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Models for the spread of universally fatal diseases

F. Brauer
Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

Abstract. In the formulation of models of S-I-R type for the spread of
communicable diseases it is necessary to distinguish between diseases with
recovery with full immunity and diseases with permanent removal by death.
We consider models which include nonlinear population dynamics with
permanent removal. The principal result is that the stability of endemic
equilibrium may depend on the population dynamics and on the distribution
of infective periods; sustained oscillations are possible in some cases.

Key words: Epidemiotogy — Stability of endemic equilibrium — Distributed
delays — AIDS

1. Introduction

The classical model (Kermack and McKendrick 1927) for the spread of an
infectious disease with removal in a closed population displays a threshold
phenomenon. If a dimensionless quantity, often called the contact or reproduc-
tive number, is less than 1 the infection will die out but if the contact number is
greater than 1 there is an epidemic (the number of infectives first increases to a
maximum and then decreases to zero). If births and deaths are incorporated into
the model, even keeping the total population size constant, there is a change in
the threshold phenomenon. The infection still dies out if the contact number is
less than 1, but if it is greater than 1, the model typically displays the existence
of a unique endemic equilibrium (Hethcote 1974).

For a disease in which the removal is through death caused by the disease,
the total population size cannot be constant because members of the removed
class cannot be counted in the population. This forces us to formulate models for
such diseases differently from models for diseases in which the removal is
through recovery with permanent full immunity. We shall consider only simple
models with a single susceptible class, and a single infective class. To make
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quantitative predictions for specific diseases it may be necessary to subdivide
these classes into sub-classes with different contact rates because of dependence
on such factors as age structure or differences in behavior. However, this is not
the object of this paper. Our purpose is to formulate and analyze models for
infectious diseases with removal by death in which nonlinear population dynam-
ics and transmission rates more general than the bilinear transmission rates of
classical models are included.

In Sect. 2 we describe basic models for diseases in closed populations and in
Sect. 3 we incorporate nonlinear contact rates and population dynamics as well
as differences in the distribution of infective periods to formulate a simple
general model for a universally fatal disease. This model is analyzed in Sect. 4;
the principal result is that the stability of endemic equilibrium for some kinds of
population dynamics may depend on the distribution of infective periods;
sustained oscillations are possible in some cases.

The author is indebted to Prof. Carlos Castillo-Chavez for an abundance of
useful comments.

2. Models for diseases in closed populations

We let S(r) denote the number of members of a population susceptible to a
disease, I(r) the number of infective members, and R(f) the number of members
who have been removed from the possibility of infection either through immu-
nity or through death caused by the disease. Then the classical model (Kermack
and McKendrick 1927) is

§' = —B51,

t
I’=ﬁSl—;I, (N
R=-1,

where ’ denotes the derivative with respect to time. This model is based on three
fundamental assumptions:

(i) The population is closed, with no births, no deaths except from the disease,
and no migration.
(ii) The rate at which members become infective is proportional to the product
of the number of susceptibles and the number of infectives.
(it) The rate of passage from infective to removed class through recovery or
death is proportional to the number of infectives.

It follows immediately from the assumption (i) that § + 7+ R is a constant X; '
this is reflected in the system (1) by the fact that (S + 7 + R)" = 0. For a discase
in which the class R consists of members removed through recovery with
immunity, the total population size is constant. For such a disease, it is
sometimes assumed that the average number of contacts sufficient to transmit
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infection per infective in unit time is a constant {Hethcote 1976). Then the
number of such contacts in unit time is A7, and the probability that each contact
is with a susceptible is S/K. Thus the infection rate is BSI, with § = 1/K.

For a discase in which the class R consists of members removed through
death, the total population, which we shall denote by N, is S + I. In general, for
such a disease the total population size cannot be constant. If it is assumed that
the average number of contacts sufficient to transmit infection per infective in
unit time is a constant 4, we would obtain a transmission rate ASI/(S + I), and
the model would be

ASI
S'=-—
S+r
AST 1
I'=———_ 7, 2
S+75 < 2
R’=ll.
T

The qualitative behavior of the system (2) is not the same as that of the system
(1). In order to obtain the model (1) for a fatal disease, it is necessary to assume
a contact rate proportional to population density.

We will generalize the assumption (i) by assuming that the number of

contacts in unit time per infective is a function C(N) of total population size,
with

C(N) >0, C'(N) =0, [C—g\;@] <0 (3)
for N > 0. This assuinption may be appropriate for sexually transmitted diseases
(Castillo-Chavez et al. 1989) as well as for virally transmitted diseases. It may be
reasonable to assume a contact rate proportional to population size when the
population size is small but that the contact rate saturates for larger population
sizes. The hypothesis (3) includes such behavior, and leads to a transmission rate
C(N)SI/N. It is convenient to define the per capita contact rate.

C(N) = C(N)/N,

so that C(N) = NC(N), €"(N) <0, and the transmission rate is C(N)SI. We now
have the following model for a fatal disease in a closed population
S =—C(S + 1)sI,
. (4)
I'=_C(s +0SI-—1.

The model (1) is the special case C(N) = SN while the model (2) is the special
case C(N) =4, and in each case N=§ + /.

Theorem 1. Under the hypotheses (3) on the Junction C, if there exists § > 0 with
tC(S) = | then the model (4) displays a threshold phenomenon. For small positive
K0), the infection dies out [I(1) decreases monotonically to zero] if S(0) < § and an
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epidemic occurs {I(t) increases to a maximum and then decreases to zero] if
S(0) > 8.

Proof. It is clear from (4) that S(f) decreases monotonically for every solution of
(4). Since S(r) = 0, 5(¢) tends to a limit as 1 = cc. The equilibria of (4) are the
points (5, 0} with S 2 0, and thus every orbit tends to a point on the S-axis.
There is a maximum of I on an orbit if the orbit crosses the curve I' in the §-7
plane given implicitly by

SCS+N=1;

the intersection of I' with the S-axis is given by 1SC(S) = 1, or 7C(S) = 1, and
is therefore the point ($,0). It is easy to verify by implicit differentiation that
dS/dI >0 on I', and thus the curve I has positive slope. If S(0) < §, the orbit
cannot cross I' and /() decreases monotonically. If 7(0) is small and S(0) > S,
I(?) increases until the orbit crosses I' and then decreases. Because C is a
monotone increasing function, tC(S) < 1 if $ < § and tC(S) > 1 if § > §. Thus
the threshold quantity is TC(S).

For the Kermack--McKendrick model (1), with C(N) = N, the threshold

quantity is ftS5, and an epidemic occurs if and only if S(G) > 1/87. For the
model (2), with C(N) = 4, there is no positive solution § of tC(S)=1 and
the hypothesis of Theorem 1 is not satisfied. In fact, the curve I is the
straight line I = (At — 1)S through the origin. It is not difficult to verify that if
At < 1 every orbit of the system (2) starting in the interior of the first quadrant
of the phase plane tends monotonically to the S-axis, while if it > 1 every such
orbit crosses the line J = (At — 1)S in the first quadrant and then tends to the
origin.

Just as for the special case (1) it is possible to relate S, the limiting value
of S on an orbit of (4} to S, the initial value of .S on that orbit, where I{0) is
sufficiently small that S, + I{(0) =~ §,;. On an orbit of (4),

L D S PACI
s SICS+1) SCS+1)

If we let ¥ =14 §, we obtain

dN 1
dS  1SC(N)
and separation of variables gives, using N(0) = S5, and N(x) =35,
S . S dU S
T Clu) du = — = log —=.
.[So So v & So

For the Kermack—McKendrick model {1}, where C{N) = SN, this becomes

Br(Ss — Sp) = log i—w

0

{Hethcote 1970).
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3. A model with nonlinear popualation dynamics

If births and deaths are included in the Kermack—McKendrick model, with a
constant birth rate and an equal death rate distributed proportionally among the
classes, the behavior of the model is quite different from that of a model for a
closed population (Hethcote 1974). If the contact number is less than 1 the
infection dies out, but if the contact number is greater than 1 there is an
asymptotically stable endemic equilibrium, with a positive number of infectives.
It should be noted, however, that this model is inappropriate for universatly fatal
diseases because it assumes deaths in the removed class. In this section we shall
formulate a model for universally fatal diseases which extends the model (4} in
two directions, including nonlinear population dynamics and generalizing the
assumption that the rate of passage from infective to removed class is propor-
tional to the number of infectives.

If ¢ is large enough for all members who were infective at time £ =0 to have
been transferred to the removed class, the differential equation

. 1
I'=C(S+I)SI—;I

governing the number of infectives in the model (4) is equivalent to the integral
equation

= f ' C{S0) + I)}SC() == di.

In this integral equation we interpret ¢ ~** as the proportion of individuals at
time ¢ that if alive are still infective at time (¢ +s), with an average infective
period t. Thus the assumption (iii) of a transition rate from infective to removed
class which is proportional to the number of infectives is equivalent to the
assumption of exponentially distributed infective periods.

Instead of assuming an exponential distribution of infective periods, we shall
assume more generally that P(s} is the proportion of individuals infected at time
¢t that if alive are still infective at time (¢ + s), where P(s) is a non-increasing
function with P(0) =1 and [ P(s) ds = t < co. This gives the integral equation

I(n= 'r C{S() + I(x) }S(x)M(x)P(t — x) dx

=J. C{S(t — p) + I(t — )}SC — G — y)P(y) dy . (3)
]
An interesting special case is the choice
I, 05«
P(s) = {0’ o (6)

corresponding to an infective period of fixed length 7. In this case, (5) is
equivalent to the differential-difference equation

e =C{S@ + I(0}SOI0H — C‘{S(: — 1)+ I(t — )} St — )(t — 1),
together with appropriate initial data on the interval ( —t, 0].
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The other modification in the assumptions of the Kermack—McKendrick
model which we shall make is to include density-dependent population dynamics.
We will assume that all new births are in the susceptible class, thus ruling
out vertical disease transmission. We will also assume that the infective class
does not contribute to the birth rate, so that the birth rate of susceptibles
depends on the number of susceptibles. This assumption is biologically reason-
able for debilitating animal diseases (Anderson et al. 1981). For human diseases
such as AIDS, instead of a birth rate there is a rate of recruitment of newcomers
into a behavioral class of susceptibles, and this also may reasonably be assumed
independent of the size of the infective class (Castillo-Chavez et al. 1989). The
analysis of models in which the birth rate depends on total population size
is considerably more complicated; however, this direction will not be pursued
here.

We assume that the death rate in the susceptible class depends on the number
of susceptibles. As 1 — P(s) is the proportion of individuals infected at time ¢ but
no longer infective at time (¢ + s), whether because of death from the disease and
death from other causes, our model allows the possibility that the infection may
make victims more subject to other fatal diseases. We now have the following
model for a universally fatal disease:

50 = g{S(} — C{S() + K0} S(), -

I = J ' C{S(x) + H(x)}S()M(x)P(t — x) dx .
0

This model is based on the following assumptions.

(a) All births are in the susceptible class and the birth and death rates in the
susceptible class depend only on the size of this class.

(b) In the absence of disease, the population has a carrying capacity K.

(¢) The average number of contacts sufficient to transmit infection per infective
in unit time is a function C(S + I) of total population size S + 1.

{d) The proportion of individuals remaining in the infective class of time (1 + 5)

after becoming infective at time f is P(s), with average infective period 7.

As g(§) is the rate of change of population size in the absence of disease, the
assumption (b) is expressed analytically by the conditions

gK)=0, g(S)>0[0<S<K], gS)<0[S=K], g'(K)<0. (8

In many cases g(0) =0, but this need not be assumed. It is convenient to define
the constant f§ by

B =C(K) =CK)K %)
The contact rate € is assamed to satisfy (3), and the condition on P are
P(O)=1, j P(s)ds =1 < o0, P non-increasing. (10)
0
. - 5 t e s 5 :
o = L 45 A A Z ‘k‘h 7
% &3S =
R car e ¥, s
2 T !"‘2 % jé? o f



Models for the spread of universally fatal diseases 457
4. Analysis of the medel

Asymptotic equilibria of the system (7), that is, equilibria of the limit system
§(0) = g{S(0} — C{5() + H}SWOK),

I = I C{S(x) + K(x)}SCI(x)P(t — x) dx

~ @

are given by the conditions
g8)=C(S+nSI, I=1C(S+DNSI (11)

Thus cither =0 or tSC(S+7)=1. If =0, then g(S) =0 and S =K, the
disease-free equilibrium. If g(0) =0, there is an additional equilibrium S = §, but
it is easy to show that this equilibrium is always unstable. If tSC(S + I) = 1, we
have an endemic equilibrium which is clearly unique. Because C is assumed
increasing, C(S+ I <C(K)=BK; thus for an endemic equilibrium,
S+71=18C(S+1)< 145K, and

PtK=1+1/S>1. (12)

It follows from (11) that at an endemic equilibrium I = 1g(8), and S is given
implicitly by

1SC{S + 1g(S)} = 1.

If the contact number S1K is viewed as a parameter, then / -0+ and S - K —
as firK —+1+. The quantity 1K is the basic reproductive number R;, the
number of secondary infections generated on the average by an infective individ-
ual in a population of susceptibles. If the basic reproductive number exceeds one
it is possible for the disease to invade a susceptible population.

To linearize (7) about an asymptotic equilibrium (S_,7.), we let
S=8,+u I=1I_+0 Itis convenient to write

M(S, 1) =C(S, + 1)+ 5,.C(S. + 1),
NS, 1) =CS + 1)+ 1.C(S. + 1)
The assumptions {3} imply that
I C(Se + 1) + 50 + 10)CS + 1) _

M(Smalm:)= (S +7 )2 »
S C(Sw+ 1) + 1 (S +1,)CUS, + 1,
NS, 1) = ’(S S W Setle) g

The lincarization at (S, 7.} is

u' = {g‘(sm) - IooM(Suo’ Icn)]u - SmN(Su: ’ Ioo)v,
(13)

o) = '[ U M(So I Jult — y) + S NS, I )e(t — yIP(y) dy .
0
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For the equilibrium § = K, I =0, (13) becomes
u' =g (Ku — KC(K)v = g'(K)u — BKv,
(1) =J; KC(ky(t — p)P(y) dy = BK J; o(t — y)P(y) dy.

It is known (Feller 1940) that all solutions of the second equation in {(14) tend
to zero as t — oo if and only if

(14)

BK r P(y)dy = BK1 < 1,
0

and since g’(K) < 0 because of (8), if »{f) -0 then u(f) >0 as ¢ — co. Thus the
disease-free equilibrium is asymptotically stable if and only if R, = f1K < 1, that
is, if and only if it is the only equilibrium.

At the endemic equilibrium, the characteristic equation is

g’(Scn)_IooM(Sm!Im)—l _SuaN(Sm,Ioo)
det IWM(Sm,[m)J‘ P(s)e * ds SODN(S{,D,I@)J. P(s)e *~ds—1 =0
o 0
which reduces to
[g’(Sm)_A]I:SwN(Smalm)j P(s)e—hds_l]=_]qu(SaD!Im)'
0
This has the form
® . A+a
-— A% = ]
bJ; P(sye * ds TTc (15)

with
a=1,M(S,,1.)—8(S55), b=S,N(S,,1,), c=—g(S.). (16)
Then
bt =18 1C(S,. + 1) + I, C(S, + 1))
<18,.C(S, +1.)=1,

because of (11) and the negativity of C'(S_+17,). Also, a >¢, because
M(S,1.) > 0. The characteristic equation (15) has been analyzed (Hethcote et
al. 1981); a partial stability result can be derived directly

Lemma 1. If 1 <0, |b|r <1, a > |c| >0, then all roots of (15) are in the left half
plane.

Proof. If #2 =0, then

'b Im P(sye % dy
0

< |b|.[ |P(s)| ds = |b|r < 1.
0
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If a> |c|>0 and #4 20, then

A+a S
A+c

Thus the two sides of (15) cannot be equal for &4 > 0.

It follows immediately from Lemma 1 that if a > |¢[ 20, in particular if
2’(S,.) <0 so that ¢ > 0, the endemic equilibrium of (7) is asymptotically stable.
If frK is sufficiently close to 1, then S is sufficiently close to K that g'(S..) <0.
We have now established the following result.

Theorem 2. Under the assumptions (3), (8), (9), (10), the disease-free equilibrium
of the model (7} is asymptotically stable if the reproductive number BtK is less than
1. If the contact number is greater than 1 the disease-free equilibrium is unstable
‘but there is an endemic equilibrium which is asympiotically stable at least if the
contact number is sufficiently close to 1, and for all contact numbers if g'(S) <0
for0<S <K

In models for AIDS (Castillo-Chavez et al. 1989) it is assumed that there is
a constant rate of recruitment of new-susceptibles and that there is a death rate
proportional to the number of susceptibles. Then g(S) has the form p — ¢S with
p>0,¢g>0and g'(S) <0 for all §. Thus the endemic equilibrium is always
stable. For animal diseases, g(S) accounts for births and non-disease-related
deaths, and usually there exists p < K such that g'(§) <0 for g <5 <K but
£(S) > 0if S <. Then if the contact number is large enough it may be possible
to have g'(S..) > 0 and this could lead to a situation in which the condition
a>|c|, or I,M(S,,1.)>2g(S,) is violated and the endemic equilibrium
might be unstable. A related result has been established for models incorporating
age of infection (Thieme and Castillo-Chavez 1989).

To explore the possibility of instability of the endemic equilibrium, we
consider two different choices of P(s).

Example 1. If P(s) =e~*", corresponding to an exponentially distributed infec-
tive period and an ordinary differential equation model,

J; P(s)e ™4 ds = .
and the characteristic equation {15) becomes
tA2+[(@a— byt + 1} +[a — bet] =0. an
The condition that all roots of (17) have negative real part is
{a—-br+1>0, a—bct >0.
Using (11) and (16) we may calculate

(a-br+li=1 [g% —g’(Sm)],
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and thus under the reasonable hypothesis
g(S) > 8g(5), §>0,

we have (@ —b)r + 1> 0. The condition @ — ber >0 is an immediate conse-
quence of @ > ¢, 0 < bt < 1. Thus for this choice of P, the endemic equilibrium
remains asymptotically stable for all contact numbers.

Example 2. For the choice (6) of P, corresponding to an infective period of fixed
length and a differential-difference equation model,
e it

o l
—A4s =
J; P()e Mde = T

and the characteristic equation (15) becomes

1—e#
ita=bito(-——) (18)
It is known (Hethcote et al. 1981) that if >0, 0<br <1, ¢ <0 and le| is
sufficiently large then (18) has roots in the right half plane.

For the logistic population growth model, with g(S) = r8(1 — §5/K) and the
contact rate C(N) = BN, it is not difficult to calculate

a=-"_ sl __, 2
T Bk N h piK -’

Thusa>0,bt=1,and a + ¢ <0if fzK > 3. As Btk —++w,a—-0and c —» —r.
The condition that (18) with bz =1 has a pure imaginary root 4 = iy is

) RV
a=>_yeat?, ~Xy-sing)
T 2 1 —costy

and @ +0, ¢ >0 as y »0+. Thus if a is close to zero and ¢ is negative and
bounded away from zero, the endemic equilibrium is unstable. This will occur if
AtK is sufficiently large. In fact, as the contact number BrK increases there is a
bifurcation to a periodic solution. It is not known whether further increase of the
contact number leads to period-doubling and chaotic behavior. It is plausible to
conjecture that other choices of g(S) and C(N) will exhibit similar behavior.

Qualitative behavior like that indicated by Example 2 has been suggested by
studies of fox rabies in Europe and predicted by a four-dimensional ordinary
differential equation model (Anderson et al. 1981). This model assumes an
exposed period and a natural death rate in each class. Similar behavior is
predicted by a model of the form (7) (Brauer 1989).

Examples 1 and 2 show that (7) is a disease model for which the endemic
equilibrium is not necessarily stable. While instability of the endemic equilibrium
is a possibility in populations divided into sub-populations with different charac-
teristics, this is the first example of a simple model in which the behavior depends
on the distribution of infective periods. Exponentially distributed infective peri-
ods have commonly been used for infectious disease models because they lead to
relatively tractable ordinary differential equation models whose behavior
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has been considered to be shared by more complicated models. Diseases which
are universally fatal do not conform to this notion, and more study of the
dependence of the behavior at endemic equilibrium on the form of the function
P is needed. There is reason to believe that convexity or lack of convexity of P
is relevant to this question (Thieme and Castiilo-Chavez 1989).

§. Discussion

We have noted that in modelling infectious diseases it is essential to distinguish
between members removed through recovery with immunity and members
removed through death from disease. This distinction is necessary both for
describing contact rates which depend on total population size and for incorpo-
rating realistic population dynamics. For diseases which are invariably fatal,
total population size cannot remain constant, and the simple classical models are
therefore inappropriate.

~ Two classes of fatal diseases which are currently of interest are animal
diseases such as rabies and human immunodeficiency virus diseases (AIDS). We
have established the possibility of a significant difference in the behavior of
models for such diseases because of differences in the shape of the recruitment
curves. By allowing contact rates more general than those of the classical models
we have also made it possible to study simple AIDS models in the same
framework.

It is possible to formulate models for diseases without immunity and diseases
with recovery and full immunity which incorporate nonlinear population dynam-
ics and contact rates which depend on total population size. Preliminary investi-
gations indicate that for such models the endemic equilibrium is always
asymptotically stable. A more difficult modelling problem is the description of
diseases in which there are some fatalities and some recoveries. This is relevant
for measles and some strains of influenza in underdeveloped countries.

Another question calling for further study is whether any changes in behav-
ior are produced by the inclusion of an exposed period. Is is known (Hethcote
and Tudor 1980) that for a disease with recovery with immunity in a population
with constant birth and death rates and constant total population size, the
inclusion of an exposed period with arbitrary distribution does not change the
qualitative behavior. For a disease without immunity in a closed population, if
either the infective or exposed period has exponential distribution the inclusion
of an exposed period does not change the behavior, but it is not known whether
this extends to models with both exposed and infective periods having arbitrary
distribution.

A question of particular importance in the study of AIDS modelling is the
formulation and analyses of models in which the transmission of infection
depends on the time since becoming infective. Such models will necessarily be
more complicated than the simple model considered here and may well have
different qualitative behavior. A partial answer has been given (Thieme and
Castillo-Chavez 1989).
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