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Life cycle models for plants
Hal Casweli

Abstract

This paper reviews the use of matrix population models in the
study of plant demography. Because of their modular architecture,
growth plasticity, and multiple modes of reproduction, plant life
cycles usually violate the assumptions of classical age-specific de-
mography. Using » directed graph description of the IMe cycle, it
is enay to derive matrix projection models for complex life cycles.
Linear time-Invariant models can be used for population projec-
tion (distinguished from prediction), and provide valuable Insight
into the population consequences of environmental conditions. The
ergodicity of such models, their asymptotic and translent behav-
for, and thelr sensitivity properties depend on the sigenvalues and
elgenvectors of the projection matrix. The characteristic equation
for the eigenvalues and formulas for the eigenvectors can be derived
directly from the life cycle graph.

Sensitivity analysls connects demography with evolution. Since
Darwinian fitness js a fundamentally demographic notion, the sen-
sitivity of population growth rate messures the selective pressure
on life history traits, and can be used to predict the results of trade-
offs arising from genetic correlations between traits. Examples are
presented using dsta from the literature on populations of trees and
herbacecus plants.

1 Life Cycle Complexity

The life cycle ia the fundamental unit of demographic analysis. Evalu-
ating the demographic consequences of the vital rates {a general term
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172 HAL CASWELL

subsuming rates of growth, survival, development, reproduction, and so
on), requires an analytical framework that can include the entire life cy-
cle, !Bvalnating the evolutionary consequences of changes in the vital rates
requires a relation between the vital rates and a measure of fitness, and
a perturbation analysis which reveals the effects on Btness of possible
mo'diﬁcatiom of the rates. Fitness, being a measure of the relative rate
of incorporation of genotypes into future generations, is itself a funda-
mentally demogaphic idea. Demographic and evolutionary considerations
thus converge upon the need for a description of the life cycle from which
analytical conclusions can be drawn.

Classical demographic theory, developed in the first half of the 20th
century for human populations, satisfies this need for life cycles which
can be defined by a specific set of age-dependent vital rates: the sur-
vivorship fanction I(z) and the maternity function m(z), where z denotes
age. Together I(z) and m(z) determine the eventual rate of population
increase (r or its discrete time version ), the stable age distribution
the re.productive value distribution, the rate of convergence to the ntabl;
age distribution, the period of the oscillations produced en route to the
stable age distribution, and eo on. This theory was applied to animal
p?pulatiom early on (Pearl 1928, Leslie and Ransom 1940, Deevey 1947
Birch 1948, Leslic and Park 1949, Evans and Smith 1951), and at ]easl?
the rudiments of it are now included in beginning ecology texts.

U.nfortunately, the life cycles of most plants violate the assumptions of
c‘lasncnl demography. The age of an individual plant says little about its
likely demographic fate, so the vital rates cannot be written as functions
of age. Multiple modes of reproduction make it impossible to describe
reproduction by a simple maternity function. Such *complex” life cycles
(my use of the term is wider than that of Wilbur (1980)) require a more
general demographic theory,

. It is only fair to acknowledge that even human demographers recog-
nise that demographic characteristics are affected by variables other than
age (e.g-, Clark and Spuhler ( 1959) for body sise effects on human fertil-
nty).‘ “Multidimensional® demographic models, in which individvals are
classified by multiple criteria such as age and sex, age and location, or

age and nuptiality are an active area of current j igati
Rogers 1982). ent investigation (Land and

¥
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1.1 The sources of life cycle complexity

An examination of some of the reasons that plant lifé cycles fail to meet the
assumptions of classical demography is revealing. Many of them reflect the
modular architecture of plants (Harper 1981). Because individual plants
are often collections of modules, each potentially capable of reproduction,
fertility is usually strongly dependent on sise. The growth plasticity which
follows from modular construction, however, tenda to decouple age and
sise. Survival probabilities are also strongly dependent on sise, and there
are often multiple modes of reproduction.

1.1.1 Sise dependent demography

That survival and reproduction in plante are strongly dependent on size
is now widely appreciated. Here I consider some examples, in order to
suggest some powerful statistical methods for examining the dependence
of vital rates on sise and age. These methods have yet to be widely applied
in plant demography.

Reproduction in trees is strongly affected by sise (Baker 1950). Figure
1 shows the proportion of Western White pine (Pinus monticola) Lrees
bearing cones as a function of diameter. The significance of trends in
such binary data can be assessed by logistic regression (Cox 1970); in this
case there is a highly significant (P < .001) sise effect. The overall effect
of sise on fertility is even greater than indicated by this curve, since large
trees are not only more likely to bear cones, but bear more and larger
cones and produce more seed with a higher germination rate (Zon 1915).

Size dependence per se does not violate the assumptions of classical
demography. If sise is closely related to age, then a simple transforma-
Lion can express sise-dependent vital rates as a function of age. However,
in moat plants the dependence of fertility on sise is accompanied by a
plasticity of growth that makes age a very poor predictor of sise. This
uncertainty in the size of individuals is obacured by the common prac-
tice of plotting “growth curves® showing mean sise as a function of age,
without any indication of the degree of variation.

Figure 2 is a typical example of the relation between age and site
in trees, based on data from Meyer (1930) on Douglas fir (Pseudotsuga
tazifolsa) in even aged stands. Although mean sise is clearly related to
age, following a von Bertalanffly growth curve (y = a(1 — ezp(—bz)))quite
closely, the variability in sise at a given age increases continuously. Thus
age becomes a poorer and poorer predictor of size as the trees reach the

i 9
£
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WHITE PINE REPRODUCTION
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Figure 1: The proportion of individuals bearing cones as a function of di-
smeter in the Western white pine (Pinus monticols). The logistic regres-
sion is highly significant (improvement in x% = 248.22,dl = 1, P < .001).
Data from Zon (1915).

larger sises at which reproduction is most likely to occur.

The “stand tables” produced by foresters for Lrees present frequency
distributions of sise at age, for even-aged populations, in the form of a
2-dimensional contingency table. Table 1is an example. The relation be-
tween age and sise is highly significant (x* = 648.14,4df = 80, P < .0001).
However, age is still an extremely poor predictor of sise. The extent to
which knowledge of one variable (e.8., age) permits prediction of the other
{e-g., eize) in such a table is measured by Goodman and Kruskal's (1954)
7, which measures the decrease in the Proportion of incorrect predictions
of the sise class of a randomly selected individual when knowledge of age
clase is taken into account (Bishop et al. 1975, Ch.11). It also measures

the proportion of the variation in variable (sise) explained by the other -

(age), in & fashion analogous to the coeflicient of determination (R?) in
regreasion {Light and Margolin 1971). For the data of Table 1, r=.073,
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DOUGLAS FIR: SIZE VS. AGE
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Figure 2: {a) The mean sise (dbh in inches) as a l'.nnction of age,‘l'or
even-aged stands of Douglas fir (Puudotuga_ tan[olsa). '_I‘he curve is a
von Bertalanfly growth curve fitted to the points; ft explains 88% of the
variance. (b} The same fitted curve, with approximate 95% confidence
intervals indicated by diamonds. Data from Meyer (1930).
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Table 1: The number of longleaf pine trees per acre, in even aged stands,
by age and diameter. Data from Forbes ( 1930).

Diameter (in.)

Age 8 10 12 14 18 18
15 6 0 0 0 0 0
20|11 0o 0 0o o0 o0
25| 46 0 0 0 0 o0
30 80 14 0 0 0 o
3511060 2¢ 6 0 0 o
401117 38 10 0 0 O
451119 85 18 0 o0 0O
50 1120 65 2t 0 © o
551113 67 30 8 o0 o
601106 73 35 11 0 o
65| 93 74 39 13 3 0
| 81 76 42 18 3 o
BL 73 74 45 19 6 o0
80| 64 70 48 24 8 0
85| 55 66 50 28 10 o
901 51 63 5 29 15 0O
95| 44 58 51 33 M4 2

so knowledge of an individual’s age improves the ability to predict its size
by only 7.3%.

This is not atypical. Meyer (1938) presents a series of atand tables
for Pinus ponderosa as a function of a "site index* (the height in feet
of an average diameter dominant tree at age 100 years) which measures
the quality of the site. In no case {Figure 3) does age explain more than
21% of the variance in sise, and in most cases it explains less than 10%.
- There is an interesting suggestion that sise and age may be more closely
related on intermediate quality sites. This might reflect the processes by
which sise distributions become more skewed as a cohort grows, under
the influence of variability in growth rate and competitive ability (e.g.,
Turner and Rabinowits 1983),

Sise dependent mortality is common in planta (e.g., Harper 1977,
Cook 1980, Solbrig 1981, Sarukhan et al. 1984, Jimenes and Lugo 1985
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PREDICTION OF SIZE FROM AGE
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Figure 3: Goodman and Kruskal's r as a function of site index for Pon-
derosa pine Pinus ponderosa. The standard error of r for these data was
between .003 and .004, so the differences between sites are highly signifi-
cant. Data from yield tables in Meyer (1938).

and many others). Data for two monocarpic perennial herbs, Dipsacus
sylvestris and Arctium minus are shown in Figure 4, The effect of sise
on survival probability is highly significant, even in A. minue, where the
overall survival probability is quite high. The relation between sise and
survival probability in these data is noticeably less abrupt than that be-
tween sise and reproductive status in Figure 1.

Ideally, the relative importance of age and sise should be decided on
the basis of data in which both age and sise are known, and in which as
many demographic transitions as possible (not just survival) are recorded.
Data are seldom reported in this form, and even more seldom analysed
80 aa to take advantage of it. Tables 2 and 4 show one approach to such
analyses, for two monocarpic perennials, Dipsacus sylvestrss and Verbas- /
cxm thapsis (data kindly supplied by P.A. Werner and K. Gross). In each/

L
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DIPSACUS SYLVESTRIS
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F.lgure 4: Logistic regression of survival
diameter in Dipsacus sylvestris and

perennials. The effect
Data from Werner (197

prob'ability as a function of rosette
calry Arctiym minus, two monocarpic
of sise in both cases ia significant (P < .0001).
5) and Groes and Werner (1983), respectively.
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case, the fate (death, survival as a vegetative rosette, or owering) in year
t + 1 of individuals of known age and sise in year t is recorded.

In the literature, such data are often converted into proportions and
subjected to analysis of variance (e.g., Werner 1975, Groes 1981). How-
ever, log-linear contingency table analyses (e.g., Bishop et al. 1975, Fien-
berg 1978, Fingleton 1984} are more appropriate and much more powerful.
The data of Tables 2 and 4 can be treated as 3-way contingency tables
(Age x Sise x Fate). The significance of the effects of age and sise on
demographic fate is evaluated by testing the two way AF and SF interac-
tions. Tests of the three way interaction (ASF) evaluate the importance of
the interaction of age and sise in determining fate. A significant three-way
interaction implies that the sise-specific {age-specific) transition pattern
differs for different aged (sised) individuals. This effect is obacured when
the proportions are subjected to analysis of variance, becaunse reducing
the transition data to proportions leaves only a single observation per
cell. Its significance would suggest that both age and sise be included in
a projection model, as in Law {1983) and Caswell (1983).

The significance of an interaction is measured by the reduction in the
log-likelihood ratio {distributed as x?) when the interaction is added to
the log-linear model. The *partial® association test adds the interaction
to the model containing all the other interactions of the same order; the
“marginal” association test adds it to the model containing only all lower-
order interactions involving the variables in question. Other comparisons
can be made; here the partial association tests are most relevant.

The results of the analyses are shown in Tables 3 and 5. In both
species, Lthe efect of sise on demographic fate is highly significant. The
fate of D. aylvestris is also affected by age {(mainly an increase in survival
and fowering probabilities among older plants), but comparison of the
partial x? values shows the effect to be much smaller than that of sise.
The interaction between age and sise in determining fate is not significant,
For V. thapsis, however, the three-way interaction is significant while the
interaction of age and fate is not. Thus there in no direct effect of age on
demographic fate, but the sine-specific transition pattern differs between
the two age classes,

For contrast, Tables 6 and 7 show a similar analysis for reproductive
output of a large mammal, the moose {Alces alces; data from Saether and
Haagenrud (1983)). Individuals were classified by age and sise, and their
reproductive output (no calfs, one calf, or twins) recorded. In this case, al-
though there is a significant association of age and sise (older animals tend
Lo be larger}, there is no significant interaction of sise and reproductive

s
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output, once age is taken into account. The differences between Tables
2-5 and 6-7 are typical of the differences between size- and age-dependent
demography.

The decoupling of age and demography that results from sise-dependent
vital rates and growth Plasticity also arises when individuals are classified
by developmental stages (e.g., the “age-states” developed by the Russian
school of plant population biology, e.g., Gatsuk et al. 1980).

1.1.2 Modes of reproduction

The second major violation of the assumptions of classical demography
by most plant populations concerns reproduction. The classical mater-
nity function m(z) gives the expected number of offapring produced, per
unit time, by an individual of age z. Al these offapring are assumed
to be demographically identical. Many plants, however, possess multiple
modes of reproduction, and hence their analysis requires models capable
of including multiple reproductive pathways.

For example, as a consequence of their modular architecture, many
plants reproduce clonally by rhisomes, budding, tillers, etc. as well as by
seed (e.g., Abrahamson 1980, Cook 1983, Jackson et al. 1985). There
are important genetic differences between clonally and sexually produced
offspring. These differences make the definition of an individual {equiv-
alently, the definition of the life cycle) ambiguous, and raise questions
about the operation of selection (e.g., Jansen 1977, Lynch and Gabriel
1983, Caswell 1985, Jackson et al. 1985). However, there are often demo-
graphic differences as well; new seedlinga may have very different survival,

growth and reproductive probabilities than newly produced vegetative
shoota,

Other examples of multiple modes of reproduction include seed het-
eromorphism (Venable 1985) and sex change {Policansky 1982).

Age-specific survivorship and maternity functions simply cannot incor-
porate the demographic properties of complex life cycles. The problems
for evolutionary demography are even more profound, for life cycle com-
plexity creates the need to analyse the effects on fitness of traita which
simply do not appear in the classical theory.
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Table 2: A three way contingency table relating fate (death, mrvivial as a
vegetative rosette, or flowering) to rosette diameter and age in Dipsacus
sylvestris. Data from Werner (1975).

Age Fate Size Class
1 2 3 4 5 68| Total
2 Rosette | 170 185 81 21 10 0 427
Flower 0 0 o 0 2 0 2
Death | 725 81 10 0 1 0 817
Total | 895 246 71 21 13 0| 1248
3  Rosette 0 B0 75 84 28 12 2719
Flower 0 0 1 3 14 o8 36
Death 0 41 19 14 1 1 76
Total 0 121 95 101 43 81 441
4 Rosette 0 8 7 1T 15 0 45
Flower 0 0 0 4] 8 16 24
Death 1] 3 3 3 0 0 9
Total 0 9 10 20 15 18 78
5 Rosette 0 0 o 3 4 4 11
Flower 0 0 0 0 2 3 5
Death 0 0 0 1 1 2 4
Total 0 0 0 4 7 9 20

2 Matrix Projection Models and Their Anal-
ysis

Matrix projection models were introduced by Bernardelli (1941), Lewis
(1942), and especially Leslie (1945, 1948). These initial models were age-
classified, and were subsequently adopted and widely utilised by human
demographers (e.g., Keyfits 1967, Goodman 1967). They are now a basic
tool in that field (e.g., Keyfits 1968, 1977),

Matrix models were extended to complex life cycles by Lefkovitch
(1965), and have been developed by Caswell (1978, 1980, 1982a,b, 1983,
1985, Werner and Caswell 1977, Caswell and Werner 1978), Usher (1976),

G
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Table 3: Log-linear analysis of the effect of age and site on demographic
fate of Dipsacus sylvestris, using data in Table 2. F=fate, S=nize, A=age.
Calculated using BMDP procedure P4F (Dixon 1985).

Partial Assoc Marginal Assoc

Effect df x? Prob x?  Prob
F 2 736.16 0.0000
S b 1297.27 0.0000
A 3 2087.15 0.0000
F8 10 679.87 0.0000 1198.16 0.0000
FA i) 10.48 0.0114 53497 0.0000

SA 15  768.34 0.0000 1286.83 0.0000
FSA 30 38.56 0.1360

Table 4: A three way contingency table relating fate (vegetative rosette,
death, or fowering) to rosette diameter and age in Verbascum thapais,
Data from Gross (1981) and personal communication.

Age Fate Sise Class
1 2 3 4 5 68| Total
2  Roselte 19 18 21 3 4 0 65
Flower 0 0 1T 30 25 56 128
Death } 639 70 25 12 7 8 761
Total [ 658 88 63 45 36 04 954

3 Rosette| 0 1 2 1 0 o 4
Flower 0 2 2 8 4 4 18
Death 3 10 7 6 2 2 30
Total| 3 13 11 13 6 @ 52

Hubbell and Werner (1979}, Law (1983), Hughes (1984) and others. In
this section, I summarise the development and analysin of these models.

MATRIX POPULATION MODELS 183

Table b: The results of log-linear analysis of the data in Table 4. Statistics
as in Table 3. :

Partial Assoc Marginal Assoc

Effect df x? Prob x? Prob
F 2 878.47 0.0000
8 b 1209.10 0.0000
A 1 957.18 0.0000
F§ 10 61207 0.0000 628.71 0.0000
FA 2 2.37 0.3052 19.01  0.0001

SA 5 83.74 0.0000 100.38 0.0000
FSA 10 17.72 0.0598

2.1 The life cycle graph

The relationship of the projection matrix and the life cycle is clarified by
the use of the life cycle graph (Hubbell and Werner 1979, Caswell 19562a).
In its simplest form, a life cycle graph (Figure 5} is a direcied graph, the
nodes of which {n;,i = 1,...,k) denote the abundance of each of k stages
in the life cycle. The arcs indicate the transitions possible from one time
to the next. Thus the graph should be understood to follow from both
the description of the life cycle and from the choice of a time step for
projection of the population. The coefficient on the arc from n; to n;
gives the number of individuals of stage s at time ¢ + 1 per individual in
stage 7 at lime ¢,

2.2 The population projection matrix

The matrix projection model corresponding to the life cycle graph is
nt+ 1) = A(t)n{t) (1)

where n{t) is a k-vector whose entries are the n; and A a k x k matrix
with a,;(t) equal to the coefficient on the arc from n, to n;, For example,
graph {a} in Figure 5 produces a standard Leslie matrix, graph (b) a
sise-classified matrix like that used by Hartshorn (1975}, Enright and
Ogden (1979), Pinero et al. (1984), and Burns and Ogden (1985) for tree
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Figure 5: Three simple life cycle graphs
(b) a simple sise-classified life cycle .
both sexwal and vegetative reprodu::
ture and reproductive value for pop
H. Caswell, Ecology 1982, 63:1223.122

Society of America. Reprinted by permission.

(a) An age-classified life cycle
(c) a hypothetical life cycle including’
tion. From “Stable population struc-
ulations with complex life cycles” by

1. Copyright 1982 by Ecological
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Table 6: A three way contingency table relating reproductive output {no
calves, one calf, or twins) to age and body weight in the moose Alces alces.

Data from Saether and Haagenrud (1983).

Age Weight Reproduction
Zero One Twins | Total
2.8 -170 56 35 3 93
170-200 T0 44 [ 119
200+ 22 9 0 31
Total 147 88 8 243
35 -170 a 21 4 33
170-200 10 23 9 42
200+ 7 13 4 24
Total | 25 87 17 99
4.5-6.5 -170 3 15 18 M
170-200 2 27 22 51
200+ 3 23 6 32
Total 3 a5 44 117
6.5-8.5 -170 1 14 4 19
170-200 B 26 22 53
100+ 2 20 9 n
Total 8§ 60 35 103
9.54 -170 3 18 e 27
170-200 3 18 11 32
2004 6 46 27 79

populations:
P1 Fg Fg Fg
G, P, 0 0O
0 Gg Py 0
0 0 Gy P4

(2)

and graph () a matrix containing both sexual (F;) and vegetative (F3)

reproduction:
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Table 7: "The results of log-linear analysis of the data in Table 6. R —
reproductive output, W = weight, A = age; statistics as jn Table 3.

Partial Assoc Marginal Assoc
Effect df x?  Prob x?  Prob

R 2 78.86 0.0000
w 2 57.81 0.0000
A 4 113.03 0.0000
RwW 4 4.17 0.3836 6.31 0.17¢8
RA 8 215.83 0.0000 217.98 0.0000
WA 8 2552 0.0013 27.66 0.0005

RWA 16  15.60 0.4748

0 0 o o0 F 1
PR 0o 0 90 o
Py 0 o Fa 0
3
0 P, P 0 o ©)
0 0 o A o

The life cycle graph and projection matrix are intujtiv i

the strur.h-lr'e of the life cycle. The only subtlety ia the :ol: :f ::I:T&:::::e:f
The. tr?nsmonu open to an individual depend on the time step used lor-
projection. If the time step is long enough, every stage may contribute to
every other stage, and A becomes totally positive. At shorter time steps
some of t.he transitions are impossible, and the structure of the matrix A'
will be richer. In general, the choice of a time step for investigation is
as much.n part of the biology of the problem as is the choice of a aet of
stages with which to describe the life cycle.

_ The dynl.micl resulting from (1) depend on the nature of the coefli-
clents. In the simplest case they are constant, and (1} is a linear system
;:f conatlal.l:’t-co;.-m:;ent difference equations. The analysis of such systems
s an well develo a8 their biologi ity i i
e el de u,nl;. by ‘horuyl.oglcal reality is doubtful. I will return to
X Projection models with time-varying coefficients have been studied
Y a number of authors, in both periodic (e.g. Skellam 1966 Gourle
and Lawrence 1977, Tuljapurkar 1985) and stochastic environm;nts (e Y
Cohen 1976, 1979a,b, Tuljapurkar 1982a,b, Tuljapurkar and Orsack 1983)'
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If the coefficients are functions of the entries in n{t), the dynamic
equations become nonlinear. This may result from density-dependence,
in which A(t) depends on the absolute abundance of the various stages
{Beddington 1974, Guckenheimer et al. 1977, Levin and Goodyear 1980},
or frequency-dependence, in which A(t) depends only on the relative val-
ues of the n;. Frequency-dependence is important in two-sex models, in
which reproductive output depends on the relative abundance of males
and females in appropriate stages (Caswell and Weeks 1986).

2.3 Analysis

This paper concentrates on the analysis of linear, time-invariant projec-
tion models. | propose to survey their analysis in fairly complete fashion,
using as examplea a variety of published data for plant populations. The
analysis of time-invariant matrix models has four major parts: the prob-
lem of ergodicity, asymptotic analysis, transient snalysis and sensitivity
analysis. The rest of this section summarises the major results in each of
these areas.

I am restricting attention to linear models for three reasons. First,
they have been extensively used on plant populations. Table 8 lists all the
studies of which I am aware applying matrix models to plant populations.
My apologies in advance to anyone whose work I have missed! This body
of work is an important contribution to plant population biclogy, even
though it bas rarely (Biersychudek 1982, Meagher 1982, Cochran 1986)
gone beyond the linear time-invariant case.

A notable feature of this set of papers is their use of matrix mod-
els for interspecies or interpopulation comparisons. Schmidt and Levin's
(1985) reciprocal transplant experiment with Phlox drummondii is the
most elaborate analysis, but even excluding this case the average num-
ber of populationa compared is over 5. My second reason for focusing on
these models is that much more comparative information can be had from
them than is usually obtained. Most of the studies in Table 8 have cal-
culated population growth rates. Many have calculated the stable stage
distribution and manipulated the matrices numerically to investigate the
sensitivity of population growth rate. Only a few have reported repro-
ductive values, and fewer still have used analytical sensitivity methods.
None has approached a complete analysis of the information included in
the population projection matrix. My goal here is to lay out some of the
possibilities for such analysis using examples from plant populations, and
to indicate the kinds of information such an analysis might provide.



148
HAL CASWELL
g
X =2 <trrZrzr <« <=z
> > D4 B0 e B

B Sepee 3

2
g 238
NEHLEEHE
=

No. Form Habit

PP D e e Pt B

3
o 8
2 éngag
. llo“g
338r888;
Bﬁ§<<;;g

2 E E 8
Bpp 3 5583 1
E=:= ' ' :
I IR
FHINHHHHEH
47 ;;}-zig‘gse:i»;fg""
Meiisisiisgideniiedl
0'.""0 . & . & o =E
mﬁimddzszsméégiggétG
3 w3 =l - "
SEEETIIS EEEEEREEEEE
% 9y
3 55%% g 5%;3
v G200 4 o338
;e33%% £, 3 333
5,:4v?§§§i§2=3‘5f§§5
AR
CEERF-T-FF- RS PP Fo

Y Y A

1.035 - 1.931

SI
AS8I
SLsST

hmm;;mmmmmmmmmmq;mm

Jo o e b b b B Bt I I I 00 e B Bt it i

- e
s uun-—c-—cv—unlﬂﬂﬂ—-g.—.«n
-

P=perennial,
) SI=sise-classified,

): Y=yes; v (re-

ection matrix methodology. No.:

, T=tree; Habit:
assified, SE=sex-classified
w (stable population structure

analytical, N=pumerical.

plant populations using proj
; Form: H=herb, S=shrub

ysed
arpic perennial; Class: A=age-cl

population growth rate;
=yes; Sen (sensitivity): A

Table 8: Demographic studies of
number of populations anal
A=annual, MP=monoc
ST=stage-classified; A:
productive value): Y

MATRIX POPULATION MODELS .

The comparative use of matrix models

use can it be?

leads to my final justification

_for focusing on the linear model, which requires a brief digression on the
widely misunderstood distinction between projection and forecasting (or
prediction; Keyfits 1972) in demographic analysia.

1.3.1 Projectlon, forecasting and assumptions

A forecast is an attempt to predict what will happen to a population. A
projection is an attempt to describe what would happen to the population,
given certain hypotheses. Gramatically, forecasting uses a matrix model
in the indicative mood, projection in the subjunctive. For example, a lin-
ear time invariant matrix model yields an estimate of population growth
rate A and stable stage distribution w {see below). A population following
the model eventually grows at s rate A with a structure proportional to w.
Ecological use of this purely analytical result is often criticizsed for assum-
ing that the environment is constant and that density or frequency effects
are unimportant. Since environmental variability and density-dependent
vital rates are trivially obvious biological facts, how can one possibly ac-
cept such assumptions? And if the analysis truly depends on them, what

The answer is, of course, that one must assume these conditions as
facts about the world only if the model is being used to forecast actual
future population dynamics. This is rarely if ever done with such models
(for good reason). Instead, most biologists are interested in population
projection, in which the values of A and w (and other indices) answer the
hypothetical question "how would the population behave +f the present

conditions were to be maintained indefi

nitely?” To assert that "The

present demographic properties of this population are such that, were

they to remain constant, the population

at a rate ) with a structure w” s not toc
clause is true.

would eventually come to grow
laim that the first, hypothetical

Projection, in other words, is a way to say something about present
conditions (more precisely, about the relation between present conditions
and the population experiencing them), not about the future behavior
of the population. As Keyfits (1972) has pointed out, one of the most
powerful ways to atudy present conditions is to examine their eventual
consequences were they to remain as they are.

Demographic parameters have the important property of integrating
the impact of environmental conditions on vital rates throughout the life

cycle. Properly interpreted as projections, then, they are extremely valu-
’f

;

jo
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able in comparative studies of the sort that plant demographers have
tended to conduct. They shed light on the response of populationa to dif-
ferent environmental conditions. They do not require absurd assumptions
about the constancy of the environment.

2.3.2 Ergodicity

A projection matrix model is said to be ergodic if, roughly speaking, its
eventual behavior is independent of initjal conditions. Cohen (1979b)
reviews the ergodic theorems for both time invariant and time varying
matrix models; here ve will discuas only the time invariant case.

The solution to (1) can be written in terms of the eigenvalues (1;) and
eigenvectors (w;) of A:

n(t) =Y ciwiil, (4)

where the eigenvalues of A are assumed distinct and the ¢; are determined
by the initial conditions. A sufficient condition for ergodicity is the exis-
tence of a positive eigenvalue Ay which exceeds in magnitude all the other
eigenvalues, and which has asgsociated with it a non-negative eigenvector
wy. Even in the absence of such a dominant eigenvalue, a certain degree
of convergence can be guaranteed,

The eigenvalue spectrum of a non-negative matrix is described by the
Perron-Frobenius theorem (e.g., Gantmacher 1959, Seneta 1981). That
a;; 2 0 can be assumed on demographic grounds, since otherwise there
would exist populations capable of producing negative numbers of individ-
uals. The ergodic properties of the population depend on the srreducibility
and primitivity of A,

These conditions are easily apecified in terms of the life cycle graph
(Rosenblatt 1957). A matrix is irreducible if ite life cycle graph is strongly
connected, i.e., if there exists a directed Path between any two nodes. An
irrecucible matrix is primitive if the greatest common divisor of the length
of the loops in the life cycle graph is one. An imprimitive matrix is said to
be cyclic with an index of imprimitivity (d) equal to the greatest common
divisor of the loop lengths in the life cycle graph.

?lo-t population projection matrices (including al] those in Table 8)
are itreducible, because it is a rare deacription of the life cycle which con-
tains stages which cannot contribute, directly or indirectly, to the rest of
the life cycle. Reducible matrices do occur if post-reproductive individuals
are included in the life cycle, since by definition they do not contribute to
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any of the reproductive stages. However, the post-reproductive stages are
irrelevant to the dynamics of the reproductive stages, and can hence be
ignored in the analysis. This is traditionally done in age-classified models
for human populations. More interesting reducible matrices may arise in
the analysis of spatially subdivided populations if they include subpopu-
lations which do not contribute to other subpopulations but, unlike the
post-reproductive stages in an age-classified model, do reproduce locally.

An age-classified life cycle with only a single reproductive age class
(e.g., monocarpic perennials, such as some bambooe (Jansen 1976), with
a fixed age at reproduction) produces a primiitive life cycle graph with an
index of imprimitivity equal to the age of reproduction.

The ergodic properties of projection matrices may be summarised as
follows:

L. If A is either totally positive, or nonnegative, irreducible and prim-
itive, there exists a real eigenvalue A; > 0 which is a simple root of
the characteristic equation. The eigenvalues satisfy A, > |Ai] for all
+ > 1. The right and left eigenvectors, w and v, corresponding to
Ay are real and strictly positive. The eigenvalue A, may not be the
only real positive eigenvalue, although if there are others they do
not have non-negative eigenvectors.

The population will converge to the stable structure w from any
non-sero initial population, and will eventually grow at the rate AL

2. If A is nonnegative and irreducible but imprimitive (cyclic) with
index d, then there exists a real cigenvalue A; > 0 which is a simple
root of the characteristic equation, and which has associated right
and left eigenvectors w and v > 0. The eigenvalues satisfy Ay > |A]
for alls > 1, however, there are d 1 cigenvalues equal in magnitude
to Ay, given by A exp(i2xk/d), k=1,2,...,d~ 1.

The dynamics of populations governed by primitive matrices have
been investigated in detail by Cull and Vogt (1973, 1974, 1976).
Because there are d eigenvalues of equal magnitude the stage distri-
bution does not converge, but oscillates with period d, as does total
population sise. The population sampled every d time units growa
at the rate AY.

3. If A is non-negative but reducible, there exists a real eigenvalue X; >
0 with corresponding eigenvectors w and v > 0. The eigenvalues
satisfy Ay > [A;] for all s > 1. A reducible matrix can be rearranged

I
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(by renumbering the nodes of the life cycle graph) into a normal

- A= ( ¢ o ) (5)

where the diagonal blocks B and D are irreducible (or can be fur-
ther subdivided to yield a series of irreducible diagonal blocks; see
Gantmacher 1959). Let S; and S, denote the sets of stages involved
in B and D, respectively. The stages in S) communicate with each
other, and may (if C is non-sero) contribute to the stages in Sy, but
§3 does not contribute to §;. Thus the dynamics of the stages in S,

can be treated independently, by analysing the irreducible matrix
B.

Alternatively, the entire system described by A may be analysed.
The ergodicity of A is complicated by a dependence on initial con-
ditions which is absent in the irreducible case. The rearrangement
of A generates a decomposition of the state space into a set of in-
variant coordinate subspaces (Gantmacher 1959), given in this case
by 8§ and 83 +5;. An initial vector in 53 (e.g., an initial population
consisting solely of post-reproductive individuals) will not converge
to w. This phenomenon may generate interesting problems in com.
plex spatially subdivided populations, but has not arisen in any
applications of matrix models to date.

2.3.3 Asymptotic behavior

The asymptotic dynamics of an ergodic matrix are determined by its
maximal eigenvalue and its corresponding eigenvectors. From (2),

Jim n(e)/2} = eyw, (6)

Since the subscript identifying A, as the maxjmal eigenvalue is not needed
for this discussion, we drop them for the rest of this section.

The eventual population growth rate is given by A, where A = 1 is
the critical value separating extinction (A < 1} from growth (A > 1),
The values of A calculated from plant life cycles (Table 8) range widely,
and agree with biologica! intuition. Long-lived herbaceous perennials and
trees have values of A clustered tightly around 1; values of A for short-lived
herbaceous plants vary much more widely.

The form of the stable stage distribution w depends strongly on the
structure of the life cycle (see Section 3). In contrast with stable age dis-
tributions, which are monotonically decreasing (unless )\ < 1), stable aise
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or stage distributions may increase or decrease. Thus the peaks commonly

observed in size distributions (e.g., Lorimer and Krug 1983 for trees) may

be part of the stable sise distribution, rather than réllecti.ng .pert.‘urbahons
from that distribution aa they would if it were an age du;nbut::n:lmpor
i ing i it us to introduce -

The coefficients c; appearing in (4) permi .
tant notion of reprod'uch'n value, given by' t)heFlel't flgten;ec!.o; ;; ;«:;:;

i i i * A = Xv}). First introduce

ding to Ay (i.e., vy satisfies v{ A 1 :
?ll);;l) :sing sn(obn::ure (to me, at least) anllo.gy with .the ?reue;it v'alue
of a loan, reproductive value measures the relative co.nt.nbuhon of a gw:;)l

stage to }uture population growth. From (4), the initial population n(

itten
can be writte n(0) = Zciw‘ —we (1)
!
where W is a matrix whose columns are the w; and ¢ is a vector whose
elements are the ¢;. Thus

¢ = W n(0). (8)

From the deBnition of W, W 1AW = A, where A ?s s ma.t.rixhw:th
the A; on the diagonal and seros elsewhere. However, this implies tha

WiA=AW"!, (9)

-1 _
that is. the rows of W=1 are the left eigenvectors v; of A. Let W™" = V.
o *
Then (8) gives the coefficients ¢:

¢ = Vn{0) (10)

In particular, ¢, is given by vin(0). S'm.ce n(t)_ey:en;unll(yl'. &:t::lu I:
¢, 24 w, the populations resulting from two‘ different ml;.:a ml;ﬁ cnient ' i‘,
al any given time, larger or lmaller_d_ependmg on cy. T e[coe ncien e-lgh;
from {10), & weighted sum of the initial population .sue; of eac th:t ; -
weighta are the reproductive values of the stages. int e ?e.nsle L Lhey
give the relative contribution of the those stages in the initial pop

to eventual population sise.

2.9.4 Transient behavior

Prior to convergence to the stable stage 'diatribution, a popu!;:;lon :r::::
nasmica are determined by the complete eigenvalue apectn:im‘;v e:elgn)
sient dynamics have seldom been analysed (el Caa'well anc en;e o A,
but can be investigated by examining the subdominant eigenvalue .

12
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The rate of convergence to the stable structure w depends on the
initial conditions and on the subdominant eigenvalues (see Equation 4}.
Convergence is more rapid, the larger ), is in comparison to the other
cigenvalues. This leads to the definition of the damping ratio

TEDIVIEN (11)

where A; is the second largest (in magnitude) eigenvalue.
The subdominant eigenvalues are often complex numbers. When raised
to powers, as they are in the solution (4), they produce oscillations, since

A = [A*(cos 28 + i sin t6) (12)

where # is the angle defined by A in the complex plane. The period of
these oxcillations is

P = 2x/tan" ! (S(A)/R(7)) {13)

where R(1) and ¥(2) are the real and imaginary parts of X, respectively.

The most important of these periods is that corresponding to A;. In
age-classified models, P corresponds approximately to the generation time
(Lotka 1945, Coale 1972). In complex life cycles P is still an important
measure of the time scale on which the population responds to perturba-
tions. A perturbation in the stage structure can be expected to set up
oscillations with a period P which will die out at a rate proportional to
p-

These measures of transient behavior have not been extensively in-
vestigated. Figure 6 shows the relation between p, P, and ) for 7 pop-
ulations of Dipsacus sylvestris (Werner and Caswell 1977, Caswell and
Werner 1978). Both regressions are significant, but that for p explains
little of the variance. They suggest that populations with higher growth
rates are characterised by slower convergence to the stable stage distribu-
tion and higher frequency oscillations. The generality of these patterns is
unknown.

Although A; produces the most long lasting effects of any of the sub-
dominant eigenvalues, and hence gives an upper bound on the eventual
rate of convergence, one can define a set of damping ratios

#i = M [\ (14)

and periods
P = 2xf tan™ " (2(X;)/R(A)). ‘ (15)
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Figure 6: The relation of the damping ratio p and the period of oscillation
P of the second largest eigenvalue to the magnitude of the dominant
ecigenvalue for 7 populations of Dipsacus sylvestris. Based on data in
Werner and Caswell (1977).

corresponding to each of the A;. The initial conditions may increase the
importance, in the short run, of some of the subdominant eigenvalues. The
coefficients ¢; in {4) are determined by the initial conditions. Suppose
that A; > A;, but that a particular initial condition produces ¢; < ¢;.
Eventually the contribution of A; becomes negligible in comparison with
that of A;, but in the short run ¢; A% may be much larger than ¢; . Certain
initial populations, i.e., those muiting from colonisation by a single stage
(usually seeds), may occur frequently in colonising species. Figure 7 shows
two examples of the set of ¢; (calculated from Equation 8) resulting from
such an initial condition, based on projection matrices for Arclium minus
(Hawthorne unpub.) and Pentaclethra macrolobs (Hartshorn 1975). In
the case of A. minus, the smaller eigenvalues also have smaller values of
¢, but in P. maeroloba the opposite is true. Thus the transient dynamics
following colonisation in the latler species will be more influenced by the
smaller eigenvalues than is true for A. minus.
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.Flgure 7: The coefficients ¢; corresponding to the eigenvalues A;, arranged
in decreasing order of magnitude, for Arctium minus (llawthor.n unpub.)
and Pentaclethra macroloba (Hartshorn 1975}). The abaolute values of th.e
¢c; are plotted on a log scale. The initial conditions are an initial input of
propagules in sise class 1.
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2.4 Sensitivity analysis

1 turn now to the effect on population growth of perturbations of the life
cycle parameters. Such perturbations can arise in several ways. Changes
in the external environment may change the vital rates directly, or genetic
variation may lead to changes in the rates due to changes in gene frequency
under the impact of natural selection

Many authors have approached the perturbation analysis of matrix
models numerically (Table 8), manipulating the entriea in the matrix and
reporting the resulting changes in A. Analytical methods are available,
however, that provide much more powerful insights into the results of
changes in the vital rates. The next sections summarise some of these.

Ezamples. As examples of the sensitivity analyses to be discussed
here, 1 have chosen a set of five sise-classified projection matrices for tree
populations, taken from:

o Hartshorn’s {1975) study of a population of Pentaclethra macroloba,
a wet forest canopy tree in Costa Rica.

e Enright and Ogden's (1979) study of one population of Araucaria
cunninghami in New Guinea and three stands (each with two fecun-
dity estimates) of Nothofagus fusca in New Zealand.

o Pinero et al.’s (1984) study of six populations (two stands at each
of three densities) of the palm Astrocarysm mexicanum in Mexico.

e Burns and Ogden’s (1985) study of » population of the mangrove
Avicennia marina in New Zealand.

The projection matrices used in these studies all have the same form
(Figure 5b), so that sensitivities can be expressed in terms of the G;,
P,, and F;. As a group they also permit both inter- and intra-specific
comparisons.

2.4.1 Growth rate sensitivity

The most demographically important sensitivity analysis is that of pop-
ulation growth rate A. A number of authors had considered this problem

in the context of age-classified demography (Demetrius 1969, Goodman
1971, Keyfits 1971) before a general formula was presented by Caswell
(1978; the formula in question dates back at least to Jacobi (1846} and
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has been rederived many timea since):
ar _ u.-w,-
doj;  <v,w>

(18)

where v; and w; are the i** element of the reproductive value vector
and the j** element of the stable structure vector, respectively, and <>
denotes the scalar product. (Cohen (1978) takes another approach to the
problem, and also considers the second derivatives of 1.}

Several conclusions follow from (18). First, the sensitivities are non-
negalive; increasing a;; never decreases A. Obvious evolutionary consider-
ations suggest that, at some point, further increases in, e.g., reproduction
must actually decrease the growth rate. Such phenomena are due to cor-
relations between traits, and will be examined within the context of (16)
in a subsequent section.

Second, since a;; denotes the transition from n; to n;, the importance
of changes in that transition depends on the abundance of the source stage
and the reproductive value of the destination stage.

Sensitivities have been calculated using this formula for plant pop-
ulations by a number of authors (see Table 8). Examples for the five
tree populations are shown in Figures 8, 9, and 10. Two results are im-
mediately apparent. First, the sensitivity of A to changes in the matrix
elements varies by many orders of magnitude over the life cycle. Second,
there is no universal trend for sise-specific sensitivities to decrease with
increasing sise. This is a sharp contrast to the situation in age-classified

models, and has potentially important implications for the evolution of
senescence (Caswell 1978, 1985).

The sensitivity structure of the entire life cycle can be summarised by
an overall sensitivily index S, which gives an upper bound on the norm

of the change in A produced by a change in A of unit magnitude (Caswell
1978). Assuming that < w,v >=1,

§ = V(vv){w'w) , (17)
1/2
22 () R

Rewriting (17} in the form of (18) reveals it as a root-mean square
measure of overall sensitivity of A. An intuaitive interpretation of S is
as follows. Suppose that the a;; are subject to small independent ran-
dom perturbations with variance V(a;;). The resulting variance of ) is
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Figure 8: Senmsitivities of A to changes in F;, the probability of remaining
in size class 3, for five tree populations.
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Figure 9: Sensitivities of A to changes in G;, the probability of surviving
and growing from size class § to § + 1, for five tree populations.
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approximately

Y s ) (%)2 V{ai;)

(%)

= S (a;). (19)

Thuas the overall sensitivity index § approximates the standard deviation
of A resulting from a unit variance in each of the o;;. In this sense, it
messures the overall sensitivity of population growth rate to changes in
the life cycle.

A few values of § were tabulated by Caswell (1978), but it has not
been widely applied. One of its problems, particularly apparent in (18)
is its incorporation of sensitivities to changes in all the a;y, including
changes which are biologically impossible. A more realistic index can be
obtained by restricting the summations in (18) and (19) to those a;; in
which change is considered possible.

Elasticities. Most numerical sensitivity investigations {Table 8) have
examined the result of perturbations which change the matrix elements
by fixed proportions (e.g., 10%), rather than fixed amounts, and express
the results as a proportional change in A. This method has an obvious
advantgage when comparing parameters measured on different scales, such
as survival probabilities (which must lie between O and 1) and fertilities
{Caswell and Werner 1978).

Equation (16) can be modified to give a proportional sensitivity or
elasticity index (a term borrowed from microeconomics) which solves this

problem. Let ¢;; denote the proportional change in A resulting from a
proportional change in a;;. Then

y = M9
G T 5 oy (20)
3lIn A
~ 3lnay, (21)

(see Schmidt and Lawlor 1983, Caswell et al. 1984, DeKroon et al. 1986).
Table 9 compares a sensitivity matrix and an elasticity matrix for a pop-
ulation of Dipsacus syivestris. Note that the sensitivity of A to fertility
changes (a;7) is much smaller (.001) than the corresponding elasticity
(-25).

This index has several interesting properties. It is not difficult to show

TR ALY R e

b e

il T R R T S ' Lo e e e
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Table 9: The sensitivity and elasticity matrices for a population of Dipli
sacus sylvesiris {Field A, stage-classified matrix ffom Werner and Caswe
(1977). The (i, ;) entries of the two matrices give dA/da;; and eij, re
spectively.

Sensitivity Matrix

00 001 00 .001
004 002 001 00 .00 .00 00
0.01 00 oo 00 00 .
099 041 022 001 005 001 00
510 211 113 005 0.24 004 0.02

2709 11.20 599 025 128 023 0.1

59.28 24.52 13.10 055 2.80 0.51 0.25

025 0.10 005

Elasticity Matrix

000 000 000 000 0.00 0.00 0.25
002 000 000 000 000 000 0.00
0.00 .00 000 000 000 000 0.00

.00 .00 00 .00 000 000 0.00
020 001 000 .00 003 000 0.00
0.03 00 000 001 0.17 002 000
000 000 000 000 004 021 000

(DeKroon et al. 1986) that
E ch‘j =1 (22)
i g

This implies that ¢;; gives the proportion of the overall elasticity con-
tributed by a;;. This makes elasticity matrices particularly easy to com-
pare across populations. ' .
More interesting still, ¢;; provides a dlrect' meuur: of t!te relahv:
contribution of the a;; to A, i.e. of the proportion of A contrlb!ltu‘i by
the coefficient a;;. Define b;; as the contribution of a;; to A, satisfying

A=Y 3 aisbi, (23)
i 3 {4

\

L
\
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and suppose that b;; can be written bij = a;f; for some a; and f;. That
is, assume that the contribution of iy can be written as a product of a
term apecific to the "source” stage and a term specific to the *sink” stage.
The only b;; satisfying these requirements is bij = ei;. To see this, note
from (9) that VAW = A, where VW = I; this similarity transformation
of A is unique. Thus A; can be uniquely written:

"l = ViAwl (24)

= Z ): ;5 Uy 0y, (25)
i

Dividing both sides of (25) by A, yields (22).

In the elasticity matrix of Table 9, 83% of the value of A in accounted
for by ag, (seeds — medium toseties), ags (medinm rosettes — large
rosetien), arq (large rosettes — flowering plants) and a,4 (Aowering plants
— seeds). This is a great simplification of the total life cycle, and clearly
indicates the most important developmental pathways in this population.

It is possible to calculate elasticities of A with respect to other variables
which themselves contribute to the ai5. While such elasticities give the
proportional sensitivity of A to the variables in question, they do not sum
to unity and do not give the relative contribution of those variables to A,

The elasticities of A with respect to F;, G; and F} are shown in Figures
1, 12 and 13, The different species difier among themselves in the extent
to which they rely on survival, growth and reproduction in achieving their
observed rates of population growth. Overall, though, the P: make by far
the biggest contribution to A, the G; much less and the F; even less. Thinis
perhape reasonable, considering that these are relatively long-lived, slow-
Rrowing species; the pattern for the herbaceaous Dipsacus aylvestris is
quite different. These patterns deserve further study.

2.4.2 Translent sensitivities

The damping ratio and the period of oscillation are functions of eigenval.
aes. Since the sensitivity formula (16) applies to any eigenvalue {using
‘he appropriate eigenvectors), it is not difficult to develop sensitivity for-
nulae for the indices of transient behavior (Caswell, unpublished.). Let
i2 = x4t 1y. Then

BP 1 (6,\1 P ( 3z ay ))
da;; ~ Pl \Far;, i \%Fa F V5 26
9ai;  |Aa] \Bay;  [Ag] Jaj, yaa‘.j (26)
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and

P -1n ( 3y a:). )

= x —
36{,’ B’],\,P aa.-,- yaa.'_,'
These formulae have yet to be systematically applied.

2.4.3 Elgenvector sensitivities

Formulae for the sensitivily of the eigenvectors w and v to changes in the
aij were presented by Caawell {1980). Let dA be the matrix of perturba-
tions da;;, and assume that < w,v >=1, Then

dA Wi, Vy
dws = ;(5(—;)_—,13% (29)
dv; = Z(ﬂ‘%{);i;_}'iz)v’ (29)

T

'I:hm formulae can be simplified to give sensitivities of the dominant
eigenvectors w; and v, respectively:

dwfs Yoo (k)W (¢
T - mo T (30)
dvy i) Yen(§) W
-y e, o)

m#l

Note that, unlike the eigenvalue formulae, the eigenvector sensitivities
depend on the entire eigenvalue spectrum. The presence of (Ay — An)
terms in the denominator means that the eigenvectors are particularly
sensitive to perturbations when two of the eigenvalues are nearly equal.

3 Graphical Derivation of Eigenvectors

It is clear from the preceeding section that most of the demographic inter-
pretation of a life cycle graph can be expressed in terms of the eigenvalues
and eigenvectors of A. The eigenvectors are particularly important, since
they are the key to the sensitivity analysis of the life cycle.

Given numerical values for the a;j, the evaluation of the eigenval-
ues and eigenvectors of A is simple, provided only that one has access
to numerical routines for eigenanalysis, which are now widely available.
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However, for many theoretical applications, algebraic formulae for the
eigenvectors in terms of the a;; are much more useful. Such formulae
have been provided by Caswell (1982a), following Hubbell and Werner
(1979}. They make use of the s-transform {the discrete analogue of the
Laplace transform; see Jury (1964)) and have the additional advantage
of permitting some uselul simplifications of the life cycle graph. The for-
mulae are derived in Caswell (1982a); here I present the results without
proof and then apply them to some questions in life history evolution.

3.1 The z-transformed life cycle graph

The z-transform of a basic life cycle graph is obtained by replacing a;; by
a;; A7, where ) in a complex variable. {In the engineering literature it
is customary to use 2 for this variable; hence the name. In our case, the
golution to a particular equation in A will be identified with the maximal
cigenvalue of the matrix; hence it seems best to stick with the symbol 1.}

Transitions which require more than a single time atep can also be in-
cluded in the life cycle graph. The s-transform of a transition requiring a
time steps replaces a;; with a;;A™7 (see Figure 14). It is, of course, possi-
ble to write such a graph without using such transitions, by identilying &
intermediate stages between n; and ny, for example, and assigning them
survival probabilities whose product is P,. Indeed, the a-step tranaition
is the simplification of the expanded graph, following the rules of Mason
and Zimmerman (1960). Since the eigenvalues and eigenvectors are inde-
pendent of what happens between ny and ng, except for the values of o
and P, it is convenient to specify the transitions this way.

Terminology. For our formulae we shall need the following terms. A
path between n; and ny is a sequence of arcs connecting the two nodes,
following the directions of the arrows, without passing through any node
more than once. A loop is a closed sequence of arcs, following the direc-
tions of the arrows, passing throngh no node more than once per cycle.
The length of a loop is the number of distinct nodes through which it
passes. A self-loop is a loop of length one. Paths or loops are said to be
disjoint if they share no nodes in common.

The transmission of a path or loop is the product of the coeflicients
along that path or loop, usually with special treatment {described below)
reserved [or self-loops.
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3.2 The characteristic equation
The cigenvalues A; are the solutions to the characteristic equation
det(A — Al) =, (32}

which is, in general, a k*® order polynomial in X, with k complex roota.
For the special case of the age-classified Leslie matrix, (32) has a well-
known special form, a discrete version of Lotka’s integral equation for r
in the continuous time model. For complex Jife cycles, the characteristic
equation can be written down directly from the jife cycle graph (Hubbell
and Werner 1979, Caswell 1982a):

1= "L+ iL.-L,- -
i 0“5

where L; denotes the transmission of the st* loop, and the summations
marked with asterisks add the products of all pairs, triplets, etc. of disjoint
loops.

Since the transmissions L; contain A—! terms, (33) is a polynomial in
A7 solutions of (33) are eigenvalues of the matrix corresponding to the
life cycle graph.

Self-loops are most cazily handled by absorbing them (Mason and
Zimmerman 1960) into the transmissions between nodes. A self-loop of
strength a;;A~! at node 7 can be removed by dividing the transmission
of all incoming arcs at node 5 by 1 — a,;;A"1. This greatly simplifies the
resulting calculations becauge unabsorbed self-loops are always disjoint.
When self-loops are absorbed, most life cycles retain no disjoint loops,
and only the first sumination appears in (33).

L.‘L,‘Lk + P (33)
&

i

to find the eigenvalues directly with matrix routines; if one does not, it is
not usually possible to solve the equation (certainly not for k > 4).
However, the characteristic equation can be used to derjve the sensitiv-

irowth rate, has been studjed by Lewontin (1965}, Merts (1971), Casweit
wd Hastings (1980), Hoogendyk and Estabrook (1984} and others. The
ollowing results, however, are more general.
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X’

i i devel-
Figure 14: A segment of a life cycle graph connec.tmg tvf:) ar;;:.:a:ryc ;{(,\)
opﬁnental stages, n; and ng, with a delay of a time units.

represents the aggregate of all pathways from n3 back to n,.

i f
Consider the transition shown in the s-transformed life cycle graph o

F ]gltre l‘ lt I[][k. two arl w th a ll.H'VIVill prOb-
lh y j 1 over a tLime I.Inlta. Ih B gte aIc I belled K( ) rp
ab l € BIN a A ANCO orates

! the possible pathwaye from ng back to ny. K(A) is the transmission
a 3
of this combined path, and can be writien

KQ) =3 kA (34)

where k; is the sum of the transmissions of all pathways from n3 to n,

. . . teps. |
requiring exactly ¢ time s .
A The characteristic equation, assuming that the life cycle contains no

disjoint loops, 15 f(A) = PA°K(A) =1 (3)

from which 3A/3a can be derived by implicit differentiation:

o\ _ -3f/a -
da  of]ax

Two cases arise, depending on the relation of P.l and a. In the [::::]i}:;
is a constant independent of a. In the second, lh? mnt;'ntan:o:, :rra riality
::m u is constant, and P, is obtained by applying this rate

units: PR, -

21
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It is not clear which case is more realistic. The second case is easily visu-
alised: during their development from n; to ny individuals are exposed to
a constant risk, and their survival probability is determined by how long
they are exposed. However, Taylor and Williams (1984) have suggested
that this scenario does not apply to fish populations. In general, the de-
pendence of P, on a will depend on the details of the survivorship curve
between n, and ny.
Case 1. Carrying out the differentiations in {36) we obtain

8f/3a = -In(}) (38)
3fjar = —ad ' -ATIPATTY ik
= —(a+ M)/2 . (39)

The quantity M = PjA~* 3. th; A~ ia a weighted mean of the lengths of
the paths from nj back to ny. To see this, note that LA™} . kA~' =
l._ eo that the terms in the summation can be treated as a probability
distribution. The weighting in M is a function of the transmissions along
the various paths. M is thus a measure of the length of the most important
pathways from nq back to n,.

Combining {38) and (39) we obtain, for Case 1:

ﬂ_—Alnl
da a+ M’

The e!uticity of A with respect to a, giving the proportional change in A
resulting from a proportional change in a, follows immediately from (40):

dlmd _ -alnl
dlna  a+ M’ (41)
From (40) and (41} it is clear that increases in development time o always

decreu-e-f'? l}nleu A <1, and thatif A = 1, a is neutral. 1t is also clear that
the sensitivity of A to changes in development time is inversely related to

M.

Case 2. In this case

(40)

3f/3a=—{p+In)), (42)
while 3f/3X is still given by (39). Thus we have

3X  =Ap+ind)

d3a  a+ M (43)
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and
amx _ —alut+ini} (44)
dlna a+ M

Now the critical value of A, below which 3)/3a becomes positive is
A=e* <L (45)

Thus, in Case 2, the selective pressure on a is negative even in an equi-
librium population (A = 1). However, it is possible for selection to favor
increases in a, contrary to the assertion of Hoogendyk and Estabrook
(1984) that dr/3a > 0. Their claim applies only to the special case of
age-independent survival in an age-classified life cycle, in which A can
pever be less than ¢~ #, even in the absence of reproduction. If this as-
sumption is not made, then when the population is decreasing sufficiently
fast, selection favors delayed development.

Equations {40-45) show that changes in timing within the life cycle
can be very important, and that the factors governing their importance
are the X itsell, M and a.

3.3 Eigenvector formulae

Rather more useful than the characteristic equation are the formulae for
the eigenvectors. Define the following transinissions in the z-transformed
life cycle graph.

o Ti,: the tranemission of the it* directed path from n; to n,.
o L;{ny): the transmission of the j** loop which is disjoint with n;.

e L;(T},): the transmission of the 1** loop which is disjoint with the
path T} ,.

In terms of these quantities, the elements of the right eigenvector w are

given by

w= 1= L) 4 Y L) = (40)

and

we =3 Tis (1 =¥ LT+ i: LT ) L{T3,) — ) (47)
. ) 5.k

2
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for x > 1. Again, the summations marked with asterisks are taken over
all products of disjoint pairs, triplets, etc. of loops.

The left eigenvector v is the right eigenvector of the transposed matrix
A’ It can be developed most easily in terms of the transposed transmis-
sions. The transposed tranamission differs from the transmission only
in the treatment of self-loops; instead of dividing all incoming arcs by
1 - a;; A7 ! one divides all outgoing arcs. Defining

o T30 the transposed transmission of the i** path from stage z to
stage 1,

the entries of the eigenvector v are given by

o= 1= 3o Li(m)+ 3 Ly alo) - (49)

and

Vg = }:T:n (1 - Z_L,-(T:',) + il‘i(ﬁx)h(ﬁ:} - ) (49)

for z > 1.

Many life cycles contain no disjoint loops (once self-loops have been
absorbed). In particular, life cycles containing one stage through which
all individuals must pass contain no such loops. For these life cycles the
eigenvector formulae (46-49) simplify to

w = 1 (50)
w, = ) T}, (51)

and

w = (52)

1
1L (53)

Vg

3.3.1 Sensltivity formula for multi-step transitions

Multi-step transitions such as those shown in Figure 14 do not correspond
to a single entry a,; in the projection matrix, and the sensitivity of A to
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P, = 8,8,84

Figure 15: The process of reduction generating a life cy?le transition
requiring multiple time steps. From Caswell (1985). Reprinted by per-
minssion of Yale University Press.

changes in such parameters requires slightly diﬂ'eren.t treatment (Caav.vell
1985). A transition like P; in Figure 14 is a reducho.n (h{luon and Zim-
merman §960) of a graph segment like that shown in Figure 15, where
the §; are the survival probabilities over each of the steps from n, to nj.
The survival probability P, = I1§;. From the point of view of the :educed
graph, all the § might as well be identical, in which case P, = §°.

Without loss of generality, we assume that the change in P; results
from a change in §;. Since P, = §,6°",

D grand)
8P. 861
= 6—«{-1 ot . (54)
<W,¥v>

In (54), w; and v; refer to the unreduced graph. Stage 2 {and henc_e v3)
doés not even appear in the reduced graph. However, v; can be rewritten
as

v = sa—lA~¢+l”a+l. (55)
Thus (54) reduces to

ar _ poatt Wilatt (58)

ap, <w,v>

2%
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Notice that, if a = 1, (56) converges to the single-step sensitivity formula
(18), as it should.

In (56}, the scalar product term in the denominator still refers to the
unreduced graph. However, for 1 <t < a+1in the unreduced graph, w; =
(AT /6i8ign - Ba)wayy and v = &4y -~ 6,475y, 1. Thus, in
this range,

Wit = Wa Va1, (57)
and the scalar product can be expressed in terms of the eigenvectors of
the reduced graph:

<W,V>=uv +augwg +---. (58)

4 Evolutionary interpretation

One of the major uses of the sensitivity formulae is in evolutionary calcula-
tions. This requires a demographic definition of fitness, a relation between
this definition of fitness and the parameters defining the life cycle, and a
description of natural selection incorporating all these elements.

4.1 Fitness

We equate fitness with ), either as a property of a genotype or as a popu-
lation average. The assumptions required to justify this usage (primarily
slow selection and approximate stability of population structure} have
been discussed in detail by Roughgarden (1979) and Charleaworth (1980)
in the context of age-dependent models. 1 conjecture that the extension
of those results to complex life cycles will produce no major changes. This
definition lets us take advantage of the demographic framework outlined
above to relate fitness to the structure of the life cycle.

4.3 The secondary theorem and selective pressure

The connection between fitness and selection is provided by the so-called
Secondary Theorem of Natural Selection (Robertson 1968), which states
that the rate of change in a quantitative trait under selection is propor-
tional to the genetic covariance of that trait with Gtness. (The Furda-
mental Theorem (Fisher 1958) states that the rate of increase of mean
fitness is proportional to the genetic variance in fitness. It may be funda-
mental, but it is of much less use in predicting the results of selection on
life history traits.)
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The best stalement of the Secondary Theorem is due !.o Lande (I?S'Z_a,l)).
Let s denote an m-vector of quantitative traits {survival probabilities,
clutch sites, resource allocations, development rates, etc.) and let (:‘-r'de-
note the additive genetic covariance matrix (i-e. iy = Coug{zi, 2;}). Then
Lande shows that

AL =2"'GV (59)
where A# ia the change in the average value of 5 due to natural selection
and VA= {2 . JA).

Focuuinga:)tn any one trait, z;, {59) reduces to
C~ f 8A
Af, = 2t E (—a?-) Cou,[z,-,z,-). (60)
y=t !

If 2; is independent of the other traits, (60) reduces still further to
ar
A% = A"E;:V,(z.-) (51)

(cf. Emlen 1970), where Vy{z) is the additive genetic.variance in z.-:t I-n
the simplest case, then, the direction of natura.] selection on any trai -:s
determined by the sensitivity of A to changes in the value of that It.ral .
If one assumes {as is becoming increuingly. clez.tr that one ca-nnot. a tva)l(s
do {Istock 1983)) that the genetic variance in different traits is eﬂ?ctlrfa y
equa), then the sensitivities determine the rate as we-ll as the direc n;n
of selection. Emlen (1970) introduced the term selective pressure for the

sensitivity term in (61).

4.3 Correlated traits and trade-offs

When genetic correlations exist between different traits, as can be ex-
pected Lo the extent that any of them are under the control _of ge_ne,.:c
systems with pleiotropic effects (Templeton 1980), I.‘he change in % m.(;n-
fiuenced by the selective pressure on the other traits as well. Consider

two traits, z; and z;. From (60},

o faA aA 62
Afn = A~! (E'T o(21) + ECOU,(Z],ZQ)) . (62)
Dut since 3z, /3z; & Covylzy, 22)/V,(21), (62) can be rewritten
ar 3\ 3z
a2 L 2A%Em Yy ). (63)
Afl =A (le + 822 le) a(ZI)

2L
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The bracketed terms in (63) give the “net selective pressure” on z,, in-
corporating both the direct and indirect (through 23} effects of changes
in z; on A.

Negative correlations between traits (“antagonistic pleiotropy” (Rose
1982) or “tradeoffe”} are the most interesting cases. They can arise be-
cause of energetic conatraints (resources allocated to one function cannot
be allocated to another}, architectural constraints {modules devoted to
reproduction are not available for growth), or as a result of the genetic
system.

When the traita in question can be expressed in terma of the elements
a;; of a projection matrix, the selective pressure terms in (63) can be ob-
tsined from the eigenvalue sensitivity formulae. The resulting expressions
can be used to predict conditions under which selection should favor in-
creases in one trait at the expense of another, as a function of the {usually
unknown) correlations (e.g., Caswell 1983, 1985, Caswell et al. 1984). If
it is assumed that A is maximised as a function of z; and 23, the value
of 323/32 can be calculated in terms of the sensitivities {Caswell 1982c,
1984). Some other general conclusions arise from consideration of certain
correlation patterns.

4.3.1 ‘Tradeoffs between pathways

The preceeding results can be used to derive conditions under which se-
lection should favor increasing investment in one developmental pathway
at the expense of another.

Divergent pathways. Suppose, as in Figure 16b, that the choice is
between two divergent pathways, and suppose that the cost of an increase
in P; at the expense of P; is c; i.e. that

P[P, = —e. (64}
The net effect of an increase in P, is then
A a  ax
dh, ~ 3P, ‘3R
wy(vy — cvy)

5
<w,v> (65)

Selection thus favors increasing P if and only if

vifer > e. (66)
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cqx? C4X

Cz)\_ 1 sz"1

Figure 16: (a) Two convergent pathways in a life cycle graph. {b) Two
divergent pathways in a life cycle graph.

That is, the direction of selection on divergent pathways depends on the

i \ tination stages.
lative reproductive values of the des
A Conuef;en! pathways. Figure 16a shows two convegent pathways. By

an argument analogous to (64-66), selection favors increasing Py at the
expense of P if and only if

wy fuy > e (67)

The direction of selection in a choice between con}'ergent'pathways de-
pends only on the abundance in the stable stage distribution of the two

source stages.

4.3.2 Survival and growth in size-classified populations

The sise-classified life cycle graph (Figure 5b) can be duectlyhan;
lysed to obtain the selective pressures on P;, F; and G;. However, t eh..
and the G; can be also be expressed in terms of lower level demogl:'ap ic
parameters describing survival and growth. Let o and % derolot-e Ede slu-r—
vival probability and growth probability, respectively, of an individual in

size class i. Then

P = oi(t-%) (68)

2s
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Gi = oy (69)

We can now calculate the selective pressures on o; and 78]

9N ((1 - v + ‘1-'"-‘+|) (10)
do; <w,v>

A Vig1 — Y

L = wge (UL %Y -
% o (< w,V >) (71)

Examples are shown in Figures 17 and 18.

The survival probability o; affects both the transition from n; ton;
and the transition from n; to iteelf, so the selective pressure on g, is
proportional to the weighted average of v; and v;41. The selective pressure
on 7; is interesting because, unlike the other selective presaures in this life
cycle, it may be negative (if v;,; < v;). In such a situation, selection
should favor decreases in +;, until ni41 ia effectively dropped from the
life cycle. This implies that, in sise-classified life cycles, the reproductive
value distribution should increase monctonically up to the largest size
class. This is a striking contrast to the pattern of reproductive value as
a function of age, which tends to increase until early in reproductive life
and then decline dramatically. Figure 19 shows several examples. They
tend to sepport the prediction. While there are occaisional declines in
reproductive value at the largest sises, they are small compared to those
observed in age-classified life cycles.

b Conclusions

It is perhaps fair to say that the life cycle is the description of the organism
(Boaner 1965). This paper has reviewed some of the purely demographic
information that can be obtained from a specification of the life cycle. The
amount of that information is greater than most biologists have realized.
The complexity of plant life cycles (size- or stage-dependent demography,
multiple reproductive modes, snd g0 on) is no longer a hindrance to this
analysis.

It is worth considering here what lies beyond the linear time-invariant
projection models on which this review has focused. There are other pos-
sibilities. The few studies that have tested projection matrices for tem-
poral variability have found it (Bierzychudek 1982, Cochran 1986). This
invites the application of recently developed theory on inhomogeneous ma-
trix projection models (Cohen 1976, 1979a, Tuljapurkar 1982a,b, 1985) to
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