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Abstract, An § —/ epidemic model with a general shape of density-depen-
dent mortality and incidence rate is studied. The asymptotic behaviour is
global convergence to an endemic equilibrium, above a threshoid, and to a
disease-free equilibrium, below the threshold. The effect of vaccination is then
examined.
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1. Introduction

The interplay between epidemiology and population dynamics has been studied
in vatious models. Anderson and May [3, 4] have first considered such models,
both for microparasites and macroparasites; they have analyzed how the
threshold phenomena for the persistence of epidemics are modified when popula-
tion size is varable; they have further discussed how a population can be
regulated by an infective disease, and also compared theoretical predictions with

A. PUGLIESE some data. Anderson et al. {2} have applied a similar model 10 the analysis of the
Universita' di Trento fox rabies in Europe, assuming a logistic growth for foxes in absence of the
Dipartimento di Matematica disease. They found that, when there is a latent period of the proper length, this
1-38050 (TN) mechanism can induce sustained oscillations. Getz and Pickering [11] have

Italy i noticed the difference, so far as population regulation is concerned, between

sexually transmitted diseases (where the probability of contracting the disease is
proportional to the relative density of infectives in the population) and discases
transmitted by airborne agents {where that probability is proportional to the
absolute density of infectives). Recently, May ¢t al. [15] have applied similar
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6 A. Pugliese

methods to the epidemiology of AIDS and its relevance to population growth in
developing countries. Finally, Andreasen {5] has studied a model in which the
age-structure of the host is explicitly considered, finding other instances of
sustained oscillations.

In all these models, as usual in mathematically cpidemiology, it is assumed
that the rate at which new individuals become infected (the incidence rate) is
proportional to number of susceptibles, S, times the contact rate ¢(N), times the
probability of encountering an infectious individuals, //N. When N is constant,
as often assumed in human e¢pidemics, the shape of the function o(N) is
irrelevant. However, if N is a dynamic variable, o(N) has to be specified. As
described above, two extreme cases have been considered: o{N) = B (for sexual
diseases), and c(N) = N (for airborne diseases). Andrcasen (5] discusses the
subject in detail, reporting also that a contact rate of the form o(N} = N2
seems Lo give the best fit to some data on rabbit myxomatosis. However, he then
considers only the case ¢(N)} = BN. Castillo-Chavez et al. [10] have incorporated
in their model for AIDS the feature of a contact rate that depends non-linearly
on the total population. Their model however is rather different from models
used for host regulation, since it was developed for homosexual populations not
reproducing themselves,

Note finally that Liu et al. [13, 14] have studied cases where incidence rates
depended non-linearly on the number of infectives or susceptibles. This corre-
sponds to a non-linear response to discase prevalence, not to a response to
population density, as considered here [5).

Here I start to consider the effects of a nonlinear contact rate in host
regulation models. Therefore population dynamics with density dependent mor-
tality is coupled with an epidemics with a general shape of density-dependent
transmission rate, which includes both sexually transmitted and environmentatly
transmitted discases. Age structure and other delays are neglected, so that the
models result in ordinary differential equations.

Recently, Brauer [6-8] has independently analyzed models similar to the one
considered here.

The epidemic model itself is of the simplest kind, an § — [. It is assumed that
infection is permanent, but that infective individuals, although possibly subject to
a higher mortality and lower fertility than susceptibles, are otherwise active in the
population. The consideration of this kind of diseases originates from a discus-
sion about brucellosis in domestic {cows) and wild (decr) populations. However
the model can be applied to other discases as well, the fox rabies model of
Anderson et al. {2] is of this kind, although with a latent period; the simplest
mode! for AIDS considered in [15] is also of this kind, interpreting the appear-
ance of AIDS symptoms as cffective removal from the population.

Also Busenberg et al. [9) have studied an S -+ J epidemic model, with vertical
transmission and vital dynamics influenced by the epidemics. They also consid-
ered the effect of delays in population recruitment and of diffusion. However in
[9) vital rates and contact rates were density-independent.

Finally, vaccination which gives either temporary or permanent immunity, is
included in the model.
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1. The basic model

The population (N) is divided between susceptibles ($) and infectives (f). The
fertility of susceptibles is a, that of infectives is a(1 — 3), O < & < 1; the newborns
of infectives arc susceptibles with probability p, infectives with probability 1 — p
(the possibility of vertical transmission is therefore considered in the model);
non-disease related mortality is a non-decreasing function, m(¥), of total popu-
lation size; infectives suffer also an additional mortality u. Finally, the probabil-
ity for a susceptible of getting infected is ecqual to o(NM (note that
a(N} = e(N){N if o(N) is the contact rate defined in the Introduction); in case of
environmentally transmitted diseases one normally assumes a(N) = #; for sexu-
ally transmitted diseases o(N) = §/N; since these are considered to be the
exiremes, in general one may assume ¢{N) to be a non-increasing function, while
Na(N) is a non-decreasing function (see [ 0] for the same assumption; Getz and
Pickering [11] consider a more general form for the input of new infectives).
The equations are, therefore,

%§= (a ~m{N))S + pa{ 1 — 8) — a(N)SI

di . n
= =ONIST + (1 = pla(t ~ I — (m(N) + @i
where N =5+ I

Alternatively, one may use as variables N and ¢ = I/N, giving rise to the
system

daN

= = Na - m(N) — (4 + ad)g)
@

—=¢((1 — o (NN — p — ab) — ap(1 - §)).

In case of sexually transmitied discase (6(¥) = #/N), the equation for ¢ does not
depend on N and can even be solved exactly, as noted in [15]; therefore the
behaviour of the system is particularly easy to understand.

We will therefore consider in what follows that Na(N) is strictly increasing.
The exact assumptions on system (1) are

(H)a>0,220,0<p,8 <1, u+ad>0. No(N) is a strictly increasing differen-
tiable function on (0, o) such that lim,_, . No(N) = 0. m(N) is differentiable
and non-decreasing on [0, o). There exists (N,, N;) <(0, ) such that m(N) is
strictly increasing on (N, N;), with m(N,) <a <m(N,). If p(1 - 8) =0, assume
further m’() > 0 on [0, N,).

If 4 + aé =0 then the disease has no effect on the demography, the popula-
tion tends to a constant size, and the results are well known [1]; therefore I
assumed u + aé > 0. The assumption that 6(N) and m(N) are differentiable is
made in order to avoid technicalities in the use of lincarizations. Finally, if
P —8) =0, I assumed m’'(N)} positive to avoid degencracies.
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2.1. Well-posedness, incariant region and the trivial equilibrium

The right member of system (2) is Lipschitz in [e, M] x {0, 1] for any &, M > 0.
Therefore, as long as N(0)} > 0, there exists a unique local solution. The
assumptions on m(N) imply that there exists a unique N* >0 such that
m(N*) =a; the region o = {(N, $):0< N < N*, 0 < ¢ £ 1} is clearly positively
invariant for system (2); all solutions starting in & stay there and cannot reach
N =0 in finite time, thus they can be extended globally in time. Moreover, from
%V < Na — m(N)}

we see that if N(¢) > N* for all ¢, then lim, . ., N(1) = N*. Therefore only the
region of needs be considered.

Two equilibria of system (1} are clearly (0, 0) and (N*, 0).

(0,0 is always unstable. Choose in fact n >0 such that
a—m(N)—o(NIN =& >0 for 0 < N <n, then for any initial data (5,, [;) such
that S, + I, < and S, > O, we have from (1)

= >0~ m(N) — o(W)1}S 3 (a = m(N) ~ s(NINIS 32

as long as S() +/(f) <n. Therefore there must exist T such that
S(T) + I(T) 2 1, so (0, 0) is unstable. Note that this proof depends on the fact
that limy_ g+ No(N) =0; on the other hand, discases such that Na({N) is a
posilive constant can lead to population extinction, as noted in {15].

The linearization matrix of {1) at (N*, 0) is

—m'(N*IN* ap(1 — &) — a(N*}N* — m'(N*}N* )
( 0 o(N*IN* + a(1 —p)(1 — 8) — (m(N*) + p)
with eigenvalues 4, = —m(N*)N* <0 and 1;=o(N*)N*+a(l —p)1-8) —
(m{(N*) + y). If we define
o(N*IN® +a(1 — pX1 - )

Fo= )+

(3
we have thus the following

Proposition 1. If R, < 1, the equilibrium (N*, 0) of system (1} is locally asymptot-
ically stable. If Ry> 1, (N*, 0} is unstable.

Note that 1/{m(N*) + u) is the mean infective period, o{ N*)N* is the rate of
horizontal transmission from one infective in a susceptible population of size N*,
while a(1 — p}(1 — &) is the rate of vertical transmission. Therefore R, represents
the expected number of new cases produced by one infective in a susceptible
cquilibrium population. (3) is then the usual threshold condition, ’

For future use, note also that, when (N*, 0) is unstable, its stable manifold is
the positive semiaxis (S >0, f =0); in particular all trajectories with I(r) >0
close to {(¥*, 0) are repelled from the equilibrium.
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Finally, if p(1 — &) =0 there may exist an equilibrium with no susceptibles
but a positive number of infectives. Precisely, if m{0) < a({ — 8} — g, then (0,
is 2n equilibrium of (1) if N is the solution of m(N) + u = a(1 — 8); clearly it will
be N < N*.

The linearization matrix of (1) at (0, 8} is

4+ ad - o(MHN 0 )
(a(ﬂ)ﬁ—m’(ﬁ)ﬂ -8/

Since in this case it is assumed m’(N) >0, it turns out that if g(AN < p + @5,
then the equilibrium is unstable with stable manifold the positive [-semiaxis;
otherwise, the equilibrium is stable. Note that the latter case may happen only if
a(N*)N*>p +ad, or Rg> L.

2.2. The endemic equilibrium

I now look for the existence of an equilibrium (&, I) with I, § > 0. From the first
of (2) we must have

nR=2-m m(N)

b +ab “

which gives the condition m(N} < a, or N < N*.
From the second of (1) it must be

a(N)S = m(R) + u —a(1 - p)(1 - 8). (9
Since § = N —J, we finally have

a{IV)IV(I —H—E:_m—if—))=m(ﬂ)+p—a(l —p){1-8)

or
o(N)N = F(m{N)) (6)

where

_[x+r—a(l - pK1 =8 +ad)
Flx) = x+tu—a(l—9d) :

Now the two cases p{1 — d) > 0 and p(1 ~ 8) =0 must be treated separately.
First assume p(1 ~ &) >0. Then F(x) is a positive, decreasing function on
(a1 — &) — u, +o0). If m(0) 2 a{l — &) ~ g, Fm(N)) is thus a non-increasing
function on (0, +) with limy_.o. FMN) >0=1lim,_,. No(N). If
m{0) < a(1 — &) — p, F(m(N)) is a non-increasing function on (¥, + o), where §
is defined, as in the previous subsection, by m(A) = af | = &) — u: further we note
that limy_ ¢. F(m(N}) = + w0 > Na(N). Since Ne(N} is an increasing function,
and F(m{N)) is negative for ¥ < N, in cither case there exists a (unique) solution
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N of (4), with 0 < ¥ < N* if and only if
a(N*IN* > F(m(N*). N

Noting that m(N*) =a, we see that F{m(N*)) =a +pu —a{l ~pX1 — &)} and
therefore condition (7) is equivalent to R, > 1.

Now consider the case p(1 — 8) =0. F(x) is a positive constant; therefore a
unique solution of (6) with N < N* exists if and only if (7) halds. However, it
may well be that N <N (when the latter exists); such a solution is not
acceptable, since, because of (4) and (5), it would correspond to I'> N and
S<o

Therefore we have

Proposition 2. [f R, > 1, and either of the following conditions holds:

() p(1-8)>0;

(i) p(1 = 8) =0 and m(0} + 4 2 a1 — 8);

(iii) (1 — &) =0 and N sarisfies a(M)N < F(N) =y + ad;

then there exisis a unigue positive equilibrium (S, I). Moreover, N = 8§+ T is the

unique positive solution of (6); it satisfies the inequalities N < N* and, when

m(0) < a(1 = 8) — y, N > N. Therefore, the following relations for m(N) hold
al—8)—p<mN)<a 8

On the other hand, if Ry < 1, or if Ro> 1, {1 — 8) = 0, and o(N)N 2 p + ab, there
are no equilibria (8, I of (1) with §,T>0.
As for the stability of (§, I, its linearization matrix is

A= a —m(NY - a(M) — m' (RS ~ o' (M)ST ap(1 — &) — a(M)S - m' (NS ~ o'(M)
oM — m' (AT + o (M)ST —m' (M + o' (N)}ST
(9)
After some computations, we have

_ ta—m(M)ap(1 - &)

HAS ) 5 — (1= )

-m'(N)N <0
and

det A = o(M)IB + m'(N)IC + o tN)STB + a — m{Ah)

where
B=o(M8 —ap(l-8)>0, C=0a(NM)I—~(a~mN) +ap(1—8)>0.
Since ¢’(N) > —o(N)/N by assumption, we have

det A > o(M)IB + m'(MIC - 0(17)7% (B +a—m(M)}=m(MIC>o0.
We have therefore established |

Proposition 3. If Ry > |, the equilibrium (8, 1) is asymptotically stable.
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2.3. Global stability

Here [ show that the asymptotic stability of the trivial equilibrium (below the

threshold), or of the endemic equilibrium (above the threshold), is indeed global;
precisely

Theorem 4. When R, < |, for any (S, 1) € R*\(0,0)} if p(1 = 8) >0, or for
any (5o, 4y) such that S,>0, ;20 if p(1 — &) = 0, we have

lm S()=N*  lim ) =0.
Proof. As discussed above, it is clear that lim sup, ,  N(:) €N*, and that the
region o ={(V, ¢) :0 SN S N*, 0€ ¢ €1} is positively invariant, Using (2),
we see that in o

I (NN — i —ab 20, ‘:—Tﬁ < $lo(NIN — p — ab — ap(1 — 6)]
d¢
If 6(N)N —pt — ab <0, o Sel-ap(1-8) (1)
and so
d < N ' 5
—d;-‘._¢[max{a(N) — g —ab —ap(1 - &), —ap(1 - 8)]]. (1
Since

a(N)N —p—ad —ap(l — 3) So(N*)N* — s —ad — ap(1 -8 =(Ry— | )u +a)
(11) yields

< plmax{(Ro— o + ), —ap(1 — B3}

If Ry<1 and p(1-48)>0, then lim, , , ¢()=0, and therefore
lim, . N(f)=N*.

If Ry = L and p(1 — 8) > 0, ¢(1) monotonically decreases to a limit §. If § > 0
then N(9) converges to a limit N <N* then, for ¢ large encugh,
N €N +¢ < N*, and from (11)

gd? < glmax{a(N + e) (N +2) ~ a(N*)N*, —ap(1 — 5)});

this implies lim, _, ., ¢{s) =0, which as above implies N{1} = N*.

If p(1—3) =0, the semiaxis {¢p =1, N >0} is invariant for system (2).
However, if ¢{(0) =1—¢ <1, then we have 1 — ¢(f) 2 ¢ and, since in this case
O(NIN —p—ad So(NYWN*—p—ad =(Ry— 1)}a + ) 0

we have

d
20 < 9letRy = 1a + ).
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If R, < 1, this yields lim, _, , ¢(#) =0, and then lim, . o, NN =N*.1f Ry=1, one
proceeds as in the previous case.

Theotem 5. When Ry > | then:
(D) If p(1 ~ 8) >0, for any 5,20, I, >0, we have
lim S()=S, im () =T
t—o =
(ii) 4f p(1 —8) =0 and N does not exist or satisfies (NN < + ad, for any
Sy>0, I, >0, we have
lim S() =S5, lim Ky=1I
(i) If p(1 —8) =0 and 8 satisfies (RN 2 u + ad, for any 5020, 5> 0, we
have
lim §()=0, lim K)=A.
Proof. Because of Poincaré—Bendixson theory, the e-limit set must consist
cither of cquilibria or of limit cycles. Using DulLac’s criterion [16] with
g(S, 1) ={I§) ", it follows that therc cannot be limit cycles. In fact,

d (SN, Q(IN__mN)_ g5t M)
as(rs)+al(ls)‘ IRt I e

Since there are no limit cycles, all trajectories converge to an equilibrium,
(0,0) and (N*,0) are both repellent when approached with positive S (the
former) and with positive § (the latter), as seen through the local analysis.

In the case (i} the only equilibrium left is (§, I). In case (ii) there may exist
also (0, A1), but that is unstable when approached from positive S. In case (iii}
the only equilibrium left is (0, 8.

Note that when p{1 — 8) =0, (1) is similar to a prey-predator model; indeed
if a(N) and m(N) are both constant, then (1) is the classical Lotka—Volterra
model which exhibits the well-known cycles. In order to avoid this case, [ added
the assumption of m’(N) strictly positive when p(1—48) =0. For more informa-
tion on global stability in two-specics population models see for instance [12].

3. The model with vaccination

I consider here the effect of vaccination on the dynamics of the model. For
brucellosis a vaccine is available which results in temporary immunity; it is also
possible that animals die because of vaccination. In the model [ disregard the
latter effect, since the computations become more involved, without qualitative
differences. ‘ '
“The class of vaccinated individuals, ¥{s), is therefore added to system ({),
together with the vaccination rate v, and the rate y at which vaccinated
individuals fose the immunization (y = 0 if the vaccination is permanent).

Discases with no recovery ) K]

The resulting system is
$=alS + V) +apl 1 — 3 —m(N)S — a(N)SI —vS +yV,
1= a(N)ST + a(1 — pX1 = &) — (m(N) + p, (12)
V=1yS —yV—mN)W.
Summing up the equations, we obtain
N ={a —m(N)N —(u +ad)l. (13)

Reasoning as in Sect. 2, it is clear that system (2) is well posed, and that the
region {(S.1,¥V):0<S,LV;S+I+V<N*} is positively invariant and
globally attractive from the positive orthant. Therefore this region only needs to
be analyzed.

An equilibrium of (12) is {0,0,0); as in Sect. 2, it can be shown to be
unstable.

Looking for positive equilibria of (12), setting V = 0, we obtain

v
V=3 14
y + mi(N} 9
Looking at (13) and (14) we sec that a disease-free cquilibum is obtained for
m(N*) +7 ’ v
N=N*, [=0, §=8§%=—]@9p———N" V=Vt=———o—-N*
mN®)+y+v mN*)+y+v

The linearization matrix of (12) at (§*,0, ¥*), is, using m(N*) =g,

—v —m'(N*")S* ap(! — 8 — a(N*)S* — m'(N*)§* a+y—m(N")S*
4 =( 0 S(NIS® +a(1 — X1 = 8) — (m(N®) + ) 0 )
v —m(N*)V —m'(N*V* —y—a—m{N""

The eigenvalues of A are
A, =o(N*)S* +a(l — p)(1 —8) —(m(N*} + ) (15
and the eigenvalues of
B (—(v +m(N%)S*)  at+y-—-m{(N")S* )
v—m(NOV*  —(@+y+m(NWH)
The trace of # is clearly negative, while
det B=m'(N*)N*a+y+v)>0.

(5%.0, ¥*) is thus linearly asymptotically stable or unstable, according to
whether 1, is negative or positive.
Setting
a+y
(NN ——— +a{1 —p)(1 -4
_()a+y+v (1—pX )

a+p

R (16)

v

we obtain
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Proposition 6. If R, <, the equilibrium (S*, 0, V*) is asympiotically stable. if
R, > 1, (8*, 0, ¥*) is unsiable.

Note that R, can be interpreted as the expected number of new cases
produced by one infective into a population vaccinated at rate v. In fact, the first
addendum represents the horizontal transmission (the rate is decreased, with
respect to (3), by a factor (a+y)f(a +y +v), since this is the fraction of
susceptible individuals in an equilibrium discase-free population), the sccond
addendum represents the vertical transmission, which is not influenced by
vaccination. The following relation holds between R, and Ry

v v a(l—p)1—4)
R,={1- .
" ( a+7+v)R°+a+y+v a+u
The condition R, <1 can then be rcad as
S @ R—1)
o —pM1~8)
a+t+p
As in Sect. 2, if p(1 — 8} =0, there may exist an equilibrium on the positive
I-semiaxis. Precisely, if m(0) <a(l —8) —j, then {0, N.0) is an equilibrium of
(12). The linearization matrix of (12) at (0, N0 is

(a-m(ﬁ)—a(nm—v 0 a+y )
A_

a7

(MR —m (N —m'(WF 0
v 0 -m(f)—y
whose ¢igenvalues are —m’(N)N <0 and the eigenvalues of
B_(a—m(ﬁ)—a(ﬁ)ﬁ—v a+y )
- v -m(®) v/
det B = —(a ~ m(ANm(®) +7 + v} + o(T)R (V) + 7).
Thercfore det B is positive if

and negative if the reverse inequality holds. Tt is also clear that det B > 0 implies
r8 <0

Therefore we have that (0, N, 0} is locally asymptotically stable if (18) holds;
unstable if the reverse inequality holds.

3.1. The endemic equilibrium

Looking for an equilibrium (8, I, ¥) with S, I'>0, we sce that (4} and (5) hold
and

@+ DR — (N + p +ad + NI = (MR +v + NS, (19)

10
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Using (4) and (5) in (19) gives
oA [a oy (m(N) + p +ad + yHa *MUV))]

u+ad
= (m(N) + v+ ym(N) + u —a(l —p}1- &)
and then

a(M)N = F,(m(N)) (20)
with

(X +v+yx+p—a(l—p)!1—5)Hu + ab)
(x+9x+pu—a(l —8)

Because of (4), we only look for solutions of (20) with a > m(N), or N < N*.

_F,(x) is negative in {x>0: —p+a(l —p}1—8) <x < —pu+a(l -8}
(this set may well be empty); moreover solutions of (20) with m{V) < —,u‘ +
a(l - P)(1 —8) are not acceptable because of (5). Therefore we need only
consider F,(x) in {x > 0:x > —pu +a(! = 8)}; in this interval F,(x) is a positive
and decreasing function of x.

As in Sect. 2, we therefore see that, if p{1 —8) >0, there exists a feasible
solution of (20} if and only if

{m(N*) +v + )m(N*) +p —a(l —p}1 —3)

F(x} =

N)N* > F, ") =
a(N)N* > F (m(N*}) v+ - 2D
If p(1 — &) =0, we have to add to (21) the condition
N <F =(m(ﬁ)+v+7)(ﬂ + ad)
o(MN < F,(m(i) R (22)

Note that (22) is just the condition for the instability of (0, N, 0): see (18).
Through some algebraic manipulation we obtain

Pro!bfni!ion 7. If R, > 1 and, if p(} — 8) =0, (22} holds, there exists an endemic
equilibriem (5,1, V), where N=S+T+V is the unigue solution in
(0, N (0, N*) of (20).

If the previous condition does not hold, there are no equilibria of (12} in the
positive orthant.

To study the stability of (§, 7, P) it is more convenient to use as variables
N(2), S(2) and I(7). The linearization matrix of the resulting system in (N, §, I} is

: a—m(N) - m'(N)N 0 —(p +ad)
Amla+y—m (S —a (AT — M +v+y+o(M} —(@+y—ap{l ~8) +a(M8) |
o' (A8T - m' (M a(MI : 0

The characteristic polynomial of A (after a change of sign) is

22+ a2 + a2 +a;. 23)
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Routh ~Hurwitz criterion states that all solutions of (23) have negative real part
if and only if a,, &, a;> 0 and @,a; > a5
After some computations we sec that

DG +vF
a,=m(MN+C+8B DF
DG +vF BC .
a=m(MNB—p— + E.(EF + DG) +o'(M)STH,

ay = m'(N)NB(% + 9,_3) + BCE + o"(MSICH.

where
B=a-mN),
C=m(N)+y+v
D=m(N)+7,
E=m(N}+pn—a{l—pH1-3)
F=m(® +p—a(l =8,
G =ap(1-9),
H=p+ad
Using the fact that
o' (MST = o' (MNSB/H > —~a(M)8B/H = - BE/H

through long computations, one sees that the Routh—Hurwitz conditions are

satisfied.
Therefore we have

Proposition 8. When an equilibrium (8, T, V) of system {12) with positive SandT
exists, it is asymptotically stable.

3.2. A global result

Assuming that o(N) is non-increasing, it is possible to prove that, when R, €1,
the stability of the disease-fres equilibrium is global. Namely
i -i i <\, for any nonnegative

Theorem 9. If o(N) is non-increasing, and R, <1, .
(Sor foy Vo) #(0,0,0) if p{1—-8)>0, or for any (So,fo. Vo) such -that
So+ Vo> 0, L2 0if p(l — &) = 0, we have

lim S(=8* lim I()=0 lim V()=¥".

=@ §—=c0 N 1=

For its proof, | need

Discases with no recovery ' n

Lemma 10, Set z(r) = (a + y)V(?) — vS(1). If o(N) is non-increasing, either z(1) is
definitely nonnegative, or is definitely nonpositive.

Proof. We have

i = = (m(N() + 7+ v)z + vl{(Ow(r)

where w(r) = a(NNS(1) —ap(1 —3).
If p(1 — 8) = 0, w(r) is positive and the thesis is obvious.
Otherwise, look at the phase plane (w, z). We have

w=f{1) + o({N)z — o(N}w

where

) = (o’ (NN + o(NDa — m{N))S — o' (NM(u + ad)S > 0.

The quadrant (w >0, z >0} is positively invariant; in fact, when z =0 and
w>0,2>0; when z>0 and w=0,w >0, Furthermore, when z=0 and
w <0,z <0, when z =w =0, =0 < w. This implics that a trajectory can leave
the hali-plane {z <0} only by entering the positive quadrant; since this is
positively invariant, it is then trapped there.

Proof of Theorem 9. Supposc z(f) <0 for 1 > &, i.e. vS(D) = (2 + y)V(s). Then
¥ 2 {a — m(N))V = 0; therefore ¥(s) tends to a limit P > 0. The e-limit set must
then be contained in the plane {V = P}. Since the w-limit set is invariant for
system (12), the points belonging to w-limit set must satisfy v§ = (m(¥) + ne,
this, together with z(1) < 0 and N(1) < N* yields

vS =(m(N) + ¥ < la+ 0P <vS.

The only possibility is that both inequalities are equalities; i.e. m(N) =4, or
N = N*, and v§ = (a + y)¥. Therefore the w-limit set consists of a single point,
which then has to be an equilibrium of (12); the only one satisfying N = N* is
(5*,0,V*).

Next suppose z(f) 2 0 for ¢ > £y, i.e. vS() € (@ +pV(1), or

a+y
<
SW (a+y+v

)(N(r) — ). (24)
Then, if ¢ = I/N,
é = dlo(N)S — (u + ad}1 - ¢) — ap(1 - 8)]

<¢ [(l - (a(N)N (a—"-J—";—v)-(u +a5))—ap(l —5)]

using (24). Then, proceeding as in the proof of Theorem 4, one has that, i
pli—8>0, :

<o [max {a(N)N (a——:_:i v) — (4 +ab) —apl) — ), —ap(1 5)}]

< ¢[max|[(R, — 1){a + p), —ap({l - H)}]
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From this it follows that lim, _ , ¢{f) =0. Then from (13} lim, _, o N{) =N* and
then from (12) lim,_ ., S(0 =8*, lim, _, V()=¥"*.
The case p(1 - &) =0 can be handled as in the proof of Theorem 4.

4, Discussion and examples

The results obtained here for this § —+J model with vital rates depending on
epidemic state are standard results for most ¢pidemic models: there exists a
threshoid below which the disease goes 1o extinction and above which there exists
one endemic equilibrium which is globally stablc. This has been obtained for a
general shape of density-dependent mortality and of density-dependent infectivity.

Similar models have been discussed by May and Anderson [4), and, in greater
detail by Busenberg et al. [9]. Their models do not include density dependence of
mortality; justification for that is that often the discases that regulate a host (and
are therefore interesting to be studied in this context) keep the host population
at a level at which density-dependent factors are hardly operating [4]. Although
this may be true (assuming m(¥) to be constant for low N, the equilibrium
population N of model (1) may be regulated by discase only), the inclusion of
density-dependence makes the general picture much clearer. When vital rates
(and hence population density) depend on epidemic state, the usual concept of
threshold population size loses any meaning [5]; however, if density-dependence
is taken into account, the threshold condition is a threshold in discase transmissi-
bility at the disease-free equilibfum population level N *; this even when the
population level at which the population is regulated by the discase, is very far
from N*.

The effects of vaccination can be adequatcly described only when density-
dependence is explicitly considered. Note that, when vaccination is included in
the model, the endemic equilibrium & (if it exists) is always an increasing
function of v; in fact N is found through (20) and F,(x) is an increasing function
of v. Further note that I/N is given by (17); if m{(}) is constant around N, an
increase of vaccination rate leads to an increase of N(v) and to a proportional
increase of N(v). N¥) decreases only when v approaches (R, — 1){a + p)/
[a+u—a(l —p)1~8) and density-dependent factors start to operate. A
graph of N and I as functions of v is presented in Fig. 1.

When vaccination was included in the model, below the threshold the
disease-free equilibrium was proved to be globally stable. Above the threshold,
on the other hand, it was possible only to prove the local stability of the endemic
equilibrum. The technique used for the S -7 model was essentially two-dimen-
sional and could not be extended to system (12). The results of the numerical
solutions 1 computed seem to indicate that the endemic equilibrium is indeed
globally stable. .

The presence of vertical transmission (p < 1) contributes to the strength of
an epidemic. If ¢ =1 — p (the probability of vertical transmission), note that the
endemic equilibrium N decreases with increasing ¢. The prevalence rate I'N may
also incrcase with increasing g, if mortality is density-dependent around N.

Diseases with no recovery
»
60 .0y

3.0
40, 0~

1w0.0- f Fig. 1. The solid line
represents N, solution of
(23); the dasked line I, while
v varics lrom 0 to above Lhe
threshold given by (I7);
parameter values are
1a.0-] a=02 y=0055=0)3,

. p=035y=05
a(N) %005, m(N) = 0.1 +
001N — 50), )2
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However, even in the extreme case g = i i
s : 4 =1 an effective horizonta) transmission is
a(l)w;xvys necessary for persistence of the disease; for jnstance when the equilibrium
{0, T|)1 (a totally mfected_ population) exists, it is stable only if o(MIN > p + ad
e s: r;;cscnlcc pf vertical transmission also increases the level of vaccination.
or elimination of a di it it i
Py of a disease: it increases R, and, al fixed Ry, it increases
_A:dc;son et al. [2] have. discussed this model (allowing also for a latent
genc_y Q lhle _dtsease) assuming that mortality depends linearly on population
ensity (_loglsll(; growth)~ and that o(N)N = BN. Here [ let m(N) and a(N) be
Iglem_:ral increasing functions; the main result here is that the asymptatic be-
av!l?:r does not depend on the exact shape of these functions.
oscin :f effect of the shape of o{N} can be seen on the presence of (damped)
illations and on the spc-ed of convergence to the endemic equilibrium. These
quantities depend on the linearization matrix A (see (9)). Precisely, if '

_(tr4)?
T4

g.:iampcd) _osciklations witl a pear only if 4 < 0. The period of the oscillations will
approximatety 2x/./ — A. Finaily the rate of convergence to (5. D) is given by

. | —det A,

tr A .
=5 + /4 fd>0
i =
o= o 4 . (25)
5 otherwise

If we let i = —g*(N)N/a(N), we sec that tr 4 does not depend on A, while
det A = (I — A)(a —~ m(N)Km(N} + p - af 1 — PN = 8) +m(NIC.
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Therefore the lower is A, the greater is possibility that there are oscillations. In
this notation, A =0 corresponds to a constant o(N), while the limiting case of
1 = | corresponds to a(N) = B/N; in the latter case the system can be reduced to
a single autonomous equation (see (2)), and therefore oscillations can never
occur. Note, however, that if tr A is relatively large, oscillations will hardly be
visible, even when they occur; if tr 4 is small, then oscillation tend to occur for
A at least up to 1/2.

In Figs. 2 and 3 [ compare the numerical solutions of system { 1) obtained for
two different functions o(N), scaled so as to have the same endemic equilibrium.
In Fig. 2 | present an example in which there is monotonic convergence to the
equilibrium for both functions; if there are no oscillations, the rate of conver-
gence is faster when 1 is smaller (see (25)). In Fig. 3 | present an exampte of
(damped) oscillations; the solid line corresponds to A = 1/2, the dashed line to
A =0; the parameter values were chosen so as to amplify the oscillations and the
difference between the two curves.

Brauer [6, 7] has studied a model similar to (1), which differs in that infective
individuals do not contribute to demography: their birth rate is 0, and the
vital rates of susceptibles depend only on susceptible density. This may be a
reasonable approximation for quickly fatal diseases, such as rabies. In his

w

0y

“tw

FLS

Fig. 2a,b. Numerical solutions of (1) for
two different initiak values, n N(1) vs. £,
phase planc (N, 7). —e—, o(N) =0.2IN " vz,
——, o(N) = 0.025. Other parameter values
as in Fig. |

~ O

Discases with no recovery

N
N
o
L ] 1 1 a
100 o k) (‘ﬂ 7
[
tr\
EX
]
. b Fig. Jab. Same as in Fig. 2 with parameter
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—o— 0N} = 0.0TSN —¥% — o(N) = 0.025

models, he allows for any
when the distribution is ex
‘threshold, the endemic
instance a fixed time ¢
oscillations,

Andetson et al, [2] have found that the
system (1} may change the qualitative beha
stant o(N}-and logistic growth without the
arise for appropriate values of the latent
present, the shape of m(N) and o(N) ca
pehav:our, giving rise, for instance,
I preparation). ‘

This i i
paper was mainly designed to study systematically the effects of a

discase on pﬂ al.() n i w' nsity

i iy pul 1 l': dy amics, |th gencra' dE Sit dcpcndcnl morla’ity arld
||!CCt v ly I]IC Illodﬂ for tlle rest was kal as S-lllp e as POSS'b < It would be
Ollly a ﬁlSl S[ep fot app|icatioll ' ! o l

5. i i
would probably be important t For instance, in a mode| of brucellosis, it

[ y be 0 consider the interacti i i
populatiens, with different epidemiological features Ftion of various animal

dlstnbt‘nion of the times from infection to death:
P?"e."mlt as in (1), his results are that, above .
equnhbqum is always stable. Other distribu.tions fi .
between infection and death, may give tise to suste;in:;

::ntroduction of a latent period in
viour; namely, cven assuming con-
dlsea‘sc. sustained oscillations could

period. When a latent period is
; I‘n actuall:( change the qualitative
© multiple endemic steady states ( Pugliese,
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