability if

the age-infected infectivity is concentrated at an early part of the incubation period. The limited

numerical simulations of models that incorporate variable infectivity by Anderson and Mé.y (1989),
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Hyman and Stanley (1988, 1989), Blythe and Anderson {1988b) suggest that the endemic equilibrium
is stable for realistic infectivity functions, and therefore, further numerical and analytical investigations
are needed. Numerical studies can be carried more easily and more effectively through the exploration
of the parameter range of possible sustained oscillations using the {-o curves just described.
Simulations of the full model are indispensable for showing whether the amplitudes of the oscillations
are large enough to be epidemiologically significant, however, we feel that they need to be guided by
the previous exploration of the critical parameter range.

The uncertainty of whether or not the endemic equilibrium is stable raises the question of whether
or not it should be discarded as some kind of measure of the severity of the disease when unstable.
Eowever:' its usefulness has been established by our proof that the incidence rate either converges to its
uniquely determined endemic equilibrium {(provided that it exists) or it fluctuates around it. Of course,
it would be more useful to know whether or not the time averages converge (as time tends to infinity)
towards the endemic equilibrium.

We remark that variable infectivity is just one of the important factors involved in HIV
dynamics. Heterogeneity in sexual behavior is also of crucial importance in the transmission dynamics
of HIV (see Blythe and Castillo-Chavez 1989; Castillo-Chavez and Blythe 1989; Busenberg and
Castillo-Chavez 1989, 1890; Castillo-Chavez et al. 1990; Castillo-Chavez and Busenberg 1990,
Sattenspiel and Castillo-Chavez 1990, and references therein). The analytical study of a model that
incorporates variable infectivity and heterogenous mixing looks like a formidable task. However,
mathematical studies of submodels of this general model are central to the execution of extensive
numetical simulations of more detailed models.

We conclude with a not very optimistic view of the predictive value of mathematical models for
HIV transmission. The recent literature in HIV modeling reveals a potentially very complex picture:
multiple endemic equilibria and possibility of oscillations. This dynamic behavior is not observed in less
detailed versions of these models (see Castillo-Chavez 1989a, b) indicating that very aggregated

versions of these models may not be adequate. Unfortunately, more detailed models required more

data (most of which is not only unavailable but unfortunately of not enough high quafit}r) and as




Ludwig (1985, 1989) has shown, these demands put very severe limits on our ability to generate

accurate predictions. The theoretical value of these models is nevertheless very important.
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