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L INTRODUCTION

7 7 ‘ One of Lhe fundamental challenges of ecological science is Lo blend population and
community theory, to examine the relationships among phenomena occurring on dilferent
scales and the dynamic processes undetlying the emergence of pattern. Itisa challenge
incompletely met; yet community ccology, in its search for integration, is leagues ahead of
A. Hastings (Ed) ecosystems ecology. There, the need and desire for synthesis are at least as great, but the gap
separaling the subject from population biology remains virgin territory. In each of these
questa, reductionistic and holistic approachea must be wedded; in each, the goals are to
understand system structure and function in relation Lo the dynamics at lower levels of
organization, and to understand how changes at higher levels may filter down to influence

lower levels.

IL. PATTERN

The search to understand any complex system i3 a search for pattern, for the reduction
of complexity to a few simple rules, principles to abstract the signal from the noise. As
oceanographers long have recognized, patiern can be found at any level of investigation; and
like the sound of the tree falling in the forest, community pattern makes little sense without
consideration of the observer. Nietsche (1901) gaid " There are no facts, only interpretations.”

Comm u n i‘ty Ecolog y Much of the literature on ecological pattern emphasizes equilibrium and homogeneity,

reflecting a perspective shaped by historical tradition. When we examine Lhe system in other
A Workshop held at Davis, CA, April 1986 ways, we find new patterns whose importance is obscured by the classical approach.

In the early Lwentieth century, as the attention of ecologists turned to community
organization, Gleason's emphasis on individualistic and stochastic considerations lost out to
Clements' more holistic notion of the climax stable state, and his perception of the
community as a superorganism whose characteristics were determined by the local propertics
of the physical environment (McIntash 1985). The mathematical theory that emerged [rom
this approach emphasized equilibrium, constancy, homogeneity, slability, and predictability.

A broader perspective, however, makes clear that these attribules are not absolutes,
bul vary in degree depending on Lhe scale of ohservation. Systems develop simultancously on
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many dilferent scales. On any one scale, one may regard some varlables a3 changing so slowly
that in effect they are constant, or 80 rapidly that only their statistical properties are
relevant. But the situalion is much more complicated than that, and recognition of the
interrelationships among scales is one of the fundamental steps in understanding the
development of siruciure and pattern,

HI. THOUGHTS ON THE DEVELOPMENT OF PATTERN

How does patiern form in the absence of a detailed blueprint? Can simple, localized,
contextual rules account for Lthe emergence of pattern at more global scales? Thisisa
pervasive problem in biology, in cosmology, in chemistry, in geology, and indeed in almost
any branch of knowledge. In developmental biclogy, in linguistics, and elsewhere, a central
question has been how a few basic rules, largely local in nature, reliably can give rise to
recognizable entities at higher levels of organization. Turing (1952) showed how symmetry
?ould be broken through local autocatalysis, reinforcing random or otherwise insignificant
inhomogeneities. Put the breaking of symmetry is just the first step in the development of
!Jau.ern; without some mechanism to retard its spread on nonlocai scales, that initial
inhomogeneity will give rise to a new homogencous pattern, simply displacing its predecessor.

What is implicit in Turing's original model (see Levin and Segel 1976, 1984) and in
alternative models of pattern generation (see Gierer and Meinhardt 1972; Murray and Oster
1984) is that local activation, as expressed in the enhancement of differences, is in opposition
to longer—range inhibition that eventually stabilizes pattern and retards the spread of
disturbance. The various models proposed for development dilfer drastically in their
underlying mechanisms, but all successful ones have these two basic features: short—range
activation and long—range inhibltion (Meinhardl 1982). Indeed, the fact that these two
characteristics are all that are necded to produce a very wide range of patierns makes clear
tl_:e impossibility of discovering process from pattern: quite distinct underlying processes can
give rise to identical sets of patterns.

. Pattern involves the coexistence of different elements or states, and some regularity in
their arrangement. In the theory of population genetics, the first ingredient of pattern is
expressed a8 polymorphism: the coexistence of alleles and of distinct genotypes. The simplest
case of allelic coexistence, that of balanced polymorphism, arises because of the superiority of
the heterozygote; this may be thought of as gene~level frequency dependence favoring the rare
allele, since the rare allele {in contrast to the common one} occurs priﬁarily in the
heterozygous form. More generally, whether at the genetical or at the ecological level,
frequency dependence favoring rare types, whatever its underlying basis, can play the dual
role of catalyzing the spread of Jocal inhomogeneities (short—range activation) and retarding
its growth when the inhomogeneities are no longer localized (long—range inhibition). This by
itsell may not be sufficient to constitute pattern, since no obvious regularities in distribution
are expressed; but the essential ingredients are present, This frequency dependence, when
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coupled with a delay in its operation, can lead to periodic dynamics, clear manifestations of
temporal pattern, or to more complicated temporal palterns that at least exhibit statistical
regularity. The delay can be explicit, in which case lemporal pattern can arise even in a
single-variable system, or implicit, operating through the interaction of two or more factors
(e.g., predator and prey, or different age classes). In the single—variable case, the concepl of
selection for rare types is replaced by Lhat of a compensatory mechanism that results in a
decreasing per capita population growth rate as population density increases.

The role of the delay in the above example is Lo assure that activation and inhibition
are expressed on different Lime scales, a centeal feature of temporal pattern. Similar
considerations and mechanists underlic the generation of paticrns in space, a probiem Lhat
has been studied widely in diverse fields. Because geometrically similar patierns are observed
whether one is interested in landscape patterns, animal coat markings, chemical mixtures,
thin filins of Nluids heated from below, or a variety of other situations, it is natural to try to
abstract those features that are common to those situations and to devetop models that ignore
inessential detail. The central aspects of the mechanisms underlying spatial pattern
development are some set of rules for local growth or kinetics, and some scheme fot
redistribution of materials or communication among local environments. The most familiar
mode) systems incorporating these features are those for the diffusion and reaction of
chemicals, although the standard models extend easily to more general and nonlocal
redistribution regimes. Whatever the context, these models lead to similar consequences.

In the discrete (Island) version of this model, patiern can arise as a result of the
existence of multiple stable states in the underlying dynainics. The presence of multiple
stable states means that the local asymptotic dynamics are influenced by small changes in
initial conditions, and hence small differences among local environments become exaggerated
due to positive feedback. Thus, we have the first ingredient necessary for patiern to arise: a
mechanism for breaking symmetry through short—range activation. In the case of population
biology, the initial differences that become enhanced may arise from nothing more than the
vagaries of colonization episodes, and the phenomenon usually is described as the “founder
effect” {Mayr 1942). Longer—range inhibition is provided by the discrete geometry, which
places information exchange among patches on a longer lime scale than the instantaneous
mixing that i3 assumed to hold within them, introducing a dichotomy of scales both in space
and in time. .

In spatially continuous environments, the stabilization mechanism associated with
long—range inhibition is lacking, and for the simplest environments no stable non—uniform
patterns can result. However, &s Matano (1979) has shown, this result, which holds true in
convex environments, breaks down in complex geometries that, by forcing materials to flow
through bottlenecks, create environments that ate quasi—discrete (Fig. 1}. Similarly, it need
not hold even in convex regions if the diffusion coclficients are spatially non—uniform; such
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nonuniformity may be determined extrinsically, or may arise through dependence on the local
state. In the latter case, an initially homogeneous diffusion regime can become heterogeneous
a3 a result of symmetry—breaking through local activation, and this then may give rise to the

quasi—discrete environment necessary to provide longer—range activation (Levin 1979; Fife
and Peletier 1980).

Fig. 1. A geometry that can support non—uniform spatial patterns through the
existence of multiple stable states. The key is the existence of bottlenecks.

A more explicit way (o get short-range activation and long—range inhibition is to
assume that there are two separate agents, e.g., chemical morphogens, that specifically fill
the roles of activators and inhibitors. In the model of Turing, and the related work of Gierer
and Meinhardt (1972), Murray (1981), and others, one assumes that the system has two
components: an activator species, whose dilfusion is spatially limited, and an inhibitor that
dilfuses over broader scales. Decause symmetry—-breaking depends in this case upon the
differences in diffusion rates, the phenomenon has been called dilfusive ingtability; the
resultant nonuniform pattern is sometimes calied a dissipative structure (Glansdor{f and
Prigogine 1971; see also Levin and Segel 1984). Applications to ecological situations, in which
a prey species serves as activator and & predator as inhibitor, are discussed in Segel and
Jacksow (1972), Levin (1974}, Levin and Segel (1976, 1984), and Segel and Levin (1976).

In two—dimensional systems, the mechanisms of activation and inhibition need not be
so clearly separable that each resides in a particular species. Levin and Segel (1984), in
considering the role of apostatic selection (the tendency of predators to concentrate on
common prey types) in fostering diversity, show that nonuniform distributions of character
types may arise and be maintained. In this system, symmetry is broken in two ways: initial
monomorphic assemblages cannot be maintained, as apostasisprovides a mechanism favoring
rare Lypes. Al the other extreme, completely equitable distributions of competing types may
become unstable due to the focusing effects of prey (assortative) mating and reproduction.
Muore generally, activation and inhibition can arise in higher dimensional systems through
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feedback loops involving many species, or can arise even in one dimeasion when different
phenomena are manifest at dilferent spatial or other scales {Levin and Segel 1984).

1IV. ASYNCHRONIZED LOCAL DISTURBANCE

The above discussion relates Lo the development of stable patterns, but such
considerations leave out an important class of patterns, those that are transient or are
dynamic with some underlying regularity, including chaotic and spatio—temporal patterns.

Following A.S. Walt's prescient presidential address (Watt 1947) to the British
Ecological Society in 1947, appreciation grew for the importance of variability in space and
time a3 a factor structuring communitics, and as a key to coexistence and coevolution. As
Watt's work and a growiﬁg body of Jater work (e.g., Levin and Paine 1974, 1975; Paine and
Levin 1981; Pickett and White 1986) have shown, natural biotic #nd abiotic disturbance
recycles limiting resources, developing mosaics of successional change that allow species to
subdivide resources temporally. The explicit incorporation of disturbance, variability, and
stochasticity as part of the description of the normative community is thus an imperative if
one i8 10 capture the essential nature of such systems. For many and perhaps most species,
locat unpredictability globally is the most predictable aspect of these systems (Levin and
Paine 1974},

Work examining the importance of gaps and mosaic phenomena has demnonstrated the
inseparability of the concepts of equilibrium and scale. As one moves to finer and finer scales
of observation, systems become more and more variable over time and space, and the degree
of variability changes as a function of the spatial and temporal scales of ohservation. Such a
realization long has been part of the thinking of oceanographers, who abserve patchiness and
variability on virtually every scale of investigation. A major conclusion is that there is no
single correct scale of observation, and that the insights one achieves from any investigation
are contingent on the choice of scales. Pattern is neither a property of the system alone nor of
the observer, but of an interaction between them.

The importance of scales also becomes apparent from an examination of population
models, both in terms of their general dynamic properties and in terms of their applicability
to real populations. Much recent mathematical work has demonstrated that even the simplest
modeis of populations can exhibit oscillatory and even chaotic behavior; and that, as a
consequence, it is impossible to predict accurately the precise dynamics of populations
governed by such equations (e.g., May 1974},

To some extent, such investigations render moot the classical debate over whether
populations are controlled by density—dependent or density—independent factors. Close to the
theoretical equilibrium, the dynamics of such populations may be indistinguishable from those
of appropriately chosen stochastic density—independent models; near the equilibrium, density
dependence is very weak, and will be obscured by any overriding density—independent
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variation. On the other hand, far from equilibrium, density—dependent factors assume more
importance because the nonlinearities are stronger. Thus, density dependence is the primary
mechanism constraining major excursions in population density and keeping populations
within bounds; but within those bounds, density—independent phenomena predominate.
Concepts of stability that rely on asymptotic return to an equilibrium state are seen to be
irrelevant on many scales of interest, and more general concepts such as boundedness and
resiliency replace them (Levin 1987).

The increasing recognition that ecological systems are dynamically changing
spatiotemporal mosaics has spurred interest in the development of measures that allow
cotnparisons of the importance of disturbance and patchiness across systems and across scales.
Hastings et al. (1982) suggest that one approach is to examine the cumulative frequency
distribution of patches of various sizes. Their investigation of patch distributions for various
successional classes, based both on field data and on the output of simulation models,
produces a hyperbolic form (above some threshold patch size) for the cumulative distribution
of patch area greater than a given amount. Thus, one has a distribution of the form

prob (A > a) = (const) x a_B, (1)

where A is patch area for a given successional class. Hastings et al. (1982) transform B by the
relation H=2-2B (following Mandelbrot 1977; see also Mandelbrot 1983) to produce a
measure that they term "the fractal exponent ... of successional stage." B typically is larger
early in succession,

o The measure described above i3 a static one, a snapshot of the system at a particular
point jn Lime. As such, it joing a distinguished set of measures of patchiness that community
ecologists have used for a long time (see, for example, Greig-Smith 1964, Southwood 1978).
But the importance of system dynamics is lost in such measures, and thus there is a need for
approaches that look across time as well as across space, In oceanography, the Stommel
diagram (Stommel 1963, 1965; Haury et al. 1977) is one means for representing the variability
of a system both in space and in time; in geostatistics, various schemes for stratified random
sampling achieve the same objective (Bras and Rodriguez—lturbé 1985). The application of
such approaches to ecological systems holds the potential for producing fundamentally new
perspectives on these systems, ones that emphasize the changes in the perception of processes
across different spatial and temporal scales. Ultimately, these methods can be extended to
the consideration of phenomena across organizational scales, and give us powerful new tools
for understanding systems. ;

. With my colleague Linda Buttel, 1 have beguii the an'alysis of successional systems by
using this methodology, building on & general successional model that can be tailored to
forests, to grasslands, or even to intertidal communities (Levin and Buttel 1986). We have

1=

developed a model incorporating disturbance, colonization, and local competition, and
investigated its dynamics on the Cornell PSF Supercomputer. In this approach, disturbances
of various sizes are superimposed on a grid composed of 10,000 cells, according to a set of
stochastic rules that depend on the local states of the system. Disturbances are centered in
particular cells, and their size and frequency distributlon is conditional upon the current
status of the cell (for example, late successional cells are more likely to give rise to larger
disturbances through their effects upon neighboring cells); the distirbance then is allowed to
tadiate outward to adjacent cells. In one version of the model, edge—related disturbances are
incorporated; that is, in analogy with systems such as the balsam fir forests studied by
Sprugel (1976), trees on exposed edges of disturbances are more susceptible to damnage than
are more protected Lrees. ‘

Once a gap is formed, that space is available for recolonization. We assume that
colonization comes from a pool, and that different species have different probabilities per unit
time of arriving at a site. It is straightforward, although computationally more complicated,
to extend the colonization model to include nearest neighbor effects. Competitive ability is
assumed to be inversely related to probability of arriving at a site. In the simplest version of
the modet, a site is occupicd by a single individual, selected randomly froin among those in
the highest competitive class acriving at the site. In more complicated versions, a local
growth simulator apportions the local resource (space within a cell) according to a set of rules
that allows local coexistence and that implicitly Incorporates the time delays that are
associated with focal competitive displacement.

It is clear that, in this model, the observed temporal variability of any state variable
will be a function of the scale of observation. In particular, if one averages a particular
measure, such as the percent occupancy of space by a particular species, over a square block ol 1_3
n cells, then the expected temporal variance of that average (y, = (x1 + Xy oot xn)/n) is %

given by

52 = E((y, ~E())? = E((y, - E(x))?) = ¢%/n + ((n=1)/n)oovy, (2)

where o° is the variance of x and cov_ isthe covariance of the values of x for two points
drawn at random from the square block of n cells. The difficulty is that cov, depends on n

in a complicated way, and thus it is difficult to derive analytically the refationship between
82 and n. .

Clearly, were there no spatial correlation, the variance would fall off inversely with n.
More generally, the relationship between Sn2 and n depends on the relationship between

cov, and n, 2 relationship that may be very complicated. The empirically derived
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relationship is somewhat surprising: for every measure that we examined, the relationship Fig. 2: The relationship between variability and scale. See text for discussion.
between the variance and n was rémarkably well approximated on a log—log plot by a linear )
model (see, for example, Fig. 2). That is, our examination of the temporal variability of @
nested spatial averages led to the discovery of hyperbolic relationships between variance and _ -Llj
scale. For example, for each species examined, the ternporal variance of the n—point spatial << [ u‘:
average {the spatial average for n equally spaced and symmetrically arrayed points) Q
approximately satisfied the relationship ' 7)) [
% ~a [ @
S?] = (const)x 0%, ) ;::
g "
. . . (8l we | o
where the exponent z isa measure Lhat reflects the degree of spatial correlation. In general, w 5 F <
z varies with successional stage, and is closest Lo unity for those stages where small-scale > v
patchiness is most important. The deviation from unity is a measure of the spatial scale of ] o w
disturbance and recovery. L w3
The significance of the above relationship is that, over a broad range of spatial scales, O n o
log of the variance of a spatial average is related approximately linearly to the logarithm of E ;, o i
the area sampled. Because attention i8 focused on the slope of this line, the expected value — - .
should be independent of the mesh size used; that is, it should be independent of the scale of cé g &
investigation, facilitating comparisons across systems and across scales. The model on which > ﬁ < S
this relationship is based is a fairly simple one, but the existence of the relationship is very u T w §
suggestive: if the system is structured according o a single underlying dynamic, then although Lo §
the observed variance in general will be a function of scale, the slope of the log of variance O @
versus the log of area may represent an invariant, one that iy relatively independent of the — -
scale of investigation. If significantly different slopes are found in the investigation of O
different systems, or of the same system studied on different scales (as we have found for more i o
compiicated models), then thig suggests that different mechanisms or rates apply in [ -
determining those different system structures. More generally, even if a simple relationship &)
hadn't emerged from our investigations, the results would emphasize the importance and O ©
value of quantifying the relationship between variability and scale as opposed simply to _II [ o
measuring variance at a single scale. o [
(@] o
V. SUMMARY 1 RS 3 o o o U — I~l~-...---nr'c;
The recognition of what organizes and characierizes 3 system i3 a recognition of the ¢ Y v v V ! :
manifold palterns the system exhibits. But patiern manifests itself differently on different Jee Gk odavn -
scales, and Lhe description of system pattern is interwoven with the observer's choice of scales
of interest. On any scale, pattern arises from the interplay between order and disorder,
between mechanisms upsetting the monotony of homogeneity and those maintaining
heterogeneity against the forces of conformity. '
5
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That pattern forms on multiple scales makes evident that focusing on only one scale
will give a distorted picture of a system, a single frame in a multi—dimensional motion
picture. It emphasizes Lhe importance of exarmining phenomena across scales rather than
conducting a futile search for the true scale of the system. Our study of a model of
successional dynamics, and our analysis of the dynamics of that system over a variety of
spatial and temporal scales, has led us to discover a number of surprising insights concerning
the relationship between variability and scale,

1 is clear that these investigations just scratch the surface of what can be learned from
examining systems on multiple scales. The escape from single scale studies will provide us
with fundamentally new perspectives on the hierarchical dynamics of ecosystems, and may

bring some basis for order to the cross—system examination of community and ecosystem
structure,
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