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1. Introduction
1.1 Mechanism for complex causality in an ecosystem

What happens to each component constituting an ecosystem when a local
disturbance takes place within the system? The abundance of some species would
decrease, or even go extinct, but some other would increase its abundance.

As an example, consider the problem of controlling a pest (species 1) damaging an
agricultural crop (species 5), both members of an ecological interaction network (Fig.
1).

crop o

Fig. 1. Pest control example

A direct strike on the pest will not bring so much effect to reduce its abundance,
because the reduction in abundance of the pest species will cause both a reduction in its
predator’s abundance and an increase in its food (resource), including our objective



crop, which will in turn bring about a recovery of the pest. Further, if the reatment for
introducing that direct impact on the pest affects other members of the community, as it
is very likely in real situations, the net result could be even more disappointing. For
instance, a damage made by this treatment on the competitor (specics 2) of the pest
would indirectly benefit the pest, and this positive effect on the pest would dominate
over the negative effect that originates in the direct strike on it and subsequently get
mild due to indirect effects brought back from its predators and resources.

Exacuy the same causc would lead to quite different, and even opposite (from
negative to positive, or vice versa), results if the structure of a given system is
modified, or if the system is put in a larger network. A pest that is difficult (o cope
with would become manageabie, or, on contrary, it would get worse. Thus, the causal
relationships between components of a system vary depending on the network that
connects those components.

The main purpose of this note is to present a mathematical method for analyzing the
entire structure of influences that are generated by a change in the growth rate of a
component species or some parameters involved in a local process within an
€cosystem, and propagated, as indirect effects, through the interaction network of the
system. As the pest control example illustrates, this analysis of indirect effects should
clucidate, for a given system, why and how those particular impacts take place on the
system components (e.g., less effective control, or even undesirable enhancement, of
the pest) when a particular local cause is inroduced into a part of the system (e.g.,
direct strike on the pest, or that of both the pest and its competitor). Further, this
analysis can be used 1o predict the outcomes under new situations that would happen in
fumre. This implies, for management problems such as pest control, fishery, and so
on, that one can not only prevent negative (undesirable) results but, more actively,
discover new paths through which more effective conmrol can be exerted. Also, the
analysis of the entire structure of influence propagated through an ecosystem network
will provide an insight into the organization of the ccosystem; specifically, it may
effectively disdnguish the particular niche that each constituent species occupies in the
system under specific circumstances.

1.2. Review of inflow and parameter sensitivity analyses
As preparation, we review basic results on the inflow and parameter sensitivity

analyses (Nakajima 1988), which evaluate the total (net) change in the abundance of
each component species of an ecosystem caused by & unit of change in the growth rate

{net production) of a component species and a unit of change in the value of a parameser
involved in a local process of the ecosystem, respectively.

Censider an ecological network consisting of n component species (cach may
Tepresent a species population, trophic guild, or some other unit of ecological
interaction at the level of concern) that interact one another, Let xi denote the
abundance of component species i. Assume that growth rate of each species iis a
function of standing stocks: gi(xy, x2, ..., x,). Suppasc now the system is in a steady
state. At a sieady state, the growth rate of each compartment | is zero:

8ilX1,x2, ... Xg) = 0 (1.1

fori=1,2, ..., n

a. Inflow sensitivity

Suppose now that a small amount of inflow z; is introduced into species i. This
addition of z; moves the system 10 a new steady stace that is determined by:

8ilx(z), x2(z), .., Xp(z)) + 2;= 0 (1.2)

fori=1,2,..,n By taking the derivatives of this set of equations with respect to z;
at the steady state, we have:

2 susg=-5 (1.3
k=l
where
agi
au=§f; (1.4)

evaluated at the steady siate, and

sk,v=d—‘a’% (1.5)

In matrix form,



AS=-1 (1.6)
where A = [ay] , § = [s;], and / is identity mawix. From this, it follows that

S=-41 (1.7)
Matrix A is often in literacure referred to as community matrix, and we call § sensitivity
matrix, whose clement 5;; represents the change in the abundance of species i caused by
a unit of change in the growth rate of species j.

b. Parameter sensitivity

Suppose now that some parameter, p, is involved in the system dynamics, and that the
steady state is determined as a function of p by the balance equation:

gl(xl(‘p)- IZ(P)' nrew xn(P); P)=0 (18)

fori=1,2, .., n. By taking the derivatives of this sct of equations with respect to p,
we have the following:

% dry _ 0g;
ay Sk =Tl
1§| . dp dp 1.9

In matrix farm,

dx; 981
dp ap
Al 1 = : (1.10)
dxy 9%n
dp dp

From this, it follows:

dy I o

dp dp ap
Do k.an D=5 : (1.11)
dxy % o
dp dap ap
This implies a kind of chain rule:

P19 T dzop (1.12)

Equation (1.11) shows that the sensitivity of x; with respect to parameter p can be
decomposed into the part represented by S and the part represented by dg;/dp ; the
former part is global in nature, involving the entire network (in the mawix inversion),
whereas the latter is local in nawre, cach involving the dependency on p of the growth
rate of only one individual specics. Thus, the indirect effect analysis of parameter
sensitivity can be reduced to that of inflow sensitivity §. Therefore, we will focus on
the latter in the rest of the present note.

2, Chain rule approach
2.1, Temporal expansion of the total effects

Each element sj; of sensitivity matrix § represents the total effects (in terms of
change in steady state abundance) on species { from a unit of cause (in terms of a unit of
change in growth rate) from species j. This total effects can be viewed as the sum of
the effects brought by paths connecting j to § throughout time; that is, one can imagine
“age distribution™ within this total effects, 5;; (Fig. 2).



Z |
t = A=+ (J+A) + +AVT + ‘ 2.1)
Az, | .
' The (i,j) element is given as:
T T T L T
o I T )
S = 511 +bij+ Z big b.tj+"' (2.2)
kal
X
where b;; = &j + aj;. The first term corresponds 1o the initial impact (a unit of change in
growth rate of cach species), the second the effects arriving art { at present (t=0) that is
caused by the impact made on j at the previcus time (t=-1), and the third erm is the sum
o) of effects that originate in the impact made on j at two units of time before (1=-2) and
travel through paths j — k — {in two units of time, arriving at i at present
X5 (t=0), and so on (Box 1).
0]
X3
O

Fig. 2. An illustration of inflow sensitivity as the total effect on the
abundance of each species caused by a unit of change in the abundance
of specific species (species 1 in this example), and the “age structure”
within those total effects.

a. Discrete time case
In discrete time framework, which is easier for intuitive visualization, the temporal

expansion, or age distribution, of otal effects, $ij, can be given in the form of the
matrix expansion:



Box1

x(t+ 1)=x{(§ +g , i=1,...,n
Linearization of Dynamical Equation
X;(f) = xi+ §,(D), i=1,...,n

Eite1)=E(0+ f;ag-é,(o, 1,..,n
=

--------- 1z
®1 % 4T a8 2 a4 0 t
1Az
+(/+ A)Az
+(1+ A)°Az
+(1+ A Az
+(1+ A)YAz
Total effect
S 1+ AYaz=-A"Az
-0

b. Continuous time case

Q
5 =~A"=[ e-Atdy

(2.3}

Box 2
Xi=g;, i=1,...,n
Linearization of Dynamical Equation
xi{f) = x;+ §,(D , =1,...,n
. n
€j= Zaq j, =1|-..,n
J=1
F4
1 0 1
Effect from change Az —At
in the past time Interval e ditAz
[t, tecit]
Total eff ° _at -1
otal effect fe dtAz=-A"Az

2.2, Partitioning of the total effects according to their route paths

In the following, for the sake of simplicity, we will focus on the case of discrete

time, though the conclusions hold for the continuous tme case.

By re-aggregating the pieces of effect from j to i according to the routes they take to

In continuous time framework, the temporal expansion of total effects, 5ij, can be

travel from j to § , we get route-partitioning of the total effects from j to i, s;;. The first
given in the form of the matrix expansion (Box 2):

step for this procedure is to group together all the effects associared with direct link
from jto i j # i). This sum amounts o -ajilagi, and it is referred 1o as the procedurally



(route} direct effect from j t0i (Box 3). Let d;j denote this procedurally direct effect
from j 1o i. Thus,

) L (iw)
"o G=p

(2.4)

Box 3
Direct Effects

Temporally Direct Effects

aj+(1+a)a;+(1+a;)%a;+(1+a;)°ag; + ..
a..

=3

Procedurally Direct Effects

Let D = [djj] denote the matrix of procedurally direct effect. In terms of proceduralty
direct effects, the total of effects (gencrated by a unit of impact on j) associated with any
particular route, j =k >k — - = m =3 i, is given as:

G, G O 1 2.5)
@i Gha -Gxg -3y .

e

Therefore, the total of effects carried by paths of length k connecting jto i is given as
the (i, /) th element of matrix Dk C, where C is a diagonal matrix with - V/ajj as (i, )th
clement, and the total effects from j 10§, Sij . is given as the (i, /} th element of matrix
series, /C+DC+DIC+ - m(I+D+D2+ - )C = (- Dy1C. Thus,

§=IC+DC+DIC+ « m(+D+D2+ . )C = (l-0)1c (2.6)

23. A theory of indirect effects propagation analogous (o Markov chain theory

The results that we have derived so far suggest that the multiplication of clements of
matrix D along with a specific path of concern gives the total effect that is carried by
that path. In this sense, matrix D, which can be derived from community matrix A
(thus, from sensitivity matrix § = -4-1), characterizes the topological structure without
emporality of influences propagated, as indirect effects, through the interaction
hetwork of an ecosystem. On the other hand, matrix A characterizes the temporal
pautern of the propagation of influcnces through the network.

For the influence propagation process through an ecological network, characterized
by matrix A, we may construct a theory analogous to Markov chain theory.
Specifically, suppose that matrix A is corresponded to the trapsition matrix P = [pif] of
a Markov chain. Then, the procedurally direct effect from j to ¢, represented by each
element dj; of matrix D, corresponds to the residence ime in stale j on a visit directly
from state i, The total effect from Jw i, represeated by each clement sj of matrix § =
-A-, corresponds to the total number of visits to state J that the Markov chain makes
when it starts from state ;. Also, corresponding to the probability of the Markov chain
ever reaching to j starting from i, sijlsii represents the first-passage effects, i.e., the
total of effects originating in j that arrive at i for the first ime. In other words, the
difference, §ij - siy/sii, represents the recycled (revisiting) effects, i.e., the components
of the total cffects that passed through j at least once in the past and has retumed 1o J.
Thus,

[Totai effects from j w ] = [first passage effects] + [revisiting effects]
Sij = siy/Sii + (sij - sij/sii)

H



3. Conjugate variables approach

In this section, we explore a completely different approach to the analysis of
indirect effects propagated in the network of ecological interactions. The basic idea of
this approach lies in viewing each pair of variables (x;, z;) as conjugate variables, and
the selection of a set of » independent variables by picking up one variable from each
conjugate pair; the rest of variables are viewed as dependent variables. Viewing the
steady state condidon

gilx1, X2, . Xg) +2;= 0 an

fori=1,2, .., n, as the set of equations that define the relationship among 2n
variables, x;, z;, (i = 1, 2, ..., n), for a given selection of independent variables, one
can take n partial derivatives with respect to each of the selected n independent
variables.

For example (Box 4} , if we choose as independent variables z; for all {, then we
can derive the inflow sensitivities 5. If we instead choose as independent variables,
for instance, (2], 22, x3,..., Z,), then what we can derive, for instance,

aﬁ =3 + Sn‘g%::] (32)

921 )1y, 3y, 1aee 10

This quantity represents the component of total effects from species 1 to 3 that does
not pass through species 3, because the abundance of species 3 is fixed in this
derivative. Notice that for fixing the abundances of a particular set of species, we must
sclect as the independent variables for those species abundance variables x; rather than
inflow variables z;.

To derive procedurnlly direct effect from j to i, we should select as independent
variables abundance variables for all species except the target species to which the
effects are coming. For instance, selecting as independent variables (xy, z3, x3,...,
Xn), we can derive the procedurally direct effects from jto 2 (j # 2) as -azy/ay; (Box 5)

Box 4

Example of Combination of Independent Variables

( Xy, X2, X300 Xn \ a_xl s
@..,..., 322 21,23 ,...2n 12

Xy, X2 ,,..., Xn (@é’a

aZ1 22,X3,Z24 oo Zp

)



Box 5

Procedurally Direct Effects Estimated by Conjugate variables Apprdach

(Xt X [Xa]oon [X] (Q‘a -_aip
21,(22). 23, 2a Xyl 2y .35 x4 s




