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A central aspect in the study of the dynamics of sexually-transmitted diseases is that of mixing.
The study of the effects of social structure in disease dynamica has received considerable attention
over the last few years as a result of the AIDS epidemic. In this paper we formulate a generalization
of the Blyshe and Castillo-Chaver socialfsexual framework for human interactions through the
incorporation of age-structure, and derive an explicit expression in terms of a preference funciion for
the general solution to this formulation. We emphasize the role played by proportionate mixing, the
only separable solution to this mixing framework, through the discussion of several specific cases, and
we formulate an age-structured epidemic model for & single, sexually-active homosexual population,
stratified by risk and age, with arbitrary risk and age-dependent mixing as well as variable infectivity.
In the special case of proportionate mixing in age and risk, an explicit expression for the basic

reproductive number is computed.

1. Introduction
Recent  estimates put the number of HIV-infected (ie., iufected with the human

immunodeficiency virus, the etiological agent for AIDS) ai between 800,000 and 1,200,000 inttividualy
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in the United States. ‘The World Health Organization estimnates the numnber of IV carriers worldwide
at 5,000,000 to 10, 000, 000. The Center for Disease Control in Atlanta {U.S) reports, as of December
of 1989, more than 112,000 cases of “full-blown™ AIDS, of which over 70,000 individuals have died.
Estimaled costs for the treatment of and caring for individuals with AIDS run into the billions of
dollars. This grim scenario has inotivated researchers Lo develop mathematical models to identify
and/or improve our understanding of Lhe mechanisings responsible for HIV transmission and for Lhe
evaluation of the relative merits of poasible control measures. Recent reviews of the literature on
models include those of Anderson (1988,1989), Castillo-Chavez (198%a, b), and Schwager et af. (1989),
while an _extensive study of some of the most recent work on the use of mathematical and stalistical
modeling of the dynamics of HIV at the individual (immune aysten) or population level can be found
in the recent collection of arlicles published by Springer-Verlag (see Castillo-Chavez 1989b).

Some of the questions that can be appreached through the use of mathematical models (see
Hethcote and Yorke 1984, Anderson 1988, May and Anderson 1989, CaslilloChave: et af. 1988,
198%a, Castillo-Chavez et al. 1989b, c, Dickmann et al. 1989) include: the possibility of invasion (i.e.,
whethier or not a disease can colonize successfully a given population of susceplibles at sleady state),
the determination of ihresholds, the possibility that a disease may reach an endemic state, and
whelher or not a disease can regulate a population. The preliminary work of several AIDS modeling
research groups (see Anderson 1988, Castillo-Chavez 1989b) has already inade numerous
contributions. Researchers have demonstraled that the infectious period distribution with its laege
mean and variance implies that a rise in seropositivity will precede the rise in AIDS, possibly by
years. Furthermore, heterogeneily in infectivity and the possibility of two infeclivity peaks (sce
Francig et al. 1984, Lange ot af. 1986, Salahuddin et al. 1984) will have & major effect on the shape of
the epidemic curve (see Hyman and Stasley 1989, Thieme and Castilio-Chavez 1989a, b), Selection
due to AIDS-induced mortality will decrease the populalion’s mean sexual activity, i.e. the average
rate of sexual partner change, and hence make the evaluation of the effectiveness of education
programs difficull (see Castillo-Chavez et al. 1989e, Anderson et &/, 1989}, The magnitude of the Lasic

reproduclive number, or the number of secondary infections generated by a “typical” infectious



-3

individual in a population of susceptibles, in combination with the shape of the incubation period
distribution, will have a major effect on the first episode and potentially on the long term dynamics
of HIV as well. Predictions are not possible without an increased understanding of social dynamics
(see Hyman and Stanley 1989, lacquez ot al. 1988, Gupta et al. 1989, Castillo-Chavez et al. 19804, ¢,
Huang et #l. 1989, Cooke et al. 1989, Dietz 1988, Dietz and Hadeler (1988), Hadeler 1989a, b, May
and Anderson 1989, Blythe and Castillo-Chavez 1989, Castillo-Chavez and Blythe 1989, Anderson et
#l. 1989, Gupta et al. 1989). These researchers have shown that epidemic models can be very sensilive
to changes in the sexual/social mixing structures, and that not all of them exhibit the same global
dynamics,

Much of this recent work has highlighted the need to study systematically the effecis of mixing
in disease dynamics. An in-depth study of the effects of mixing requires a suitable axiomatic
framework incorporating the nalural constraints involved in mixing. Recently Blythe and Castillo-
Chavez (1989) and Castillo Chavez and Blythe {1989)--hereafter both atticles will be referred to as
BCC--formulated such a framework for continuously distributed characteristics and found a large
class of new solutions to the mixing constraints, Their family of solutions is based on the use of a
preference or acceptance function allowing for the incorporation of preference in the mixing process.
This family of solutions includes Nold's preferred mixing (see Nold 1980, Hethcote and Yorke 1984),
proportionate mixing, and like-with-like mixing (see Busenberg and Castillo-Chavez 1989).
Furthermore, BCC have used thia family of solutions to illustrate the combined effects on the shape of
the mixing function of the interactions among individuals belonging to groups wilh specified
preferences and levels of risk and the mixing constraints imposed naturally upon this population of
interacting groups through their own distribution of sexual activity. These numerical simulations
corroborated and extended the numerical results of Hyman and Stanley (1988, 1989). [n addition,
special representatives of these mixing functions have heen incorporated into dynamic models for the
sexual spread of H1V. The mathematical analyses and numerical simulations of these models have
shown the dramatic elfects on disease dynamics of the choice of a mixing function (see Hyman and

Stanley 1989, Anderson et al. 1989, Jacquez et al. 1988, Castillo-Chavez et al. 1989d, e, Huang 1989,
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Cooke et al. 1989, Gupta et af. 1989, and Huang et a/. 1990).

The main objectives of this paper include generalizing the mixing framework (BCC) and
deriving of an explicit expression for the geperal solution to the mixing problem for a population
stratified by age and level of sexual activity, formulating an age-structured epidemic model for a
single homosexually active population with arbitrary social/sexual age-dependent mixing, and
computing the reproductive number for a proportionately (in age and risk) mixing population.

This paper is organized as follows: Section 2 axiomatically characterizes the mixing function and
describes ita role in disease dynamics by deriving an expression for the incidence (which determines
the number of new cases per unit time). Section 3 discusses several mixing functions that arise from
different constitutive relationships. Section 4 derives an explicit expression for the general solution of
the mixing problem in terms of & preference function. Section § formulates a general dynamic model
for the zpread of HIV/AIDS for a homosexually-active age- and risk-structured population and
computes ils basic reproductive number in the case of proportionate mixing. Section 6 discusses the
relevance of the results presented in this article, briefly outlines our resulls on two-sex mixing

frameworks, and suggests future directions of research.

2. Mixing framework

The formulation described in this seclion can be used in the modeling of social or sexual mixing
interactions. For example, while the mixing function can describe the proportion of “dates” belween
individuals in distinct groups, or it can represent the proportion of sexual partnerships or sexual
contacts between Lhese individuals, other interpretations are possible. In addition, the mixing function
can be generalized to include the geographical distribution or the geographical movement of
individuals through the use of “localized” mixing [unctions, i.e., lunctions thal represent the
proportion of partnerships formed between individuals from clearly defined groups {socially,
demographically, ;l.c.) at a particular geographical location. The local geographical heterogeneities can

then be linked Lthrough the specificalion of migration or movement matrices (see Sattenspiel 1987a, b,
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Sattenspiel and Simon 1988). Therefore, our approach allows for Lhe specification of a spatial mixing
framework. In this paper, however, we concentratle on the study of localized mixing functions. We
begin by considering the interactions of a single, socially-homogeneous group of individuals who are
structured according to the following variablea: a = age; r = time (or uge) since infection; r =
activity or risk level. We let N{r,a,r,t) denole the total population density per unit age, activity, and
time since infection, at time t. This population is divided into the following epidemiological classes: S
= susceptible; | = asymptomatic or slightly symptotnatic infective; A = highly symptomatic
infective. This classification is fairly general and inciudes implicitly the traditional infected, but not
infective class E {see Busenberg and Castillo-Chaver 1989), We assume that r is a hidden internal
varisble that does not distinguish individuals other than through their level of infectivity, and
perhaps mortality, When modeling the sexual transmission of AIDS, we assume that A-individuals
{i.e. individuala with severe symptoms or “full-blown™ AIDS) are sexually inactive and hence that

T(t.a,t) =5(rat) + J:I(r,a,r,t)df
represents the total age and activity-level demsity of a population active in disease iransmission
contacts. Sexual mixing is defined through the mixing function p. Specifically,
p(ra,r',a") = the proportion of pariners of an (r,a) individual
(i-e., a person of activity level r at age a), with (r',a’)

individuals.

C(r.a, W(T(.,.,t})) = the expected or average number of partuers per unit time
of an (r,a} individual given that the effective population
size is W(T(.,.,}) at time ¢, We assume C > 4.
The following natural conditions characterize the mixing function:
0 s >0
oo
(ii) Jn Iu p(f. a, ¢, &', t)dr'da’ = 1, if O{r, &, W(T{-,- AT 8, L) £0,
(i) p(rara’, )C(r,a, W(T(,, ., )})T(r,a,t) = A(T" " na )C(r' &', W(T(.,.t)))T(r' a't),

+

(i) Cle.a, W{T( t))T(1,8,)C( ', WLT(, )))T(F.a%0) = 0 = p(r,ar'a,t) = 0,

e
Condilion (ii} sirnply says that p is a proportion. Condition (iii) states that the total number of pairs
of (r,a} individuals with (r',a") individuals equals the tolal number of contacts of (r',a’) individuals
with (r,a) individuala (all this is per unit time, age, and time since infection). Condition (iv) says that
there is no mixing in the age and activity levels where Lhere are no aclive individuals; ie., on the set
S = {(r,a,r" 8" Clo,a, WIT(.,. )Y F(r,8,0)C(r' 8" W(T(.,.t))L(r' a',t) = 0],

where there is no mixing. Condition (iv) arises naturally as will be seen in Scction 4, hence, we
proceed to state our results without this assumption until it is required.

In some situations it is necessary to consider mixing functions g, which are Dirac della functions
(see BCC) or, more generally, distributions or generalized functions. Heuce, we are forced to consider
solutions to this axiomatic framework in the space of distributions or generalized functions (see
Schwartz 1966 or Gel'fand and Shilov 1964). This is easily accomplished by choosing appropriate
spaces of test funclions whose generic elements we denote by f, and using the following inodification
to the interpretation of axioms (i) and (iv):

(i) p 2 0in the sense of distributions; i.e.,
000
J lp(r.a,r‘,s‘)f(r’,a')dr'da‘ > 0 forall f >0, and
00

(iv) p = 0 on & sel S, which means

J- Ip(r,a,r‘,n’)l’(r’,a’,r,a)dr'da’ drda = 0 for all f.
S

In wriling the conditions characterizing g we have exhibited their functional depeudence on {r,a,r',a")
and, for netational convenience, have suppressed their dependence on t and T.

Pair fermations can involve selectivity by individuals according Lo age or activity level, they can
be random pairings withoul regard to these variables, or they can be any combination or mixture of
the two extremes. A detailed discussion of these possibilitics and of the restrictions they place on the
mixing function p is found in Section 3. The effects of mixing on disease transmission can be modeled
through the incidence rate (new infected cases per unit time) or the “force” of the infection. We begin

by letting B(r,8,7,r",a") denole the probability that a pairing belween a (r’,a’,7} infective individual
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and an (r,a} susceptible will lead to the passing of the infection to the susceptible (olher
interpretations are possible, see Castillo-Chavez et of. 1989d, e, Cooke et af. 1989), and by observing
that 1/T denotes the proportion of contacts of a susceptible with an infective individual. The force of

infection term B is therefore given by the fallowing expression:

oo oo o0 1 "n'. o) e
B(r,a,t) = Clr,a, W(T(-,-,t))) Jo Ju JD Blrarrap(rara’) '&‘_r(r% dr'da'dr | (n

and the incidence rate is given by S(t,a,t)B(r,a,t). 1n order Lo simplify the notation we shall write
C(r,a,W) for C(r,a,W(T(-,- 1))} in the argument that follows. The interpretation of the term is as
follows: there are 5(r,a,t)ArAa susceplibles in the class interval Aax Ar, and those individuals have
S(r,a,l.)Ctr,a,W)ArAa contacts per unit time. Of these contacts S(r,a,t)C(r,a,W)p(r.a,r',a"}ArAa are
with active individuals in the (r',a") class, and a proportion

I{r',a', T t)
T(raht)

are with infective individuals. Thus the number of contacts per unit time of (r,a) individuals with

infectives in the (r',a’,7) class is
I(r',a',7,t)

S(r,8,t)C(r.a,W)p{r,a,r',a") m AanAr,

and therefore the expected rate of disease transmission due to such contacts with infectives in the

A x Aa’ x Ar' interval is
I{r'a',r,t)

T at) As'ArArAadr .

S(r.a,t)C(r,n,W),8(r,n,r,r',a’)p(r.a,r'.a’)

To find all the disease transmission contacts between susceptibles in the Aax Ar interval with all
poasible infectives, we sum over At x Aa'x At' to get B{ra,). Note that the dynamics implied for
the susceptible class are given by

%%{r,a,t) + %%(r,n,l.) + p{ra)8(rat) = Alnat,T(art)) ~ Brat), (2)
where A denotes the “recruitment” rate into the susceptible class, and p denotes the natural per
capita removable rate from sexual activity (due to all causes excepl severe symptloms ot “[ull-blown™
AIDS). We obser.ve that there are several comatitulive forms of the interaction term p; examples

without age structure can be found in BCC. Tables Ia and Ib illustrate several possibilities,’ for age-
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and activity-dependent mixing. These nine general cases include proportionate mixing in the age
variable only, proportionate mixing in the activity variable enly, and proportionate mixing in both
age and aclivity variables, One of the simplest forma of mixing is that of proportionate or randomn
mixing which in our present framework includes both variables of age and activity level. It is given
by a generalization of the model used for situations without age-structure by May and Anderson
(1989):

O’ &', W(T(.,. t))T(r' 8", t)
o Clr',a' W({T(.,., ))T{r',a",t)da’dr’

plrar at) =

, if(rar'a’) €5 (3)

and p(r,a,r',a't) = 0 if {r,a,r',a’) € 5.This sclution plays an important role in the determination of all
possible solutions to the mixing framework (i)-{iv). As will be shown in the next section, all mixing
funcilions are muitiplicative perturbations of proportional mixing. Note that proportionate mixing
vacuously satisfies condition {iv). This condition prevents us from arbitrarily defining a mixing

function for subpopulations that either are not sexually active or that have been depleted of

individuals by disease dynamics.

3. Mixing dependent incidence rates

From FEquation 1, it ia evident that the incidence rate is affected by two parameters: the
infectivity and the mixing function. In this section we begin to analyze the role of mixing in disease
dynamics by discussing some specific constitutive forms for the mixing function p (for & preliminary
mathematical analysia of the effects of variable infectivity, see Thieme and Castillo-Chavez 1989a, b).
The objective of this Section is to illustrate nine general cases that may be useful for modeling
purposes. We hope that our brief classification may be of use by making clear the assumptiona behind
the choice of each mixing function. In the next section we present a representation theorem that
includes all possible solutions to axioms (i)-(iv), and that therefore contains the solutions in this
section, although not always in a transparent way. In giving these expressions we assume, for

simplicity, that C does not depend on W, and do not repeat the condition that g vanished on the sel

S.
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{I) Proportionate mixing in the age variable only. Individuals in the (r.a} class, when choosing

partners, do not show preference for any age group. Consequently, as far as age is concerued,
pair formation is a stralified random process.  Thus the proporiion of conlacts of
an (r,a) individual (per capita of active population) with (r',a’) individubls is of the form
plra,1' 8" YC(r,a) = p(r,a,r")C(r,a) G T(r ) ;
.[0 C(r',ayT(r',a")da’

that is, contact with age a' individuals is direcily related to the proportion of the activity

level of such individuals in the total active population across all age groups. This proportion

at time t is, of course,
. C("var)T(r'lﬂlrL)
J C(r',a")T(r" @'t )da’
0
The force of infection term becomes
C(r',a)I{r' 0,7 t)dr'da’dr

B(r.a.t) = C(1,a) [mjmJ.m'ﬂ("“'"v"'ﬂ')f’(‘v'"'v‘)
¢ J0ra C(r',a"T(r',a’,t)da’
0

Remark: Note thal because of the presence of the activity level variable, the integral in the
denominator cannot be taken out of the triple integral.

Using the same Lype of reasoning as in (I) we obtain the following acceptable forms for Lhe
mixing function p:

(11} Proportionate mixing in the activily variable only.

C{r'a’)T(r'\a")

plr,a,c',8") = pr,a,a') .
Io C(r',a')T(r",a")dr’

(i1} Proporiionate mixing in both the age and pariner variables .

C(r,a"T(1"a")
o~ .
Cfr',a’)T(r" ,a")da'dr’
0

p(rar ') = p(r.a) Im[

(I}-(1I1} assume thal the persons selecling partners have criteria of selection which depend on the class

to which they belong. We now turn to situations where that is not the case.
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(1¥) Uniform age selectivity .

plrare’) = plrr'a),
here we asswne that individuals in the (ra) class have the same selection criteria as
individuals in any other (1,a*) clasws, a® € [0,00); i.e., selection is independent of the age of the
individual who is selecting; however, it does depend on the age of those who are being selected

as partnera,

(V) Uniform activity selectivity.

plrs,t'a’) = pla,r s,

bere the activity level of the individual does not affect his/her selectivity criteria.

(V1) Uniform age and activity selectivity.

plea’a) = pls'a') .

We can combine (I) ~ {1I) with (IV) ~ (VI) in various ways and obtain nine different forins for
the mixing function function p, which we exhibit on Tables Ia and ib together with the resulting form
of the force of infection which is obtained from {1). We also list the restrictions placed in p and C by
(ii) and (iii). Even though we are singling out these nine possible versions at this stage, the general
form of p needs o only satisfy conditions (i) - (i) - (iii}, and each of the special cases involves a
constitulive assumption concerning the mode of mixing and partner selection. We also note that both
p and C may be density-dependent, and we are beginning to look at such extensions (see Castillo-
Chavez et al. 1089, and Thieme and Castitlo-Chavez 1989a, b) . Finally we ohserve that convex
linear combinalions of mixing functions are mixing functions. Specifically, if Gy are positive

constants such that Xui =1 and P1r-aPy 8re mixing functions, then Eaipi is a mixing function.

i=1 i=1
This last observation provides a recipe for the construction of & variely of mixing functions;

lurthermore, it clearly shows that preferred mixing (8 convex combination of two mixing functions),
contrary lo the suggestions of some researchers, does not contain all reasonable possibilities.
Specifically, (omitling age) preferred mixing is given by

C(c)T(r)

pls, 1) = (1-a)
[0 C{u)T(u)du

+ o b{s-r), (4)
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where & denotes the Dirac delta (see BCC), i.e., il is Lhe convex linear combination of the Dirac delta
{n mixing function) and proportionate mixing. The two extreme points of this particular convex linear
combination (when a = 0 or |) do not obviously represent sociological or mathematical mixing
extremes - Lhis was pointed out to us by 5. Gupta and R. Anderson--as some researchers have
suggested.

We now show how to recover the case of no age-dependence which yields the original formalisin
of BCC. To circumvent the fact that we cannot eliminate the varisbles (a,a') in p because (i) and (ii}
are then incomparable, we need lo assume that the population is not age-sizuctured, hence
T(r,a} = T(r) does not depend on a. We further assume that there is a maximum age A, and that
plrara}=0ila> A, ora" > A, and set

0, ifa>Aora >A

p(r,a,r',a’) = { oo
%p{r,r'), with J plr, '}’ = 1, p{r,r') = 0, otherwise
0

Conditions (i) and (ii) are then automatically satisfied, (iii) becomes
plea YOy T(r) = p(r. )OO T,
and we recapture the conditions of BOC. The force of infection term now becomes

B(r.t) = M) I : I:ﬂ(r.r,r’)p(r,r',l.) %dr‘dr.

If 8 is independent of 7, we can integrale I(r',,t) over 7 to get

B(r.t) = mC(r)J:Oﬂ(r. )p(rr') 1'_,((rl_d;;)) v,

o0
where we write I{:',t) for J Iz’,7,t)dr. This ie the form of Lhe force of infection term used by BCC.
0
In combining the special cases [-II-[I! with IV-V-VI we need to avoid conflicting situations. In
particular, we cannot have both 1 and IV or V1 holding, and we cannot have 1l and V or VI holding.
However, we can have | and V, and [l and IV holding. There are strong conditions placed on p in 1
or {1 by the additional hypotheses V or 1V, For I and V we get p = p(a,r'), and using condition (iii)
we must have p = p(r') only. One solution for /7 is then
o0
J C(r',a')T(r",a’,t)da’
") = =2
IC(r'.a')T(r"a',t)dr‘da'

12-
Conditions (ii) and (iii) are then automatically satisfied. The force of infection term becomes

I+ V:B(rat)= M— I J J,ﬂ(r,a,r,r'.a’)C(r‘,a')[(r'.a'.r.t)dr'du‘ .

IC(r’.a')T(r',a‘,t)dr'dn' 0

Similarly, from 1T + 1V we get 3 = p(a’) only, and one solution for 5 then is
o0
J C(r',a")T(r',a’,t)dr’
p(a') = -2
IC(r‘,a’)T(r',n'.t)dr'da’
0

with force of infection term

M+ V: B(rat) = _w_w__(l,l) I-a(l’.a'r,r‘,a')C(r',n')l(r',a’,r.t)dr’da'dr,
JC(r',n’)T(r',a‘,L)dr'da' 0

which is identical to that obtained for I + V.

4. General form of the Interaction Term

In the previous section several special forms of the interaction term p were derived on the basis
of constitutive assumptions concerning the pair formation mechanism. Here we pursue another path
and examine the mathematical implications of the conditions (i)-(iv} on p. We will derive the
general form of p and, in the process, also show that the particular forms of p that we discussed in the
previous section enjoy certain spetial mathematical properties. The relations that we detive for p will
allow us to construct a variety of different mixing/pairing functions without having to return to the
basic axioms (i}-(iv).

Recall that one solution of {i)-(iv) is given by the total proportionale-mixing pairing function
p = p, where for {r.a,r',a) § S,

C(r',a)T(r',a’t) .

plraraitl) =
.[ JC(u,v)T(u,v,t)dudv
0

Since the expresgion C{r,a)T{r,a,t) will appear often in our computations, and since it can be Lecated
) L]
as a parameter only, we use Lhe simplified notation
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f(r,a}) = C(r,a)T{(r,a,t), {G)

where the variable t is suppressed in { for notational convenience. Thus, from (5),
f(t',a")

JJ f{u,v)dudv

ﬁ(r,ﬂ,l",ﬂ'} =

A useful zelation which is obtained by integrating (iii) over the variables r' and &’ and using condition
(ii):
o
C(r,a)T(r,a,t) = [Ip(r'.n’,r,a)C(r',n’)T(r',a',l.)dr'da‘, (8)
0

which we can also write as

-

%0
f(r,a) = J Ip(r‘,a.',r,a)f(r',n‘)dr'da' . %)
0
A mixing function p is called separable if it can be written in the form
plrara’) = pi(ra)pg(ra) . (10)
The total proportionate mixing function p is separable, and our first result shows that there are no
other separable mixing/pairing functions. Although the proof of this result has appeared in Busenberg

and Castillo-Chavez (1988) it is repeated here, ms proportionate mixing plays a fundamental role in

our analysia,

Theorem 4.1  The only separable mixing function p satisfying conditions (i)~(iv) is the total

proportionate mixing funclion g given by (5).

Proof: Suppose that p is given by (10). Then from {ii), outside the set 5, w have

pilra) = —5—1-—— =k, a constant,

I py(r'a7)dr'da’

and therefore p(r,a,r',a") = kp,(1',a"). Substituting this in (9) we oblain
o0
f(r,a) = kﬂz(':a)I [f(r',a’)dr‘da'.
0
Hence,

kpy(ra) = —a““@—i -

Jf((r‘,a’}dr'da’
o

“14-
that is, p=p. Since we have already shown that p satisfies {)-(ii)- (i} (and, incidentally, it

vacuously salisfies (iv)), the proof is complete, ]
The next lemma will help in the construction of general mixing function p.

Lemma 4.2. The general solution p of (i)-(ii)-(iii) has the form

plrara’) = p(r',a’) + ¢(r,a,r',a’) (1)

where ¢ satisfies
oo

00
¢ =P I lqﬁ(r,a,r',a’)dr'da‘ =0; [ [¢(r',a’,r,a)f(r',a‘)dr'da' =0
. 0 o
(12)
¢(r,a,r'a’)(r,n) = ¢(r',a,r,a)(r'a’) .
Proof: These properties of ¢ follow easily by substituting the form (11) inte (1), {ii), (iii), and (7)

aud using the fact that both g and 7 must salisfy these relations. [u}
The next result gives us a general representation formula for the mixing function p.

heore 3. Let é{ra,',a') >0, be symmetric in Lhe (r,a) and (r',a’) variables,
0
#(r,a,r',a") = ¢(r',a’,t,a), and J Jﬁ(r’,n’)fﬁ(r,a.r',a’)dr'da' =1. Then
T ) = e )oA ) (13)
is a mixing function. Conversely, every mixing function p is given by the form {13}, where ¢ is

symmetric and satisfies the hypotheses of Lhe Ltheorem.

Proof: Suppose that ¢ satisfies the hypotheses and p is given by (13). Then it is clear that p=0,s0
(i) bolds. Also (i) holds automatically. Finally,

p(ra,r ' )(r,a) = p(r'a'}é(r.a,r' ,a')(r,a)

= i:(r‘,a')rﬁ(r,a,r',n‘)'ﬁ(r,a)J Il’(r,a)drda
¢

= p(r.a)p(r',a’r,a)p(r' a' J Jf(r,a)dula
= plr'.a’,r,a)i(x',a") ,

hence (iii} holds.

13
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Conversely, let p be an arbitrary mixing function and let

o 0 if p(ra) =0
glrare) = { plr,ar’,a’)/p(r',a'}, otherwise '
Note that p(r,a,r,a’}) vanishes outside the support of f{r,a)f{r',a") by property IV; hence, it vanishes
where p(r',a') = 0. Then by {iii},
plrat’ a)i(r,a) = pr'a’)é(r,araM(ra) = p(ra’za)f(r.a’)

= p(r,a)é(r',a',r,a)(r',a").

Hence, ¢(r,a,r'a’) = ¢(r',a'sr,a) since ple' ai(r,a) = p(r,a)f(t',a’). Thus ¢ must by symmeiric.

Clearly, ¢ > 0 by (i), and outside 5,
v 20

o0
J Jtﬁ(r,a,r'.n’)ﬁ(r',a')dr'da' = ] Jp(r,a,r’.ﬂ‘)dr'da' =1l
(1] 1]

This completes the proof. D

Thus, in the construction of mixing functions, we seek to find non-negative symmetric functions
which satisfy the integral candition in the hypotheses of the theorem. These symmetric functions are
arbitrary except for this integral condition. Since we already have found several special forma for the
mixing function p, we might seek an explicit formula allowing us to comstruct arbitrary mixing
functions as perturbations of particularly convenient special forms. We will proceed to give such a
represeniation. We start by noting that condition (iii) on p can be written as

plraca)i(ra) = p(r'a’ra)p(r',a).
Letling supp ﬁ:{(r,a)e%i: ﬁ(r,a))(]}, we note that for alt (r,a"), p(r',a'ra)p(r',a) =0 if
(ra) ¢ eupp 7 and p(rara)p(ra}=0 for all (r,a) when (r'a") ¢ suppp. Thus, supp
p= {(r,n,r',a’) € %f‘,: plrara’) > [I} , and the set
S = {(r.a,r',n‘): {r,a) € supp 7 and (r',a') € supp p; or
() & supp 7 and (r'a’) ¢ supp .ﬁ}.
satisly
suppp N S = 4.
However, in the context of our model, p can be assigned arbitraty non-negative values 01‘1 the set

§ :{(r,u,r',n'): (r,a) ¢ supp p and (r',a") ¢ aupp 'f.i}. since Lhe activity level f= ¢T is zero on 5.

s
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Thus, we can normalize p, without loss of generality, by requiring the following condition in addition
ta {3), (it}, and (ii):
(iv) suppp C {(r,a,r',n’): (r,a) € supp 7 and (r',a") € supp fz} = A.
Clearly, from (iv), p(r,a,r’,a’) = 0 if either p(r,a) = 0 or ple',a’) = 0. Henceforth, our mixing functions
will satisfy (i) - (iv). These observations, together with the additional condition (iv), gives a

unseful representation formula for any mixing function p.

Theorem 4.4. Let ¢: '51:'_"_ —+ %, be measurable and jointly symmetric: #(r,a,r',a') = ¢{r',a",r,a), and

suppose that
! oo

I II:(r‘,s')¢(1.a,r’,a’)dr'da‘ <1,
o0
and
l I,Tj(r.a)(J Jﬁ(r',a.')¢(r,a,r',a')dr‘dn‘)drda <1
) 0
Let
py(ra) =1- J- JIJ(r‘,n')da(r,n,r',n’)dr'da', (14)
0
then
plran 1) = o) Lt P ) (15)
| #tepy e aran
(I1]

is & mixing function. Conversely, for every mixing function p there exists a ¢ that salisfies Lhe

hypotheses of the theorem such that p is given by (15) with p, defined by (14).

Proo[: Let ¢ satisfy the hypotheses of the theorem and define p, via (14). Fram (14) we get

oo 00 [

[ [rearouapedn=1- | [atem | [t arsteae ariras >0,

[\ . 1} 0
and p as given- by (16} is well defined. The assumptions on ¢ and Fquation (13) imply that
p(r,a) > 0 and thus that the mixing function p as given by (15) is 2 0. Further, p(rai’a’)= 0

whenever p{r',a") = 0, therefore p(r,a,r’,a’)/p(r',a) is well defined on the supporl of p and is jointly

/6
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symmetric. Thus p satisfies conditions (iii) and (iv). Finally, from (14) and (15} p satjsfiea condition
{ii), and hence, it 18 a mixing function.

In order to prove the converse, we first nole that condition (iv) implies that p(r,a,r',a')/p(r',a') is
well defined and non-negative. Hence, conditions (i) and (ii) guarantee the ex}sl.ence of an ¢(r,a) >0
snd a subset Q of ’:'Lf'_ of positive measure such that p/p > ¢(r,a) on Q. Further, since
pra,r'8)/p(c' ') = p(v',a'r8)/p(r,a) in A by (iii-iv), then p(r'a"r,a)/p(r,a) > e(r,8) in subset Q.
Hence the set Q is aymumetric in (r,a) and {r',a’). We now let

Q= {(r,a,): (r,a.r',8') € Q for some (r',a") € 'EE:_},
and let Xf) denote the characleristic function of this set. Define

i) = exglea) J':fxa(us\')ﬁ(u.\r)dud\'.
P ) = ex (s I:I X g )i(uv)dud,

where ¢, based on the above discussion, can be chosen independently of {r,a) and (r',a’). Then pr 2

is measurable and

P1(':3)P1("|ﬂf)

=€ xQ(r,a)xQ(r'.a').
I Jf)(r..)pl(r,a)drda
)

which is symmetric in (r.a) and (r',a"). If we now Jet
gi{ra)p,(r',s)

[ [#tcatptrapdraa

o

$(rara) = =2

then ¢ is symmetric in (r,a) and (r',a’); that is, $(r,a,r",a’) = ¢(r',a’,r,a), and {14) helds. Finally, {rom

(14) we get
r] b(r,a([w[ﬁ(r'.a') ¢(r.n,r',a')dr'dn')irda =1- J'w[ﬁ(r,n)pl(r,a)drda < 1,
0 )] 0

and the proof is complete. n}

One  especially  interesting  class  of mixing funclions comes from the choice
N L]
é(ra,r',n) = ag(r-a,r'-a’), where ¢ ia even in both variables jointly, o > 0, and

(7
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o

J J;:(r',u')gﬁ(r t',a-a")de'da’ < oo
0

Then (15) yields a mixing function provided

< (l‘aptq&(r,n)Xl apud)(r',a’))

od(r r',a--a')(l—uJ I[Jp(r,u.)p(r',a’)'t(r--r',a- a'jdrdadr'da’, (16}
where ¢
prdir,a) = IJjj(r',a’)q&(r—r‘,afa’)dr'da'. (17)
1]

This condilion is satisfied whenever
1 - apsg(r,a) > 0, (18)
since a¢ > 0 and (17) implies that the last term in (16} in positive, These observations yield the

following corollary which is the age-structured version of neighborhood niixing function of BOC,

Corollary _4.5: Let ¢ > 0, ¢:R*—RY be jointly even: ¢(r,a) = §(-r,-a), and suppose Lhal for sone
a>(,
o
a[ [,B(r',u‘)é(r—r',a—n’)dr'da‘ <1, forra € [0,00). (19)
0
Then
b oo ioar ra I",&’
Pt = ple' o) WDAER) (20)
p(r,a}p,(ra)drda
o
is a mixing fuuction, where
pi{ra) =1 - aI Jﬁ(r'.a‘)qﬁ(r-rr‘,ra')dr‘da‘.
0

Theorems 4.3 and 4.4 and Corollary 4.5 can be used to construct mixing functions of varying
degrees of complexity. We shall give examptes of such functions in the next section.
Theorem 4.1 gave a mathemalical characterization of the total proportionate mixing function
appearing in case 111 of Table 1. There are similar characterizations of the other cases in that table.
T

For example, the mixing function in case I, proporlionate activity mixing has the form

P(r""r'v“’) = p(r,a.a’)ﬁ(r',n'), (21}
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and p is independent of the variable t'. Conversely, if we assume that

plran'a’) = py(r1.a.87)p,(r'n’), (22)
then from (9) we obtain

oo

f(r.a) = pz(r,u)l Jpl(r’,a‘,a)f(r',n’)dr‘da‘ = pylra)e(a) .
(1]
Using this in (22} we get
p(r,a,r’,a') = flg(':_;") f(r,a) ,

which implies that g is of the form given by (21} where

r oo
#ran’) = ﬁ%(ti—n) J Jf(u,v)dudv .

)
Thus the proportionate activity mixing term (21) is the unique mixing term with the separability
property given in (22). Here uniquenesa is modulo regrouping of terma in the product in (22} and the
cancellation of commeon factors. Similar characterizations hold for the other casea given in Tables Ia

Ib.

The resulia in thie section can be specialized to the case where there is no age structure in the
populstion. In this simpler setting they yield new results concerning the mixing function p(r,r")

studied by BCC. We give here two of these results that allow for the easier conatruction of mixing

functions in this simpler setting following from assuming no age-dependence in Theorems 4.3 and 4.4.

Corollary 4.6:  p(r,¥') is a mixing function, il and only if there exists a symmetric function
#(z,r') 2 0 such that
o
[Tatwratearar =1,
a
and

p(r.e) = Fr)S(nE) - (23)

Corollary _4.7: Lel ¢:’fﬂ:?'_ — %t be measurable and symmetric, and suppose that
a0 oo o0
j B(e)elrr)dr < 1, and JD ;a(r')JU B Yrdr < 1.
o
Letting

pylr) =1- ]:p(r'w(r.r')dr', 24)

20
then
Pl(')Pl(f’)
0 plr)py (r)dr

plr,r’) = p(r + ¢{r,x) (25)
is a mixing function, Conversely, for every mixing function p there exisis ¢ aatisfying the above

hypothesis such that p is given by (25}, with p, defined by (24).

5. Age- and risk-based model with variable infectivity: disease transmission in a single population.

We now use some of the above observations to formulate the simplest single population model of
the S—I type where there is no recovery from the disease. Since one of our main goals is to model the
transmission of HIV, we begin with the more general model as dictated by the vransler diagram
S—I—A, wilth A denoting those individuals with severe symptoms or with “full-blewn™ AIDS. In this
section, we deal with a dynamic model of the transmission of HIV/AIDS in a single, sexually-active
homosexual male population. More general models, especiatly two-sex models, will be treated in the
neat fulure (see Section 6). We base our model on the following assumptions:

s There is a possibly varying recruitment rate A into the population.
s The population does not reproduce itself via birth.
s The population internal variables are:
a = chronological age, ™ = infection age (for the | and A groups),
r = activity level.
With these assumptions we obtain the following set of equations for S(r,a,t), I{r,a,r,t), and A(r,a,r.t)

describing the disease dynamics:

% + % + p(8)S = A(r,a,t,T(a,r,t)} - B(ra,t), (26)
By BBy ) + € + yan = 0, (1)
?;_’: + %f + %%* {ola) + a(ar)}A = y(a,)l, (28)
where .
S(r'u"‘): I(l‘.ﬂ,r,t) = A('lovat) =40, I(nﬂ-.u"-) = B(l‘,a,t) . (29)

£ and g denote the disease-induced morialities, and 7 is the rate of entry into the AIDS class. The

JO
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other parameters are as previously defined, and (t,a,r} € Di"’.

For this model, we have obtained a general expression which chatacterizes the baaic reproductive
oumber Ry of the disease. The basic reproductive nunber ia  defined as the number of secondary
infections generated by a “typical” infectious individual in & population of busceptibles (for a recent
discussion ses Diekmann et o). 1989). The basic reproductive number determines whether or not a
disease can invade, and is therefore of uimost epidemiological importance. For arbitrary niixing
functions, we cannot determine an explicit expression for R, and, therefore we provide oniy an
implicit expression as described in the following discussion.

Ifl = A = 0, then we obtain the disease-free state (5,0,0), where S satisfies:
B+ 8+ ua)s = Aran): (30)

If A is time independent, A(r,a,t) = A(r,a), and we obtain the sieady-state disease-free solution §

which satisfies

95 | ua)f = Alre), (1)
and consequently,
) a -l#(vidy
S{ra) = Je x A(r,x) dx. (32)

0

We want to investigate the stability of § and how it is affected by the choice of mixing function p.
For simplicity we assume that C is nol dependent on the population size; however, much of the
analysis that follows extends directly 1o the case where C does depend on the population size, We
note that Equation (28) is decoupled from the first two, so we need only to study the system for S
and | (Equations 26-27). At an endemic equilibrium (S*(r,a}, 1*(r,a,7)), the incidence rate is given by
B*(c,a)=k*(r,a,p*)C(r,2)5*(r,a), where p* denotes the mixing at equilibrium (i.e., evalualed at

(8*,1*)) and

SN
k*(r,8.p%) = I [[ ] 8(r.a, ' a)F (K> r,a,0' a")dr]drda’, (33)
o 0
where ¥ = F(k*z,a,ra") denotes a nonlinear funciional which depends on the‘;iarticular

mixing function p*. Specifically, we have that

R

* i ’ * ‘.
F(k*ra,ra') = pFirar ":a)—l (rasr) X (34)

8*(ra’)y + | 1* 8 r)dr

o S,

The equations for $*(r,a) and 1*{r,a, T) are:

ds*

St #(8)8* = A(r,a) - k*(r,a,0*)C(r,a)8%, (45)
» -

Bt Gt (ule) + (o) + wari* = 0, (36)
*r,a,0) = k*(r,8,6*)C(r,8)5%(r,a). (37)

Equation (35) has the solution

a
a - j [H(¥) + K (rr.p")C(ry)]dy
5%ra) = Ic E

0

A(r,x) dx, (38)

which can now be substituted in Equation (36) to yield a simple linear first order partial differential

equation for I* which can be integrated along characteristics to yield:

6, ifacr
1'(r,a,f) = T :
fI[,u(o+o’—‘r)+({n+a’—1’,a]+7(a+0—r.a’]da (39)
k*(r,8-7,p*)C(r,a-7)5*(r,a-1)e 0 ifasr,

where 5%(r,a} is given by (38). We now substitute the expressions for S*and [* in (33), and note that
the form of the nonlinear functional ¥ depends on the particular mixing function p* used in (33), Lut
that it alwaya has the properly that

F(0,r,a,",a") = 0. (40)
Equalion (33) determines the threshold for the existence of an endemic equilibrium solution. First
k(r,a,p*} = € is always a solution of (33) and this corresponds ta the disease [ree state. Any other
non-negative solution of (33) corresponds Lo an endernic equilibrium. To gain further understanding of
the role of the mixing function in the determination of endemic equilibria it may be of value to study
Equation (33) for very specific mixing functions. This is patticularly relevant as the recent results of
Huang (1988}, Huang et al. (1990) and Castilic-Chavez et a/. (1989d, ¢) have shown thal the ;xistencu

of multiple endemic equilibria may be due Lo the combined effects of variable population size and

22
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non-symmetric mixing functions. In the following subsection we compute the threshold for the lotal

proportionate mixing case.

5.1 Threshold for the total proporiionate mixing case

In the total proportionate mixing case we have

C(r a)T(r' 8"t
p(r,a.r',&',t) = ‘p(r',a',t) = T (r 5) (l’ u ) [

J-C(u.v)’l‘(u,v,t)dudv
0

which, when substituted in (33) and upon using (38) yields

a

v o
k*(r,a,0%) = H - I J lﬂ(r,n,r,r',a')C(r',n')l"(r',a’.r)dr dr'da’
0

’

=H- J?:[ C(r',a") 1{,’i(r,n,r,r’,n')k'(r',a’--r,p')C(r'.a‘—r)

r
- J [g(.‘+a—r)+((.’+a~r,cr)+7(n'+a—r.a)]do'
]

e
a'-T f
ator - J [+ 1t )|y (41 )
e T A(r‘.x)dx}dr dr'da’,
o
where
o
oo a -'J[_u(y)+k'(r’.y.P')C(r'.y)]dy
I= [JC(I',B') Jc x Alr x)dx
0 o
a'-T
oo a1 —J [+ v ICt |y
+ ] L*(r'a'-r,p* YO(r'a-T) l e x A(r x)dx
o o
’ (42)
,
_I[p(.'+orr-r)+((.'+o-r.rr)+7(.'+a~-r,a)]da } N
e 0 dr | drda’ .
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The expression on the right-hand side of (41) in fairly complicated; however, it is still possible to
derive explicit conclusions from it. Clearly, k = 0 is a solution of {41) —(42), and yields the disease-
free equilibrium. One case that can be completely analyzed is when

B(r,a,r,r',a"y = B(r,r'a"),
that is, the probability of acquiring the disease, given that contact has occurred, does not depend on
the age or activity level of the susceptible. In this case, k* is independent of r and a and can he

factored out of the integrals Lo reduce (41) to
Yy
a’~Lt

a'T aor
- t Fa-1 2 | cic'y)dy- ] #(y)dy
Kl -
I} 0

1=H" I lC(r',n') = A(r x)dx
1]

r
- J [p(a'+a’—r)+((.'+a'~r,a')+1r(a'+a—r,a)]da
- f(rra)C('a' ) e O dr] dr'da’ {43)

R{k"} .

From (43) it follows that if R{(0) = Ry > 1, where

Ry = 1
rIC(r‘,n‘) Te_lmﬂdy.\(r',x)dx dr'da’
o o
o0 o' Ja-r —.‘;(:‘]dy
- ”C(r'.a') I ] e A(r',x’lx'v B(r, & )C(r a'+) {44)
o al o

,-
- I [#ta’ +o—r)+ela'+o-T o) T Ho-T.0 ) Lta}
[

e dridr'da’,

24
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then there exisis a k>0 satisfying (43) provided that C{r,s) is not identically zero. Equation (44)
provides an explicit expression for the endemic threshold or basic reproductive number K,

The basic reproduclive number, allows us te study the effects of denographic and
epidemiological parameters in disease iransmission. For example, since R, is" given by three Lypes of
risk- and age- dependent expressions: thoee involving death-adjusted “recruitrnent™, those invalving
time apent in the infectious state —appropriately weighted by infectivity, and those invelving average
sexual activity, then any uniforim increase in these expressions (i.e., any incresse in the incubation
period, in the mean number of sexual partners, or in the recruitment of susceptibles) will generate an
increase in the reproductive number. However, a change in any of these parameters, which represents
an average increase aver old age and activity classes, need not lead to an increase in Ry, and in fact,
may cause Ry to decrease due to the close coupling between these epidemiological parameters and the
age- and activity level-dependent demographic parameters. The results concerning uniform incresses
agree in principle with those found for reproductive numbers for age-independent homogeneously
mixing models in which the reproductive number is given as the product of three factors: the mean
infectious period, the mean number of sexual partners per unit time, and the average infectivity (see
Anderson and May 1987, Busenberg and Castillo-Chavez 1989). Also note that the reproductive
pumber, in models in which the mean number of sexual partnera depends on the “recruitment” rate,
is & nondecreasing function of this rate {see Busenberg et al. 1989, Castilio-Chaves ot al. 1989b, ¢, d
and Thieme and Castillo-Chavez 1989a, b}, but the lack of an age- and activity-level structure makes
it impossible 1o use these simpler age- and activity-independent models in the fine tuning and testing
of specific control measures. The expression for Ry, given by Equation (44) lets ua look at the effects

of potential control measures that are targeted to individuals of specific age and activily levels.

6. Conclusicn
In this paper we have extended the mixing framework of BCC through the incorporation of age-
structure, and have found the general solution to the mixing problem for a sexually-active homaosexual

population. This general solution, as well as a number of other results, are new even in the simpler
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context where there is no age-dependence. We have clarified the role of proportionate mixing by
showing that it is the only separable solution, and have formulated a general epideric model for a
single, age-dependent, sexually-active homosexual population with distribuled activity levels. An
explicit expression for the reproductive number for Lhe special case of proportionate mixing has been
determined.

Our results show that the reproductive number is & complex nonlinear function of the mixing,.
Future clarification of the role of the mixing function on the reproductive number may be
accomplished by analyzing models with specific simple mixing functions (such as those specified in
Section J or in BCC} and convex linear combinations of them. Some preliminary work in this
direction has already began (see Nold 1980, Jacquez et al. 1988, BCC, and Busenberg and Castitlo-
Chavez 1989, Castillo-Chavez et af. 1989d, Gupta et o/. 1989, Huang 1989, and Huang ei al. 1990).

Andrea Pugliese’ remarks that our mixing framework can be easily generalized Lo include
geographical variability by assuming that each neighborhood has its own mixing function, pj(r,a,r',a‘),
which now denotes the praportion of contacts between “typical” (r,a) individuals at neighborhood j
with “typical” (r',a’g) individuals. Each of these “localized™ mixing functions satisfies the mixing
axioms and hence can be expressed through our representation theorem. In addition, the spatial
movement of individuals has to be specified with a migration or movement maltrix such as those
found in the work of Sattenspiel (1987a, b) and Satlenspiel and Simon (1988). This general
framework may be very useful in theoretical considerations; however, itz applicability to specific
situations is probably extremely limited due to the tremendous number of paratneters involved.

Finally, the extension of the above framework to two-sex populations is straightlorward. We
have already determined the general solution to the corresponding  two-sex framework. Qur
formulation of this Lwo-sex framework (along the lines of the one-sex framework described in ihis
article) provides an alternative formulation to the problem of pairing (see Dietz and Hadeler 1988).
Models that constder pairs and follow the dynamics of pairs have been studied by Kendall (1949),
Fredrickson (1971), Dietz and Hadeler (1988), Dietz (1988), Hadeler (1989a, b), and Waldstitter

(1989). We have formulated analogous models that utilize solutions of our two-sex framework. Our
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approach (one- and two-sex formulations) has perhaps the added advantage that it allows direct
comparison of the dynamics of disease in models that follow pairs and those Lhat do not (i.e., the
duration of each partnership is zero) through the use of equivalent pairing (mixing) functions. A
manuscript discussing & model with pairs that incorporates this approach is under preparation (sec

Castillo-Chavez and Busenberg 1989).
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Table Ia

Type &

Naimne

Force of infection term = B(r,a,i)

B{r,a,t)
C{r,n)

Proportion condition

o0

(i) J J p(ra s’ daldr=1
(1)

1
['roportionate
ape THixing

J J l ,6‘(r,a,r,r',a‘)ﬁ(r,n,r‘,t)ug-(—li'a—'l!—-(r:ﬂdr'da'df
)

JC(I'.A')T(:',&’,L)dA’

JJ Fl(r'&'r‘.L)C(r'|a‘)T(r'|a,'t)] !d r
—m—————————=da'dr

0 JC(r',a’)T(r'.n’,t.)da.'

0 o =1
oo C r ’ l L oo - +
11 [ [ J B(r,a,r ' a")p(ra,at) (21’2’7t r'da'dr I [ p(r'a':a't)c(r 2T da'dr
I'ropartionale ‘b ‘o ' b oar "o .
wtivily mixing 0 [C(r a')T(r',a’,t)dr 0 JC(:’ A" T(r',a’ \)dr
Q g]
m =1+ 0 =5 ] J- B(ra, 7,8 YC(r'a") - plrat) =1
[)rnpf:)r.hional.e J JC(r’,n’)’l’(r',a',t)dn'dr' o
mixing . I{r'a',7,t)dr'da'dr
ll i lv i L ;o ](r"a"f't) £ I a
niform age B(r.a,1.r',a")p(r,r' a 'UT(I"—a't)_dr da'dr J I plr,y,a' t)drda’ = |
selectivity ? r N
Y T PRI () T e
niform a.r,tlvny Bit,a,r,r a")p(a,ra .L)Wr da'dr J J plar,a’ t)drda’ = |
seleclivity o 0
V= IV 4+ ¥ %0 IRATY 00
Uniform age J l J ﬁ(r,a.f,r',a.')p(r',a',t)T(;,—;,'t—)-dr'da'dr J J p(ra’tydr'da’ = |
of activity o - o

selectivity

I+v

Take p(r.a,r',t) = p{a,r't) in {I}. No r dependence.

I+ 1V

Take p(r,a,a’t) = p{r.a',t) in (II). No a dependence,

These two conditions
place severe resirictions
on the possible fuhctiona
P

7
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Table Ib

Type k Pair Symmetry Conditicn
Name (iii) p(r,a,ra"t)C(r,a)T{r,a,t) = p{r',a’,r,a8,t}C(r',a'yT(r o' ,t)
! p(r,a,r't p(r' 't}
Proportionate per, ) =
age mixing IC(I’,a‘)T(r'.a',t)du' IC(r,n)T(r,a,L)da
0 o
" f ﬁ(l’.&,a’,t) ﬁ(r’,a‘.a,t)
Proportionate

activity mixing

=5
lC(r‘.a')T(r',n’,l.)dr' J.C(r,a)T(r,n.l)dr
[+ 0

m=l+1u
Proportionate
mixing

C(r,a)T(r,a,t) = C(r',a")T{r",a",t)

v
Uniform age
selectivity

p(r,t' 8" YC(r,8)T(r,8,t) = p(r',r,a)C(r',a"YT(r',a',t)

\i
Uniform activity
selectivity

play aYC(r,a)T(r,at) = p(a’,r,a)C{r",a')T(r',a"t)

Uniform age
of activity

A(r'a")C(r,a)E(r,at} = plr,a)C(ra")T(r'a't)

selectivity
I+V
These two conditions place severe restrictions on the
possible functions p which we study in Section 4.
nm+1v
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