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Abstract

In this paper we describe an axiomatic framework that allows for the general incorporation of
sexual structure into two-sex pair-formation models for sexually-transmitted diseases. This formulation
can also be used to describe the dynamics of vector-transmitted diseases. A representation theorem
describing all solutions to this mixing framework as perturbations of particular solutions is proved.
Two-sex age-structured demographic and age-structured epidemiological models that make use of our
framework, and are therefore capable of describing the dynamics of individuals md]or pairs of
individuals are formulated.

1. Introduction

‘Srmmepesmtmming, The modeling of sexval - transmission discases can be said to have s
genesis in the work of Sir Ronald Roes. Several ideas introduced in his modeling work on malaria have
proved to be very useful in the development of a mixing framework for socialf/sexual interactions as

well as in the development of models for the spread of venereal diseases. For example, the (twa.al:)

1The work described in this paper has been motivated by our work with Kenneth Cooke. Ken
has used his considerable experience in the modeling and analysis of models for STDP’, and most
recently in the development of models that may help our fight against AIDS. Many of the ideas
discussed in this articie arose out of our study of Ken's work, our discussions with him, and our
collaborative efforts with Ken over the years. We dedicate this paper to him as we celebrate his 65th
birthday.
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recognition that there must be a conservation of the number of interactions between individuals

involved in & disease transmission process, a fact often ignored by modelers, was already clearly
articulated in Roes’ work on malaria. For malaria, this meant that the number of bites on humaas
must equal the nymbe humans bitten (Ross 1911, p. 666-7). In STD’s we recognize this constraint
as that on th%ﬁqﬁtnmhiw formed between individual human interacting groups (a
kind of group reversibility property or a conservation law). The consequences of this constraint will be
further discussed later in this paper. Ross also observed that models with fixed and variable sized
populations must be treated differently, and may have radically different properties (Roes 1916, pp.
212, 215, 222). The fact that in the study of the dynamics of malaria the sizes of the host and vector
populati;ns play a key role in transmission forced him to introduce a special mixing structure given by
a linear function of the ratio of the vector to host population sizes. We will show later that all solutions
to our two-sex mixing framework are given by multiplicative perturbations of these special solutions.
Models for the spread of STD’s (sexually-transmitted diseases) were not aystematically studied for
over fifty years. In 1973, Cooke and Yorke analyzed and developed the first models for the spread of
gonorrhea. These papers re-opened this important area of research which reaches a significant plateau
with the application of these new adavances to the problem of gonorrhea dynamics and control. A

description of these applications to U.S. data is clearly detailed in the excellent monograph Mby
Hethcote and Yorke (1984).

This papet is organized as follows: In Section 2, we formulate a general two-sex model for the
spread of gonorrhea. This model allows us to discuss the problem of pair-formation or mixing. In
Section 3, we discuss some special mixing solutions and provide a representation theorem for all
possible two-sex mixing (pair-formation) solutions. In Section 4 we formulate a two-sex age-structured
demographic model and a two-sex age-structured epidemiological model that follow pairs of
individuals. Models of this type have been formulated earlier by Fredrickson {1971), McFarland (1972),
Dietz (1988), Diets and Hadeler (1988), Castillo-Chaves (1989), Hadeler (1989a, b), and Castiilo-
Chavez et al. (1990),. Section 4 begins with an axiomatic description of & two-sex age-structured
framework and proceeeds to present our general representation theorem for the two-sex mixing problem

in an age-structured population.

2. Two-sex gonorrhea model with variable population size

To provide a context for the sexual interactions of a heterosexual population, we introduce a two-
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sex model with variable population size for the transmission dynamics of gonorrhea. Traditional

gonorrhea models (sce Hethcote and Yorke, 1984) have assumed that the mixing subpopulations have
constant size. This assumption may be very useful when we deal with the relative evaluation of control
strategies (loc. cit.). However, this assumption is not appropriate in situations in which we wish to
evaluate the impact of different mixing patterns in disease dynamics. The assumption of interacting
populations of constant gize leads to time-independent mixing probabilities (i.e. constant contact
matrices) and hence to mixing patterns that are valid only for populations that have already reached a
steady state.

We consider a population of heterosexually active individuals. This population is divided into
classes or subpopulations. Classes can be identified by sex, race, socio-economic background, average
degree of sexual activity, etc. Models that incorporate factors such as chromological age, age of
infection, variable infectivity, and partnership duration can be found in our earlier work (see Busenberg
and Castillo-Chavez, 1989, 1990). We consider N-sexually active populations of females and L-sexually
active populations of males. Each population is divided into two epidemiological classes: ij(t.) and
S;™(t) (susceptible females and males, i.e., unifected and sexually-active, at time t); ij(t.) and L["(t)
(infected females and males, at time t); for j = 1,..,N and i = 1,..,L. Hence the sexually-active
individuals of each sex and each subpopulation at time t are represented by ij(t) = ij(t) + ij(t.) and
T,2(t) = 5;"(t) + L)

ij(t.) and Bim(t) denote the j‘;h and itP incidence rates for females in group j and males in
group i at time t, that is, the number of new infective cases in each subpopulation per unit time.
ij(t) and Bim(t) are complicated functions that depend on the frequency and type of sexual
interactions that susceptible females of group j and susceptible males of group i have with all other
sexually-active individuals, in this case, of the opposite sex (although this condition can be easily
relaxed).

1If Ajf and Aim denote the “recruitment” rates (assumed constant), pjf and pim denote the
(constant) removal rates from sexual activity, and 1jf and 7im denote the (constant) removal recovery
rates from gonorrhea infection, then we can [eaﬂ-l-y) write the following model for the transmissi.on

dynamics of gonorrhea:

dsd(t) :
S = af- 8w - 50 + 71, (1)

dr.i(t)
= ij(t) - (4 l‘jf)ljf(t)v @)
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ds.™m
ldt.(t) = A - B - ST + (), @
. dLm t
—& t.( ). B() - (1™ ™K (®), @

i=1,.., Landj=1,.,N.

Of course, this model is not fully described until we provide explicit expressions for ij(t) and
Bim(t). The formulae for the incidences will be provided in two stepe: first we will provide expressions
for the incidences in terms of the set of mixing probabilities {pﬁ(t) and qji(t): i=1,..,Landj=
1,...,N}; and secondly, these mixing probabilities will be described (in the next section) in terms of an
axiomatic system for sexual interactions.

To describe the formulae for the female and male incidences we need the following definitions:

pij(t) : fraction of partnerships of males in group i with females in
group j at time t,
qji(t.) : fraction of partnerships of females in group j with males in

group i at time t,
Tim(t) : male population size of group i at time t,
ij(t) : female population size of group j at time t.

c; : average (constant) number of female partners per unit time

of males in group i, or the ith-group rate of (male) pair-formation,

b; : average {constant) number of male partners per unit time

of fernales in group¥; or the jt'h-group rate of (female) pair-formation,

ﬁim : transmission coefficient (constant) of males in group i,

ﬂjf: transmission coefficient (constant) of females in group j.

Using these definitions we obtain the following expressions for the incidence rates:

1.it)

N
= f
BT = (1) 2.8 7(¥) —T_';j o ®)
and ta

f f, N m lim(t)
B{(t) = ¢S (1) i)-_;lﬁi q5(t) TGy (6)




3. Two-sex mixing framework

Special solutions for one-sex mixing populations were obtained by Nold (1980), Hethcote and
Yorke (1984), Hyman and Stanley (1988, 1989), Jacquez et al. (10887, 1989), Blythe and Castillo-
Chaves (1989), Castillo-Chavez and Blythe (1989), Gupta et al. (1989), and Anderson et al. (1989). A
representation theorem describing all solutions as random perturbations of random (proportionate)
mixing, based on the work of Blythe and Castillo-Chavez (op. cits.), was obtained by Busenberg and
Castillo-Chavez (1989, 1990). Models that follow paire of individuals (two-sex models) can be found
(in a demographic context) in the works of Kendall (1948), Keyfitz (1972), Parlett (1972), and J. H.
Pollard (1973). Formulations of the standard two-sex mixing pair-formation framework are found in
the work of Fredrickson (1971) and McFarland (1972). Applications of the Fredrickson-McFarland
framework to epidemiological models has been carried out by Dietz (1988), Dietz and Hadeler (1988),
Castillo-Chavez (1989), Waldstatter (1989), Hadeler (1989a, b, 1990), and Castillo-Chavez et al.
(1990). In this section we provide an alternative approach to the process of pair formation. This
axiomatic framework was introduced in Castillo-Chavez et al. (1990), where some special solutions
were found. We use the set of mixing probabilities {pij(t) and qji(t): i=1,.,Landj=1,..,N}to
describe the mixing/pair formation in a heterosexually active population through the following set of

properties or axioms:

Def (pij(t)‘qji(t)) is called a mixing/pair-formation matrix iff it satisfies the following properties (at
all times):

(Al) ¢ < pi‘ < 1, 0 < Q'i < I,
Nk m 0w by T
_"'_' 1=
— - .f T i - ans H = 'y
(A3) ciTimpij = b]TJ Gjis i=1,-L, j=1,-4N
(A4) If for some i, 0 < i < L andforsomej, 0 < j < N we have that cibjTimij= 0, then we

define P = 94 = 0.

Note that (A3) can be viewed as a conservation of partnerships law or a group reversibility property,
while (Ad4) asserts that the mixing of “non-existing” or non-sexually active subpopulations cannot be
arbitrarily defined. For the gonorrhea model, and most deterministic models for STD's, subpopulations

that are sexually active do mot become extinct and remain sexually active for all time. We now
chagactueize .
proceed to egmamet® a useful solution, namely Ross’s solution.

C'hnrm‘”/u‘:y
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Def A two-sex mixing/pair-formation function is called separable iff

Pjy = PiPj and %; = 99 -

This definition lead us to the following useful chmutermthx separable mixing function.
(AT
heorem 1:  The only separable solution is Ross’s solution given byh(pj,ql) where
b Ty T
s qi__N__f j=1,---N and i=1,-+L.
i=1 J—l

L]
Proof Using (A2) we get that W C‘L;-L—‘: EF o)

L
1= g Eqi =g i—, k a constant

: 1—9,}:41] pj ¢aconstant
j=1
) lkﬂ
e }{q.-k and pl-laénw'-’
% _qjqiqui = g
P = PP = ¢ P l_)j
If (7) and (8) are substituted into (A3) then
m - f me _ f-

]

iti
Summing over i 5 . o~
g ﬂé :

B: %;c.’r.m = b.T.f %q. =b.T.f
= R =R

be

T— Jt s !N‘
2(:

2 7'5#4/

Summing over j ;$ W2 AP

/ N
°TmEPJ-——qlEbe o IP=g 3 bT
=1 j=1
_ _ Ty m ,
7‘ | y g = -f:—bjr'? =1,-+L.

(M
(8)

(9)

(10)

e (11)
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It is not immediately clear why (10) and (11) satisfy the mixing axioms; however, starting with the
group reversibility property (A3)
m, . p.T.f i= AT
CiTi pij = bjTj jS, 1= 1, ey L, ] = 1, ' N,

summing (A3) over j and i

we conclude that

I N
2 ciT{n= 3 b.Tf. (12)

Therefore (ﬁj,ﬁi) satisfies (A1) - (A3), and we note that it vacuously satisfies (Ad).

Remark: Note that from (A3) it follows that
P:: b.T-f ﬁ
B (13)
i ciTim q;

and hence using (A4) we see that the support of any two-sex mixing function is contained in the

support of (ﬁj,c‘li).
We now use Equations (10), (11) and (13), to generate more solutions to axioms (Al)-(Ad). We
begin by introducing some new terms. Let
(¢um) = males’ structural covariance matrix (0 < c.6i:i“) denoting the degree of
preference (i.e., the deviation from random mixing) that group i-males

have jm® group j-females, j = 1,---N; i = 1,---,L.

N S
&= 3 ﬁknﬁﬁ" = weighted average preference of group i males, i = 1,-+-,L
=1

RP =1-&" i=1,--+L. (14)
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we require that R;n > 0, and that

ms L N
E ', =3 Y Benp; < 1
i=1"' i=lk=l
Similarly, let
(¢§i) = females’ structure covariance matrix (0 < ¢§i) denoting the degree of

preference (i.e., the deviation from random mixing) that group j-females

have for group i-males, j = 1,---N,i = 1,---L.

L
"Eg = 3, ﬁk¢fk = weighted average preference of group j-fp males, j = 1,--,N
R]f = 1-£§, j=1,- N (16)
Again, we require that R} > 0, a.nd that
ng 7% = ]g E Qs < 1- (17)
With these assumptions and definitions, we observe that a solution to axioms (A1) — (A4) is

given (formally) by the following multiplicative perturbations to the separable mixing solution

(f’j:ﬁl)
- |
RJfR;“

pu=__l‘ﬁ_—'?+¢gl ) i=1,--L; j=1, N, (18)
Lk}_: Pt
aref

%= 1T + 4l (19)
B L Ry

We now show that (pij’qji)' i=1,-4L,j=1,-+N, given by (18) and (19) is a two-sex mixing

matrix. Since

m ngpj j N m
Elp =R T + .§1§j¢ij
k=1

N
=R+ Sl = AP+ (- R =1
J—

1

(13)
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and

L

L f iglaiR‘!n L ¢

Lo =Rj| T |+ | L%

i=1 E d T =1
k=1 Kk

Thoo =Rf+d=r{+0-Rj=1,
>4 (A1) and (A2) are satisfied.

Note that axiom (A3) is satisfied if

fpm mpf

R:R: R: .

m = 1 m|_ . 1 B'] f

¢c. T . . lj = bjqu T + ¢i | - (20)
E PkRk

A
q
k=1 o1 Kk

By observing that C1Tim ) = bjij'q'i, due to the fact that (ﬁj,&i) is a two-sex mixing function,
we see that (20) holds iff

fom mpf
IR‘ Rn -
—N——Hjlf+¢g‘= L5 +¢§l (21)
YRRy 2. 9 Ry
=1 k=1
Further, {21) hoids iff
m_f _pgm 1 _ 1
4 = RN T —
Y qRy TRk
=1 k=1
" N L 7
> 13;‘3{ -3 ﬁkRLn
= R[an _k=1 k=1
J L N
YgRM] & R‘)
|_(k=1 k% k:lﬁk k i
~ N _
S - X nd
i T i |
or equivalently, if A glqk k kglﬁk k | y




Ry

N\

N £ L
YRR -2La
¢ = ¢}, + RI°R] kfl ﬂ“=Nl : (22)
SR & Rf)
(k:l k™K k:lpk k
Note that if¢§i=0,m\'i,j = zjf=ov3=> R§= 1Vij,
)f
Rm
,’,é}ur:z s 9; = §; L and
= pm
2
1- 2 ﬁkRi“ m
¢m =R = = R‘ -gpm
i 1 £ @R %,: -~ 1
q q
k=1 K™k k=1 Kk
m _ 1 f _ :
Xm ¢ =Ry —XL:—:*I;;-l, éji=0,that|s, ~
q
=1 kMk
it is independent of j and therefore females show no preference. Therefore
rRm
. =[gm  4mj_ = i
P = Pj[Ri + ¢ ] =5 T
> quk
k=1
and hence we obtain the following “semi-separable” mixing solution:
R{-m
(pij’qji) = —E'—R; (l_)j’ g;) P % independent of j . (23)
q
k=1 kK
Similarly,
m = [l
i =0 WA di=Fj\ 7
kglf}knk o

1

giving the following “semi-separable” mixing solution:
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f
R:
(Pij,jS) = _‘Tﬂ-:_i—; (]-)jt q;) ;

R
k:lpk k

(29)

Pjj independent of i, and hence, males show no preference.
In order to show that every solution of axioms (A1)-(A4) is given by Equations (18)-(19)

p -t q-.
we proceed as follows. Using property (A4) we observe that -p—- and =— are well defined on
d

the support A of (ﬁj,ﬁi), and therefore

Pij _ %
' = === > 0on A.
e T
Properties (AI) and (A2) Je > 0 and a set of subset of positive integers Q C Z +2 £} 7
pu qji
_—— - > €
BT
. L Pi
Q = <) 5 > ¢ and a set related to Q defined as follows:
3
Q= {i : (ij) € Q for some j}. We now define the following functions
M = ¢ xx(i =(k¥qy,
R xQ(l) kél xQ( YAy
R = ¢ xg0) 3 x50P
D= e xa < .
35 QY QT
whete y denotes the characteristic (or indicator function) of a set, and note that
3 Ri'g ( % xaka )2 (29)
Mg =l 2 xz®&Ry |
= B U= = A
and
2
p; =e| 3. x~(k)P ) (26)
J_IB'] j ( Q' Pk .
Hence .
’ me ): X5 (k)qk
TG (l)xQU) 'N_'_" (27
P 3 xgR, .

and

I




N
RFR;n > X"(k)Pk
= x5 xg0) k=1 (28)
Erra 7 B
Now let
o 2 xQ(k)ﬁk
¢ = 5 € xQ(l)xQ(J) X o )
Z X" Pk
and 5 xswp
N X&{\KPy
of = Lo xa(i)xal) L2 e =
S T R NS P
k=1 Q k

From the last two expressions we see that

N L

M5 = 1 - ¢ x201) 3 xAM)G = 1T,

and

“ ofg =1 i $ x<005, = If

j§1¢jiqi =l1l-¢ XQ(J)kgle( )Pk =%
Further, since
gﬁ (k)p )Ii (k)g
- XQ Px _i_t:le Jay

o - o = e xgxg )} 5 X
kgle)(k)qk kglxé(k)pk

using (25) -(28), we see that Equation (22) is automatically satisfied.

Hence we have established the following results:

/
N
Theorem 2. Let {dai’i‘} and {¢§i) be two nonegative matrices. Let £ = 3 p¢]] and
k=1
L
t; =Y ﬁk"'jfk where {(pj,ﬁi) j = 1,.,N and i = 1,...,L } denotes the set composed of Roas’s
k=1
solutions. We also let R.lm =1- l{n, i=1,---, L and R.] =1- ij,j =1, -+-N, and assume

that d{%’ and 4';'-'1 are chosen in such a way that R{‘“ and B.: remain nonnegative for all time.

We further assume that

L L N .
an=3 LhdR <L
i=1 i=1k=1

and
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g: £g. = % i‘: ﬁkéfkﬁ- <1l.
508 T EE e

Then all the solutions to axioms (A1)-(A4) are given by Equations (18) and (19).

Remark: qb{]!‘ and ¢§i can always be chosen in such a way that R{“ and B.}‘ remain nonnegative
for all time (i.e., let them be in the interval [0,1]). However, there is no recipe for specifying
necessary conditions for the nonnegativity of R.im and R.§ because their values are intimately

connected to the time-dependent values of Roes’s solutions)and hence to the dynamical system.

Corollary: If either 4{?: a, 0<a<], Vi, j orif ¢§-1 = B, 0 < B<1, V i, j then Equations (23)

and (24) provide one-sex preferential solutions.

Remarks: 1. In the one-sex framework, the only separable solution is propottionate mixing.
Here, solutions can be separable in one sex and not the other. These solutions, where one sex
chooses while the other does not, are applicable to models for vector-transmitted diseases in

which the vector exhibits strong host preference, while the host is just a “moving” target.

2. Several other one-sex special solutions have been discussed in the literature. These include
“preferred® mixing, like-with-like mixing, etc. (see Nold 1980, Hethcote and Yorke 1984,
Blythe and Castillo-Chavez 1989, Castillo-Chavez and Blythe 1989, Jacquez et al. 1988, 1989,
Hyman and Stanley 1989, Gupta et al. 1089, Blythe et al. 1989, etc.). Blythe and Castillo-
Chavez (1990a) have established explicitly that all these solutions are special cases of the

general solution found in Busenberg and Castillo-Chavez (1989, 1990).

3. The gonorrhea model found in this section, but for one-sex populations, was introduced

(along with some generalizations) by Castillo-Chavez and Blythe (1990) as a simple device to
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easily test mixing patterns. A thorough numerical analysis of these mixing matrices {one-sex

framework) is found in Blythe and Castillo-Chavez (1990b). A discussion of methods for
estimating the mixing matrices (one-sex framework) from data can be found in Blythe et al.

(1990).

4. Two-sex age-structured models

Py
s

We-formulate two-sex models of the SI type with ag&structug/ ,/ 'ﬁ Pas
w—-#———-‘-» Extensions to models for other diseases such as AIDS x
or gonotrhea that require a different epidemiological and compartmental structure can be easily
formulated following the approach found in Busenberg and Castillo-Chavez (1989, 1990) and
Castillo-Chavez et al. (1990). To formulate these models, we need a description of mixing
functions that incorporate age (risk can be easily incorporated, see loc. cits.). Pairing is defined

through the mixing functions:

p(a,a’,t) =proportion of partnerships of males of age a with females
of age a’ at time t,
a(a,a’,t) = proportion of partnerships of females of age a' with
males of age a at time t,
and we let
C(a,t) = expected or average number of partners of a male of age
a at time t per unit time,
D{a’,t) = expected or average number of partners of a female of

age a' at time t per unit time,

The following natural conditions characterize these mixing functions: T
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(B1) p,q 2 0,

oo o0 e,
@) [Toe win = [T aae =1, AF (@9T tm) #:0
(B3) plas’, YCHT art) = ala'e.)D(e T’ (4'),

(B4) Clat)T™at) D" )T a't) = 0 = p(aa’t) = ala’at) = 0,

Condition (B2) is due to p and q being proportions. Condition (B3) simply states that the
total number of pairs of males of age a with females of age a! eﬁua.ls the total number of pairs of
females of age 1{/ with males of age a (all per unit time and age). Condition {B4) says that there is no
mixing in the age and activity levels where there are no active individuals; i.e., on the set () =
{(a,8’t): C(a,t)Tm(a..t)D(a',t.)Tf(a.',t) = 0}. This last condition is usually vacuously satisfied in most
applications. The need to state it derives from the proof of Representation Theorem (Theorem 2).

The pair (p,q) is called a two-sex mixing function iff it satisfies axioms (B1-B4). Further, a two-

sex mixing function is called separable iff

p(a,aht) = py(ait) po(a’st) and  q(aa’yt) = gy(ait) qq(a’t) .

If we let

hp(at) = C(a,t)T™a,t) (29)

and

hfa't) = DT (&',0) - (30)

then, omitting t to simplify the notation, we establish the following result:

Theoremn 3: The only two-sex Ross’s (separable) mixing function satisfying conditions (B1-B4) is

given by (P,q), where

hq(a’) .

)= —> (31)

| byl

s

~
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a@) = a2 @)

]0 hq(u)du

The proof is found in Castil}?Cha.vez et al. {1990).

| If we now let m(a,t) denote the density of (uninfected) males of age a who are not in pairs at
time t, and let f(a’,t) denote the density of (uninfected) femnales of age a' who are not in pairs at time
t. If we assume that D and C (as defined above) and py, and g are functions of age (the mortality
rates for males and females), o denotes the constant rate of separation, and we assume that w(a,a',t)
denotes ;he age-specific density of heterosexual (uninfected) pairs (where a denotes the age of the male
and a’ the age of the female). Using the two-sex mixing functions p and q, we arrive at the following

demographic model for heterosexual (uninfected) populations:
om 4 %—‘: = -C(a)m(a,t) T p(aja’,t)da’
0
- pp(@)m(at) + T[pf(a") + o]w(a,a’,t)da’ (33)
0

. a%ff = -D(a")f(a',t) I a(a’,a,t)da

- pda’)(a',t) + T [4m(a) + olw(a,a’,t)da, (34)
0
%% + %": + &% _ D(ai(a' t)g(a,a",t)

- [uda’) + pm(a) + olw(aa't) . (35)

To complete this model we need to specify the initial and boundary conditions. To this effect we let

Ay and Af denote the female age- and sex-specific fertility rates, and let m,, f,, and w, denote the

intial age densities. Hence, the initial and boundary conditions are given by T
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m(0,t) = I Am(a')w(a,a’,t)da' ) (36)
0
(0,t) = I Adalyw(sal ) (37)
(1
w(0,0,t) =0 (38)
f(a,0) = f5(a), m(s,0) = mg(s), w(aa'0)= wo(aa): (39)

A preliminary analysis of this demographic model is found in Castillo-Chavez et al. (1990). If we let
c— oo‘t'.hen (formally) the above system approaches the classical MacKendrick/Von Foerster model
(see loc. cit.). This demographic model, in conjunction with the MacKendrick/Von Foerster model,
will be used to formulate epidemiological models through the usual creation of the appropriate
epidemiological compartments (see Hoppensteadt 1974, Dietz 1988, Dietz and Hadeler 1988, Castillo-
Chavez 1989).

We begin by letting TM(a,t) and Tf(a.'.t) denote, respectively, the male and female densities of
single infected individuals. Hence, the densitities for heterosexual pairs are denoted by: wmf(a,a’,t),
wa(a,,a’ AR me(a,a’,t). and wMF(a.,a’,t). If we use the earlier motation with the approbriate
indexing (that is, f, m, F, or M), we then arrive at the following epidemiological model that follows
pairs:

om(at) ambz

T Cmf(a.,t)m(a.,t) pmf(a..a’,t)da’

!) k A

~Cpp@timiad) | rpas’ e’ - pmlsim(at
0

+ [ [a") + ota'm)] w_(aa't)ds’ + ] [p(a) + o(a'8)] wypp(aa’,t)da’, (0)
0 0
F/ o
) .,
i‘%ﬂ g""‘h— = Dp (a"t)(a't) ] ag (3" at)da X @&

0
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~ Dy (') | appg(a’mt)de — pla)(e'0) +
0

J [bm(8) + o(a'a)] Wy (an'it)da + I [,uM(a) + a(,",)] wy(aa’t)da, (4%)
0 0
2 R 7
L’l’f‘;ﬁ _8_P_Sa - CyrmtM(at) J pyara’st)de’
0

- CMF(B,".)M(&"-) pMF(a,a',t)da' - ﬂM(&)M(ﬂ.,t)

+ J [Ff(a') + a(a-.a-)]wa(a,a',t)dac + [pF(a’) + o'(a’,a.)] wyrp(a.a’t)da’, (42)
0
: @'4 o
F(a: = - Dpp(a" F('Y) I qpp (e’ it)ds
0

- D2’ 0)F(a't) qpp(aa’itida - pp(a)F(a't)

+ [pm(a) + a(a.’,a.)] me(a,a.’ ,tyda + [,uM(a.) + a(a',a)] wMF(a,a" ,t)da, (43)

O‘-—-—vg

LT i 7 !
ow (a.,a’ t) Ow  Qwe s (A -
fl:'\’laa.'_-'1 + a:;nn-{- att.r—r—l!\z Dfm(a’)f(a’,t)qu(al‘a‘t) - (0‘(&',5) + pm(a) + #f(a’))wfin’ (44)

a L) Ow dwy (o
wF"g: ) + af'{' + 3};"' Dy, (a)(a' $)app, (8'a:t) - (o(a’a) + sy (a) + pF(a'))me,A(tls)

Bwfﬁ(a.,_a’,_t) fbf

e - Tj Dy (8)(a" Wy (a'.2:8) - (o(a",a) + py(a) + uga'))wf;,.;' " (49)
ow a dw o
“3(:"’ Y, ";f“J M = D@ Wapy(®t) - (ofa'2) + sy(a) + p @D ()

with apropriate initial and boundary conditions (see Castillo-Chaver 1989). It is important to note
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that we have used “restricted” mixing functions, that is, mixing functions that deal exclusively with

certain “pairs” (namely, mf, fM, Mf, and M F), and hence the mixing axioms (B1)-(B4) have to be
re-interpreted in this context (see loc. cit.).

An SI model that does not follow pairs but individuals is therefore given by the following set of

equations:
om(at). ' . i , ' F{a',t a’
";___‘.) + 90z - Cry(at)m(at) l Bpm(®a )P (m 4 M)(£+F) ) ﬁﬁ)(_aiT)(ZT)
- pm(a)m(a,t), (48)
of(a',t T :
(“ ), + o I/ - Dfa' )i ) l Bppra-e )q(f+p)(m+M)("° ) ’LT(H)-(:—;(;')'
- ppy(@)f(a'8), (48)
— i , AN (YO NP,
o+ 5 = + C(atm(at) J; Bpm(®0 P (m 4 M)(£4 FY > ) E(T’ﬁ%-—fﬂ d
- up(a)M(at), (50)

OF(a' ¢ T ) d
@'Y | EE"‘ + Dy(at)f(a’,t) I Buaa )q(f+p)(m+M)("" t) M(a,t)(: :31(8-,0
o 0

- pp(a)F') , (1)

where ﬂFm(n',a.) and ﬁMf(a.,a.') represent the appropriate transmission coefficients. For a detailed

derivation of the above model for one-sex populationsssee Busenberg and Castillo-Chavez (1989,

And J‘v Hy  gadtmen d hom of Ha endsat ! M’J"G
£t dB M.),wwiyp

and {’—or Hhe determinahon of He endeunc Hisbe\d
crterten of fhiy wodel

1990).

5. Conclusion

In this paper we have found a representation theorem for the general solution of the two-sex ” (g X

m'n{in%_ problem. This representation theorem is based on multiplicative perturbations of Ross’s solutions.
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Special solutions that allow for one-sex preferential sexual systems were described explicitly. The

application of these special solutions to vector-transmitted diseases is being carried out (see Castillo-
Chavez and Blythe, 1090). We have also formulated a model of the SIS type for a discrete number of
groups that can be easily explored. We outline generalizations to age-structured populations through
the introduction of two epidemiological models that incorporate this mixing framework at the level of
individual interactions or at the leve! of pair dynamics. We point out that although models of this
type have been formulated before (see Dietz 1988, Dietz and Hadeler 1988, Castillo-Chavez 1989) this
is the ﬁ;t time that they have been formulated explicitly under a unified framework.

Finally, we note that S. P. Blythe (1990) has shown that our original solution (Busenberg and
Castillo-Chavez, 1989, 1990) provides a representation theorem for the n-sex problem. Nevertheless,
the separation of the mixing into two mixing matrices (p and q) provides useful results (such as one-
sex preferential solutions, Equations 23 and 24) that are not immediate frem our original formulation.
This extra information arises from the breaking up of the group rever$bility property {Axiom A3)
through the use of the connectivity properties of the groups involved (in the version in this paper, for

example, individuals of the same sex do not mix, that is, same sex groups are not connnected).
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