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Models for the Spread of Universally Fatal
Diseases II

Fred Brauer

! Department of Mathematics, University of Wisconsin, Madison, Wisconsin, 53706

Abstract

We consider a simple model for a universally fatal disease with an infective period
long enough to allow natural deaths during the infective period. The analysis of
this model is considerably more complicated than the analysis of a model with
an infective period short enough that the population dynamics are confined to
the susceptible class. However, the basic result that in some circumstances the
stability of an endemic equilibrium may depend on the distribution of infective
periods is shared by both models.

1 Iantroduction

There are simple classical models for the spread of infectious diseases due Lo
Soper (1929} and Wilson-Burke (1942) which can be interpreted as models for
universally fatal diseases in a population which would grow exponentially in
the absence of disease. For a disease with recovery it is possible to incorporate
births and deaths into the model but to keep the total population size constant.
This is not possible for a universally fatal disease; in order to incorporate births
and deaths into such a model and keep the total population size constant it
is necessary to assume nonlinear population dynamics. Recently .a start has
been made on the study of disease models in populations of varying sizes sce
for example Pugliese (1990) and Busenberg and Van den Driessche (1990). The
classical models for infectious diseases assume either an exponential distribution
of infective periods as in the Soper model or an infective period of fixed length as
in the Wilson-Burke model. The first study including an arbitrary distribution
of infective periods is the model of Cooke & Yorke (1973), which also describes
age-structured population dynamics and a variety of other applications. In the
model of Cooke & Yorke, for a disease with recovery with no immunity against re-
infection, the behavior of the model depends on the mean infective period but not
on the distribution of infective periods. A model for a universally fatal disease
with an arbitary distribution of infective periods has been studicd by Brauer
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2 Fread Brauer

{1990a), and it has been shown that in some circumstances the stability of an
endemic equilibrium may depend on the distribution of infective periods. This
analysis was carried out under the assumption that only the susceptible members
of the populations contribute to the population dynamics, except for deaths
fo infectives from the disease. Such an assumption is appropriate for rapidly
debilitatien animal diseases such as rabies but not for fiseases with long infective
periods such as AIDS. In this paper we formulale a model for a universally
fatal disease with birth and death rates depending on total population size and
with deaths other than from the disease distributed proportionally between the
susceptible and infective classes. This model is of interest in its own right and
is also a step towards a model for diseases which are fatal to some viclims bul
from which others recover. There are diseases such as meastes which are rarely
fatal in developed countries but {rom which there is substantial mortalily in less-
developed countries. Another possible direction of extension would be towards
a model for a disease with infectivity depending on age of infection but without
a full age structure. Such a model may be of use in describing AIDS in a simple
manner.

2 Basic Model

The model studied in Brauer (1990a) is
S'(t) =gS(t) — C{S(t) + I()}S(t)I(t)

‘. (1)
I(t) =./o C{S(z) + I{z)}S(z)I(z)} P(t — z)dz,

for values of t large enough that members who were infective at ¢ = O have been
removed. The hypotheses which led to this model are (1) The rate of change
of population size in the absence of infection is a function ¢ of population size.
All births are in the susceptible class, all deaths other than from discase are in
thre susceptible class, and infective members do not contribute to the birth rate.
The population has a carrying capacity K, with

g(K)=0, (K)<0, g(N)<Ofor N> K )

(Hi) The number of contacts per infective in unit time is a function C(N) of
total population size N = S5 + I, with

C(N)> 0, C'(N) 20, [C(N)/N]' < 0. (3)
The rate of new infections is then C(N)SI . It is convenient to define
C(N) = C(N)/N

so that

C'(N) < 0)

and the rate of new infections is C(N)SI. It is also convenient to define
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Models for the Spread of Universally Fatal Diseases 11 3

8 = C(K). (5)

(H3) The fraction of infectives remaining infective a time s after becoming in-
fective is a function P(s) with

Q0
P{0)=1, P(s)>0, / P(s}ds = 7 < 00, P non — increasing. (6)

It has been shown [Brauer {1990a)} that for the model (1) there is a contact
number

KC(K) f ” P(s)ds = prK.

If the contact number is less than 1 the system (1) has a single asymptotic equi-
librium, namely the disease-free equilibrium S = K, /I = O, and this equilibrium
is asymptotically stable. If the contact number exceeds 1 the disease-free equi-
librium is unstable, but therc is also an endemic asymplotic cquilibrium (S, /)
with § < K,I > O. To analyze the stability of this equilibrium we form the

(c&aractég eiua.tion, which has the form <lanearkovishee
- Ata
dP(A) =
PO = 3o &)
where f’()\) denotes the Laplace/\o[ P, |—-\ ct ;«;,((--,m

P(Y) = fo ~ e p(s)ds

and . .
a=IC(S+ )+ SIC'(S+ 1)~ g'(9)

b=sC(S+ N +SIC(S+1])

c=—g'(5).
Then the followiag result is applicable.
Theorem 1. [Hethcote, Stech, & van den Driessche (1981)] Ifa >(L¢:U (< \
and then all roots of (7) have negative regal part, bul if(@.c with OCzbr 2| /¢
negaltve and@:ﬁuﬂiciently large, there may be rools with pesitive real part. /
- “
It is not difficult to verify with the aid of (3) and (4) thata > ¢, 0 < b7 < 1. \\ C
Thus if ¢'(S) < 0 all roots of (7) have negative real part but if g'(S) > 0 there Ll S g

is a possibility of roots of (7) with positive real part. However if P(s) = ¢=*/"
all roots of (7) have negative real part regardless of the value of g'(S) [Brauer
(1990a)}, while if P(s) = 1 (0 < s < 7), P(s) = 0 (s > ), there can indeed
be roots with positive real part [Hethcote, Stech, & van den Driessche (1981)].
The significance of this result is that for a fatal disease modelled by the system
(1) the stability of the endemic equilibrium may depend on the distribution of
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infective periods if the contact number is high enough and il the population
dynamics permit an equilibrium with ¢'(§) > 0.

3 Long Infective Period

In order to model a disease with an infective period long enough Lo allow natural
deaths during the infective period, we replace the hypothesis (1i1) by a dillerent
assumption on the population dynamics. We continue to assume (12} and (H3)
but instead of (II1) we assume: (H1*) There is a birth rate B(S) per susceptible
and a death rate D(N) per member of the population, N = S+ 1. All births are
in the susceptible class and the death rate in each class is proportional to the
size of the class. The population has a carrying capacity K,

B(K) = D(K), B'(K) < D'(K), B(N) < D(N) if N> K. (8)
In addition, we assume
B'(S) <0, [SB(S)) = B(S)+SB'(S) 20 9
0 < D'(N) < D(N)/N. 9

The assumption (H1*) implies that in unit time there are SD(N) deaths in
the susceptible class and ID(N) (natural} deaths in the infective class. If z(f)
denotes the number of members who became infective at time r who have not
died of natural causes by time ¢, then z'(t) = —z(t)D{N(t)}, and this implies

(1) = z(z)e” L'D{N(!f)}dy'

Thus the fraction of the members who became infective at time z and who have
not died either of natural causes or from disease is

1
Pu-z)owp (- [ DNG)Y).
This leads us to the model

S'(1) = S@)B{S(1)} - S()D{N(t)} - C{N)}S)I()
(10)
I(t) = f ' C{N(2)}S(z)I(z)e™ I= PNONW p(y _ 2ygz,

Here it is convenient to use N in the model to denote 5+ I.
The conditions for an asymptotic equilibrivm (5, I) of (10), with N = 541,
are
SB(S) = SD(N) + C(N)SI
(=]
0

I= C'(N)SI] e PN)S p(s)ds.

Then either I = 0, which implies SB(S5) = SD(N), sothat S=N = K, ot
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" “Then either I = 0, which implies SH(S) = SD(N), so that S= N = K, or

C(N)S f e PN p(s)ds = 1.
0

We define
Q(s) = e" PN p(s)
and -
XA = ~MQ(s)d
o0 = [ aws
so that

. o0
a(0) = j Q(s)ds.
o
Then the conditions for an endemic equilibrium are

B(S) = D(N) + C(N)I

(11)
SC(N)Q(0) = 1.

The existence of an endemic equilibrum requires S < K, or KC(N)Q(0) > 1. If
there is an endemic equilibrium we have

1
Q(0)
by (3} and (5). Thus the existence of an endemic equilibrium requires S Q(0) >
1. The same atgument as that used for the model of Section 2 [Brauer (1990a)]

shows that the disease-free equilibrium (X, 0) of (10) is asymptotically stable if
and only if

= SC(N) < NC(N) = C(N) < C(K) = BK

BEQ(0) < 1.

In particular, an endemic equilibrium exists if and only if the disease-free equi-
librium is unstable.

The linearization of the system (10} about an endemic equilibrium (S, 1) is

v = [B(S) + SB'(S) — D(N) —~ SD'(N) — SIC'(N) - IC(N)]u
— [SD'(N) + SIC'(N) 4+ SC(N)]v,

W(t) = _[o '[Ic‘r(N) + SIC' (N)]Q(t - 2)u(z)dz

+ f ‘[SC"'(N) + SIC'(N)Q(t — z)v(z)dz
1}

- [ [+ eon]

(L;

P .f—t(—]‘,‘;; f\:,:.f E"I’c‘\rv"

PA-? WAAL LS {;9”«@,4; )
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A complicated calculation gives the characteristic equation at the endemic equi-
librium .
sy A2+ dA+ Q(0)c

@) = aX’+br+c (12)
with
a=vS
b=[D(N)Y+ SD'(N)—- B(S) — SB'(S)IvS — uISD'(N) + v (13)
c=1[D(N) +ul —vS - B(s) - SB'S)]
d=ul+ D(N)+ SD'(N) — B(S) — $B'(S) + vQ(0)
where

p = C(N) + SC'(N)
v=C(N)+IC'(N) (14)
v = C(N)SID'(N).
From the condition (3) it is easy to deduce that
0< —IC'(N) S p < C(N)
(15)
0 < -SC'(N) < v < C(N).

In the particular case when D(N) is a constant, so that D'{/N) = (, we have
v =0 and ¢ = 0. In this case the characteristic equation (12) reduces to

A+4d
A+ Y

which is of the form (7) and can be analyzed by Theorem 1. It is easy to show
using (15) that

aQ()) =

0<aQ(0) <1 (16)
and that 5 '
d— 2= BI+ID'(N)=[84+D'(N)I >0,
where 8 = C(K) = C(N), so that d > b/a. If the contact number exceeds 1, so

that there is an endemic equilibrium, but is close to 1, then [ is close to zero
and N and S are close to K. For such contact numbers

b BK(D(K) + KD'(K) — B(K) — K B'(K)]
= BK?[D'(K) - B'(K)] > 0,

using {8). Then Theorem 1 shows that the endemic equilibrium is asymptotically
stable for contact numbers close enough to 1, but may become unstable for
large contact numbers with some choices of P(s). In other words, the qualitative
behavior of the model (10) is the same as that of the model (1) in the special
case D'(N) = 0.
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4 Analysis of the General Case

In the general case D'(N) # 0, the analysis of the characteristic equation (12) is
considerably more complicated. The hypothesis (9) implies ¥ > 0. We have the

following result, whose proof may be found in the appendix.

Theoremn 2 Under the conditions

c<0,0<eQ(0)<1,0<bQ0)<d (17)
and - .
fo sQ(s)ds < 17290 (18)

all roots of the characleristic equation (12) have negative real pari.

For a general Q we can analyze the stability of the endemic equilibriuin only
for contact numbers close to 1. If the contact number is close to 1,s0 that § = K,
N=a K, I=0, we have

C(N) =~ 8, Q(O)z-ﬁ—}; (19)
because of (5) and (11). For such contact numbers we also have
prB+KC(K)>0 vaB, } ~ KD (K). (20)
Using (19) and (20) we expand in powers of I to obtain
an K >0 (21)

bw K[D'(K) - B(K)|BK — K*C'(K)D'(K)I > 0
cx —BKD' (K)[BK + KB'(K)} <0
d= K[D'(K) - B'(K)] + [8+ KC'(K) + D'(K)|I > 0.

In (21) we have retained the terms in I in the approximations for b, ¢, d because
they will be needed in the application of Theorem 2 to the model (10). Then

d—bQ(0) = |f+ KC'(K) + D' (K) +

KC'(K)D'(K) ;
B

D'(K)
g
Because of (16) we have now established that all conditions in (17) are satisfied

for contact numbers close to 1.
Again using (21} along with (22) we have

= [KC'(K) + 6] [1 + ] I>0. (22)

d—bQ(0) _ [KC(K) + A1 + 24K

(23)

-c  BKD(K)BK + KB'(K)
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We can not hope to establish the inequality (18) for arbitrary C‘(N) because
while KC'(K)+ 8 > 0 in general, the choice C(N) = J, so that C(N) = % and

A=K, gives I(C"(K) +4=0 and

—c ~ '

The choice C(N) = g gives

d - 6Q(0) _ D(K)+ 8
—c  BRKD(K)BK + KB(K)]

(24)
Integration by parts gives

fm sQ(s)ds = ]m se=PN)2 P(5)ds
0 0

= ~ Sl PEe 2 4

L
D(N) Jo

=1 we“D(N)’s ‘(s sYlds
= 5% . [sP'(s) + P(s))d

[2.0]
DWW Pl () 4+ Ps))ds

L [ pon .
<5 ] e=DNY P(5)ds = Q(0)/D(N),

using P'(s) < 0 {0 < s < o0). Now, for contact numbers close to 1, we can
estimate [;° s@(s)ds by 1/8K D(J). Since B'(K) > 0,'(K)} < D(K)/K by
the hypothesis (8), (24) gives

d-4QQ) B8 1
—¢ B KID(K) ~ BKD(K)

From this we see that (18) is satisfied and thus that Theorem 2 is applicable.
We now have the following result.

Theorem 3. If the function C(N) is constant, then the endemic equilibrium of
the model (10) is asymplotically stable at least for contact numbers sufficiently
close to 1.

The question of stability of the endemic equilibrium for more general C(N)
is open. It is reasonable to conjecture that while the choice C(N) = 8K /N must
be excluded there is a class of non-constant functions C{N) for which stability
can be established.
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5 A Fox Rabies Model

A model for fox rabies has been proposed [Anderson et al (1981)] which is of
the form (10) except for the incorporation of an exposed period and has an
exponential distribution of infective periods. This model exhibits instability of
the endemic equilibrium for high contact numbers, but il the model dil not
include an exposed period the endemic equilibrium would be asymptotically
stable for all contact numbers.

We shall examine the special case of (10) with P(s) = e¢=*/ for which the
model (10) reduces to the system of ordinary differential equations

5' = SB(S)Y - SD(N) - C(N)SI

(25)
I'= G(N)SI— ID(N) - L1,
T
The linearization of (25) about an equilibrium (S, I) has coeflicient matrix
M= B(S)+ SB'(S) - D(N} - SD'(N) — ul ~SD'(NY—vS
- [u—- D (WML uS—D(N)—%-—ID'(N)

The endemic equilibrium satisfies

. 1 -
SC(NY=D(N) + pl B(S) = D(N)Y+ C{N)I
and this enables us to rewrite this coefficient matrix as

_ [SB'(S) - SD'(N) - SIC’(N) —DS'(N) - vS ] _

M [s — D'(N))I [SC'(N) = D(N))!

The endemic equilibrium is asymptotically stable if and only if tr M < 0,
det M > 0. We have
tr M = SB'(S) - SD'(N) - SIC'(N) + SIC'(N) - D' (N)I
= SB'(S)- ND'(N) <0,
because of (9). Also,

det M
SI

= [B'(S) = D'(N) — IC'(N)}[SC'(N) — D'(N)]
+ [D'(N) + vjfp — D'(N)]
= B'(s)SC'(N) — B'(S)D'(N)
+ [C(N)? + SC(N)C'(N) + IC(N)C'(N)
= B'(S)[SC'(N) = D'(N)] + C(N)[C(N) + NC'(N)]

and this is positive because of the assumptions (3}, (4), (9). This establishes the
asymptotic stability of the endemic equilibrium of (25) for all contact numbers.
We thus have the same situation observed for the simpler model (1): For some
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choices of birth and death rates, destabilization of the endemic equilibrium may
depend on the distribution of infective periods.

Another possible cause of destabilization of the endemic equilibrium is an
exposed period, as in the rabies model of Anderson et al (1981). Models with
nonlinear population dynamics and with exposed and infective periods of lixed
length have been formulated as delay equations with two delays [Brauer (1989)].
The formulation of models with arbitrarily distributed exposed and infective pe-
riods leads to integral equations whose kernel is the convolution of the exposed
and infective kernels [Hethcote & Tudor (1980)]. Models with nonlinear popula-
tion dynamics and arbitrarily distributed exposed and infective periods remain
to be formulated and analyzed.

Another direction of generalization would be a model for a disease from which
a fraction of infectives recover. Such a model would have to generalize the model
(10) of Section 3 by allowing natural deaths in each class rather than the model
(1) of Section 2. It should also have a birth rate of susceptibles depending on
the recovered class size as well as the susceptible class size. Il the fraction of
infectives who recover is p (0 < p < 1), 2 model would be

§'=(5+ R)B(S + R) - SD(N) - C(N)SI
I(t) = / BN ()} S@) (e J POV py g, (26)
0

R(t)=~p f C{N(=)}S(2)I(z)e™ S PO priy _ ayas - R()DIN()).

The model (10) is the special case p = 0 of (26). The case p = 1 of (26) would
be an S-I-R model with recovery, for which the endemic equilibrium is always
asymptotically stable [Brauer (1990b)]. Thus as p varies from 0 to 1 there may
be a transition from instability and oscillation about the endeinic equilibriuum
to stability, and the dependence of the behavior on the recovery [raction p is of
interest.
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APPENDIX

In order to prove Theorem 2, we begin with a general but simple lemma.

Lemma a Suppose that f and g are analylic in an open set containing the right half
plane R\ > ¢ with f(F) = f(z), 9(Z) = ¢(z) and assume that

(i) £(0) = 5(0) > 0

(1) 1F()l <lg(ip)l, 0<y<oo
(i) g has a single zero in RA > 0
(iv) f'(0) > ¢'(0).

Then, except for a simple root at A =0, all roots of F(A) = g(A) satisly RA <0,

Proof .. We consider the equation rf{A) = g(}) with r varying from 0 to 1. For r = 0
there is a single root in R > 0 and roots depend contirucusly on r. No root crosses
the imaginary axis for 0 < r < 1 because a crossing would require that either A =0 or
A = iy is a root for some value of ¢, impossible since

lr£(0)] < £(0)] = lg(0)|

Ir£G9)l < 1 £Cidl < |g(in)

There is a root A(r) with A(1) = 0 because of (i). Implicit differentiation of rf{Ar)} =
9{A(r)} gives
ORI 11105)
—rf{A(r)} + ¢'{A(r)}

and letting r — 1-- we obtain

' f(o)
A= ————
D=5 -ro
Thus the root A(r} approaches zero from the right half plane and A(0) must be the

zero of g in the right half plane. This leaves no roots of f(A) =g(A) in RA > 0.
To prove Theorem 2 we apply this lemma with

< 0.

N 2 -
FY=Q), g()) = Aa—}ff{ﬁ#

t
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Then f(0) = g(0) = Q(0) > 0 if ¢ # 0 and ¢ has a single zero with R\ > 0 if
a > 0,c¢ < 0. Because

floy=- / $Q(s)ds, ¢'(0) = w'

the condition (iv) is satisfied if
-—/ 3Q(s)ds > i—#(o—)
0

Ifd > 0,c <0, this is equivalent to

= .
/ 3Q(9)ds < d_‘b_Q@.
A —c
The verification of the hypotliesis (ii) is more complicated. It is easy to calculate

|£(i)| < Q(0) and

a2 = ¥t {87 = 2Q(0)e)y” +{Q(O)) ¢
loGy)l” = a?y* + (b* — 2ac)y® + 2 ’

We wish to minimize |g(iy}|” over 0 < y < co. The sign of the derivative of |g(iy}{* with
respect to y for y = 0 is the same as the sign of {d® — bz[Q(ﬂ‘)}Q} —2Q(0)c{1 — aQ(0)}
and this is positive il > 0, ¢ < 0, d > 0, bQ(0) < d, e@(0) < 1. If the function
|g(iy)|* has no critical points, the minimum of |g(iy)|* must be [Q(0))°, attained for

y = 0. I {g(iy)]* has only one critical point, this critical point is a relative maximum

and the minimum of |g(iy}|® is the smaller of |¢(0)]* = [Q(0)]? and lim {g(iy)]* = L
Yy—00 0.2

If aQ(0) < 1, this minimum is again [Q(0)]°. In either case, | f{fs)] < |g(iy)l for
0 < y < 00, and thus it remains to show that |g(iy)|? has at most one critical point.
We let z = y?, h(z) = |g(iv/2)? for 0 < z < 00, so that

_ 22+ {d* —2Q(0)c}z + [Q(O))* S
h(z) = a?z? 4 (b2 — Zac)z + ¢2 I

i a>0,c<0,the denominator does not vanish for ¢ < z < oo, The derivative of k(z)
has the sign of

(s~ ar®)2® + 2% (1 — ®[Q(O)°} 2 + {rc® — [Q(0))°c?s)
with .
r=d - 2Q(0)c, s =4 — 2ac.
Both r and s are nonnegative if a > 0, ¢ < 0. If a@(0) < 1 and |B}Q(0) < d, we have

re® ~ [Q(O)F'e®s = {d* — P[Q(O)} — 20(0)e(1 - a(0)} 2 0.

Thus if 4 — ar? > 0 the derivative of h{z) has no positive zero and il s — ar® < 0

the derivative of k(z) has a single positive zero; in either case |g(iy)|* has at most one
positive eritical point.

We have now completed the verification of the hypotheses (i)-(iv) and may apply
the lemma to yield the desired resuli:
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Theorem 2. Ifc< 0, 0 <a@Q(0) < 1, 0 < [bQ(0) < d and if
j sQ(s)ds < .d_LQ(Ol,
A —c

then all roots of the equation

N Ay _ A 4dd 4 Q0)c
Q('\)—'/D e ? Q(-’)d-’—“';mj’_c—

where {0} = 1, @ is non-increasing and f:o Q(3)ds < oo, have negalive real part.




