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DETERMINISTIC
TEMPORAL VARIATION

I now consider what happens when the fixed matrix b of {2.1.2) is replaced
by a deterministically varying sequence of matrices. This is a long-standing
problem with Norton (1928), Coale (1957), and Lopez (1961) being the
classical contributions. Golubitsky et al. (1977), Hajnal (1976), Kim and
Sykes (1976), Seneta (1981), Cohen (1979b), Tuljapurkar (1984) and Kim
(1987) are more recent explorations. This work is a prerequisite to the
study of random rates. I first consider general variation, and then cyclical
variation.

1 General Temporal Changes
The time-varying version of the population model is

LLTES| =bg+1ﬂg. (3.11)

Here T use (¢ + 1) as an index for b because by, contains vital rates which
act on n, in the interval [¢, +1) to produce Nes. Starting with some initial
ng, suppose that we have a particular sequence of matrices bi1,bs,..., b,
Successive age structures obey the equation

Vier = beyrye/ (e, begsy), (3.1.2)

and growth rates are

T+1 = m,H/m, = (E, bt+1yz)v (3-1-3)

where m,, as before, is total population at time ¢.

The key to making sense out of this time-varying situation is to ask when
the demographic process forgets its initial state. The answer is, when the
sequence of matrices in (3.1.1) obeys demographic weak ergodicity.
This happens if the product matrix bb,_; ...b, (which determines n,)
ends up having all entries positive for large ¢. In that case, there is a stable
but time-varying age structure sequence ¥, such that y,—%, in (3.1.2),
independent of y,, for large t.

There are various sufficient conditions for demographic weak ergodicity,
reviewed by Seneta (1981). In this book, I use Hajnal's (1976) notion of
an ergodic set: this is a collection of matrices accompanied by an integer



18 1. General Temporal Changes

g, such that every product of g matrices from the collection is a matrix
with every element positive. Thus, demographic weak ergodicity in (3.1.1)
is assured if all the matrices which can appear belong to an ergodic set.
The simplest example (and a useful one) of an ergodic set is a collection
of nonnegative matrices which all have positive elements and zeroes in the
same locations, with any one matrix being primitive. If we construct a ma-
trix with 1s where this collection has positive entries and 0's whenever this
collection has zeroes, we obtain what is called the incidence matrix for
the collection. A nonnegative matrix is primitive if and only if its incidence
matrix is primitive, so the ergodicity of our collection is established.

Given demographic weak ergodicity, it is possible and useful to externd
the concept of reproductive value to the time-varying case. Recall that the
vital rates have the interpretation

(b¢)ij = Number of class i individuals at time t per class j
individual at time ¢ — 1. (3.1.4)

Consider now a quantity w.(i), to be called the undiscounted reproduc-
tive value of an individual in class i at time t, and defined as the total
number of descendants (i.e. children, grandchildren, and so on) produced
by an individual who is in class i at time t. From this definition and the
interpretation of the vital rates above, it follows that

we(i) = Y _(bew1)siwer1(f)- (3.1.5)
J

The vector form of this recursion is
T T 37T T
we = b wen = bbb W (3.1.6)

To deal with the obvious possibility that the w’s are likely to be unbounded,
define instead the normalized (or discounted) reproductive value vector

v, = wy/(e,wy) (3.1.7)
which follows the recursion
v, = bl 141/ (€, b 1 ve41). (3.1.8)
Take two times, k and { = (k+ m) > k, and consider
z(k,£) = beby—1 ... by (3.1.9)

which is a product of m matrices. Demographic weak ergodicity implies
(Hajnal 1976) that this product will have its rows all proportional as m
increases. Thus there is a number p(k,f) and vectors »(k,m) and u(¢,m)
such that

z(k, &) ~ p(k, O)u{t,m)vT(k,m) as m1. (3.1.10)
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Further we know there is stability of age structure, meaning that u(£, m)
approaches some u({) asymptotically independent of m; similarly v(k, m)
approaches some v(k). Thus asymptotically for large m

z(k, &) ~ p(k, u(f)oT (k). (3.1.11)

Numerical insights into (3.1.11) are to be found in Kim and Sykes (1976).
Suppose now that we start with a population vector n* at time t = k. Then
at time £ we have asymptotically a2 population vector

Ty~ P(k! 8) (U(k), n-) u(£)1

with population structure y, ~ u(£). The growth rate here is contained in
plk, ), so that log p(k,£)/(£—k) is the long run growth rate for ({~k) — o0.
The normalized reproductive value at time k is v(k). To find v(k) simply
start with an arbitrary nonnegative vector ¥ # 0 at time t = { » k in
(3.1.8) and iterate backwards.

Notice that the vital rate matrices in (3.1.2) act to propagate population
vectors forward in time, and that the stable age structure at each time is
an accumulation of the past. In contrast, the transposed vital rate matrices
in (3.1.8) act to propagate reproductive value backward in time, and the
reproductive value at each time is a summation of the future.

2 Cyclically Changing Vital Rates

Seasonal variation will often drive marked periodic variation in a popula-
tion’'s vital rates. Human populations can be influenced by longer economic
cycles; both human and natural populations can be affected by long period
climate cycles. Formal analysis of such cycles was (probably) initiated by
MacArthur (1968) who studied a2 model with 2 age classes. Coale (1972)
allowed fertility to vary cyclically and used Fourier methods to explore the
dynamics. Here I summarize a discrete time extension of Coale's results
due to Tuljapurkar (1983). The analysis uses a perturbation technique to
develop a systematic understanding of dyramics with cyclical rates.
The model for cyclical rates is

nepr = (b + deos{wt)]n. (3.2.1)

Here w = (2r/T) is the angular frequency corresponding to the cycles of
period T. The vital rates have average values contained in matrix b, and
their cyclical amplitudes are contained in d. Since the total matrix on the
right of (3.2.1) is nonnegative, one has |d;;| < b;; whenever b;; # 0, and
d;; = 0 otherwise. I assume that

max ;; (|di;|/bij) =g < 1, (3.2.2)
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RANDOM RATES:
GENERAL THEORY

Demographic theory with random vital rates is built on powerful general
properties of random matrix products. This chapter sets out the kinds of
random models | want to analyze, and summarizes general random ma-
trix properties. Later chapters consider applications and questions which
require a more concrete study of particular models.

1 Models and Questions

The classical projection model is easily generalized to include vital rates
which change over time in potentially unpredictable ways. At time ¢, let
the population vector be N, the population structure vector be ¥, (we
use capitals to show that these are random variables). Over the interval t
to t + 1 demographic processes operate on these vectors, and their overall
effect is contained in a time-dependent matrix of vital rates X,.;. The
dynamics of population are given by the equation

NH"I = X:+1Ng. (411)

The matrix subseript is (¢ + 1) rather than ¢ to emphasize that these rates
apply to the vector N,. Thus in some cases (e.g., the L1.D. model below)
N, and X1 are independent. In order to proceed, we must specify the
kind of uncertainty that occurs in the vital rates. The models I consider
have the following implicit structure: there is an exogenously determined
time-dependent random variable called the “environment.” Vital rates at
each time depend on the state of the environment. Examples of subsequent
interest are:

The 1I.D. Model: The entries of X are chosen randomly for each t from
the same fixed (in general multivariate) distribution. There may be corre-
lations between vital rates within each period, but there is no serial corre-
lation between rates at different times. Here the environment is completely
unpredictable. The number of possible environments can be finite (e.g.,
a “good” and a “bad” state), or infinite (e.g., if there is a continuously
distributed variable like temperature).

The Markov Model: From one time interval to the next, vital rates change
according to time invariant transition probabilities. There are three sub-



24 1. Models and Questions

cases, according as the set of possible values of vital rates is finite, count-
able but infinite (e.g., discrete environmental states but infinitely many
of them), or uncountable (usually continuously distributed) set. Here the
environment is predictable to the extent that there is serial autocorrelation
over time.

The ARMA Model: The elements of the vital rates foliow a linear time
series model of the ARMA type (Box and Jenkins 1976). This model is
most useful in situations where a time series of vital rate values is used to
identify and fit a statistical model (c¢f Lee 1974). Ecologists often prefer
ARMA models in situations where serial autocorrelation over several time
intervals is expected to be important.

The Semi-Markov Model: The possible values (states) of vital rates are
as in the Markov case, but the time taken to make a transition from any one
state to another in governed by a probability distribution which depends in
general on both initial and final states. Here the history of the environment
plays a stronger role.

The Catastrophe Model: This is a case of the 1.1.D. model dealing with
rare large environmental changes. One formulation is to suppose that in
each time interval there is a very small probability of an event which will
cause vital rates to reach extremely low levels; another formulation allows
a probability distribution of times between successive catastrophic events,
along with a distribution for the intensity of the catastrophic effect of vital
rates. The biological view behind this model is of a population buffered
against most small changes but vulnerable to large changes in environment.

Irrespective of the particular model used, we shall always assume that
the random (environmental) process generating the vital rates converges
towards an ergodic stationary state. In general, we assume that the ran-
dom process i3 in the stationary state; for the approach to stationarity, see
Tuljapurkar and Orzack (1980).

The next question is, what conditions apply to the possible values of
the vital rates? The rates here are assumed to be always nonnegative, and
in addition we assume demographic weak ergodicity (alternatively we
assume that the values lie in an ergodic set). This guarantees that the
dynamics of (4.1.1) are stable in the following sense. Note that we can
rewrite (4.1.1) as an equation for the age structure,

Yii1 = Xen1Yo/(e, X1 YY), (4.1.2)

where we use the scalar product and e is a vector of Is. The difference
between (4.1.1) and (4.1.2) is that the Y's, being vectors of proportions,
are constrained so that (e, Y) = 1. Now in (4.1.2) pick two distinct initial
structures bg, ¢y, and then apply the same random sequence of vital rates to
both; call the resulting sequences of structure vectors B, C,, respectively.
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Then our ergodicity condition implies that B, approaches C'; as t increases.
Tkis is stability, but of a special sort, since the age structures are stable
towards a time-varying limit; i.e., there is some sequence of structures Y,
say, and both B, C; approach Y',.

We now want to know: is there an analog to the stable age distribution?
What is the asymptotic growth rate of population? What is the nature of
convergence in the random model? Is there something like a reproductive
value?

The answers to these questions are summarized in this chapter and fur-
ther explored and applied in the rest of the book. First, however, we ask
two basic questions. What features of (4.1.1) suggest that it will require a
new theory? Why can we not apply insights derived from classical demog-
raphy and random but non-structured models to get a handle on random
demography? The answers to these questions lie in the facts that the dy-
namics of N are multiplicative and noncommutative, and in addition, the
dynamices of Y are nonlinear. From (4.1.1) note that N is determined by
a product of random (i.e., randomly chosen) matrices, and that these ma-
trices do not in general commute (i.e., if we switch the order in which the
matrices appear, the resulting product will change). It may be a good idea
to convince oneself of this by, say, multiplying together two 2 x 2 Leslie
matrices whose subdiagonal elements differ. From (4.1.2) note that the dif-
ference equation for Y is nonlinear and thus messier than (4.1.1) for IV. Ia
classical demography this difference is irrelevant, but in the random case
the moments of Y bear a complicated relationship to those of N and so
the linear (4.1.1) does not shed much direct light on the nonlinear (4.2.2).

2 Results for Random Rates

There are many alternative models for random rates, so we cannot ex-
cept a complete and universal theory. Instead we present results roughly
in decreasing order of generality, alternating between stating mathematical
results and interpreting them demographically.

2.1 GENERAL RESULTS
We begin with the most general set of assumptions:

ASSUMPTIONS 4.2.1:
(i) Demographic weak ergodicity holds in (2.2.1),
(ii) The random process generating vital rates is stationary and ergodic,
(iii) The logarithmic moment of vital rates is bounded,

E log, | X, < oo, (4.2.1)

o
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2. Results for Random Rates

where E indicates an expectation, || - || is any matrix norm, and
log_ (z) = max{0,logz}.

Then we have (Furstenberg & Kesten 1960, Oseledec 1968, Cohen 1977a,
Raghunathan 1979, Ruelle 1979):

(A)

(B)

(€)

(D)

The long run growth rate of the logarithm of total population, or any
part of population, is almost surely given by a number a independent
of the initial population vector,

a= ‘lli‘n;[log(c,Nt)]/t (4.2.2
= tling.o(log”X¢X¢-1 X1H)/t (4-2-3)
= tI-i-IEc{E Iog(c, N:)}/t, (4‘2'4)

where ¢ is any vector of bounded nonnegative numbers.

Starting from any initial structure Yo the population converges to
a (time dependent) stationary random sequence of structure vectors,
Y. This limiting sequence is independent of Y.

There is a stationary measure which describes the probability distri-
bution of the joint sequence of vital rates and population structure

vectors {X,,Y1,X:,Y,...}.

There are constants p; for i = 1 through i = (dimension of N) such
that

G=p2p 2 ... (4.2.5)

The ps are determined by the growth rates of exterior powers of the
Xs, and are called Liapunov characteristic exponents . For exam-
ple, let ||z A y|| be the volume of the parallelepiped spanned by vec-
tors, #,y. Choose two nonproportional initial population vectors, say
by, ¢o, and apply (2.2.1) to produce two sequences of random vectors
B, and C;. Then the almost sure growth rate of the volume spanned
by any two vectors is at most

a+py = inax tl.-l-l'.gjlﬁg ”B; A Cg”/t (426)

{%0.Co}

Similar results hold for sums of more exponents. (A notational point:
Cohen (1977, etc.) writes log A for the quantity a.)

We get an interesting general result if we add to assumptions (4.2.1) the

ASSUMPTION 4.2.2: The random process generating vital rates can be run
backwards in time, there being a unique time-reversed process which is
stationary and ergodic.
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Then (Ruelle 1979) we have:

(E) Consider the adjoint (time-reversed) process associated with (4.1.2)

Zo=XTZ1/(e, X7 Zi41), (4.2.7)

where superscript T indicates a transpose. Suppose we fix a vector
at time ¢t = t;, say w = %;,. Then (4.2.7) runs backwards through
decreasing values of ¢, and we have that as ¢t — —oo the resulting
vectors Z; converge to a stationary random sequence of vectors Z;,
say, independent of wo.

2.2 INTERPRETATIONS

The ceatral feature is that a is identified as the almost sure growth rate
of population. It is also the average growth rate of the population. As
the equations (4.2.2-4) show, the value of a is 2 function of the random
properties of the rates. Note that a is also the average growth rate of any
weighted sum of all or part of the population vector (from (4.2.4)).

Property (B) is the random rates counterpart of stability of population
structure. Although there is a random limit to which the structures con-
verge, there is no information of the properties of the limit. Property (C)
expresses the strong overall convergence of rates plus structures to a statis-
tical stationary state. Property (D) identifies an exponential convergence
rate for population structures. All of these properties will take on substance
when we become more explicit about the random process generating vital
rates.

Property (E) identifies the stochastic analog of a reproductive value and
helps to shed some light on the nature of reproductive value as a concept;
more on this will follow,

2.3 MixiNng AND LOGNORMAL LIMIT THEOREM
In addition to ASSUMPTIONS (4.2.1), let us make:

ASSUMPTION 4.2.3: The random process generating vital rates is rapidly
mixing.
Technical aspects of the mixing condition are discussed by Furstenberg

and Kesten (1960), Billingsley (1968), Tuljapurkar and Orzack (1980), and
Heyde and Cohen (1985). Given such mixing, we have: :

(F) Write M, = (e,IN;) for total population size at time t. There is
some ¢ such that the asymptotic distribution of total population is
lognormal,

log {{M; — at)/ov/t} — N(0,1). (4.2.8)
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The quantity ¢ in (4.2.8) determines the asymptotic variance of the log-
arithm of population size. A limit theorem by Heyde and Cohen (1983)
relevant to estimating ¢ will be discussed in a later chapter on forecasting
and projection.

The significance of the lognormal distribution (4.2.8) criginally was pointed
out by Lewontin and Cohen (1969) for populations without age structure.
Suppose that total population number follows the random growth equation

Mip1 = Rea M,
= R¢+1Rg . .RlMo.

It is clear that log M, will be asymptotically normally distributed with
mean ¢ E (log R) and a variance which depends on the variance and corre-
lation of the R;s. One consequence of this is that the average growth rate.
(log M, /t) for large t, is in general going to be less than the growth rate of
the average population, because

log € (M,)/t — logE(R) 2 E (log R) = Limit,._.w%E log M.

This last inequality (Jensen’s inequality, Karlin and Taylor 1975) is usually
strict. A second consequence is that the distribution of M; is left-skewed,
indeed increasingly so for large t. Thus the most probable population se-
quences will tend asymptotically to fall below the average.

These conclusions all hold in the present case for structured populations.
In particular the average growth rate a is the growth rate to be expected
for a typical sample path, and it will in general be less than the growth
rate of average population. The computation of a is considerably more
involved than in the scalar case, but its qualitative importance is the same.

See Tuljapurkar and Orzack (1980) for a fuller discussion and numerical
exarmples,

2.4 MARKOVIAN RATES

The key feature here is that statistical stationarity can be captured in a
probability distribution function. Make

AssUMPTION 4.2.4: The vital rates follow a countable state Markov pro-
cess.

Assumptions (4.2.1) and (4.2.3) are still in force. Then (Cohen 1977a,b,
Lange 1979)

(G) There is a joint probability distribution of vital rates and popula-
tion structures; call it H(¢,4,8) = Pr{X, € 4,Y, € B}. Then as
t — co this distribution converges to an equilibrium distribution, say
H*(A, B), which reproduces itself under the action of (4.1.2).
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A final extension is to deal with random fertilities in (8.1.1) instead
of survival rates. As long as only one fertility varies, or both fertilities
vary together, results precisely analogous to those of this section are easily
obtained.

General conditions for the age structure to have a smooth or a singular
distribution are not known. The state of understanding appears to reflect
Hasminskii’s (1980, p. 220) comment that the solution of equations such
as (8.1.7) is “fraught with difficulties.”

2 Random Fertility

I turn now to a 2 age class model for which I obtain an exact and analytic
distribution of age structure. The results have been applied to the inter-
esting biological question of why delayed flowering might have evolved in
biennial plants and to the evolution of diapause and other prereproductive
delays (see Chapter 16). The model is

N¢+1 =X;+1N:, (821)
with F F
m m
X, = ( ; ¢ B t ) (8.2.2)

Here my >0, my >0,1>p>0 and {F,,t=0,1,...} is a sequence of
LLD. random variables. I suppose that (1/F;) has a gamma distribution
with probability density function

g(w) = (n"/(n - D)) w " te™"v, (8.2.3)

The mean and variance of F, are

EF=(F)= [ dvglw)t/w
= nf(n-1)~14+(1/n) (8.2.4)

Var F = Variance(F) = EF? — (F)*
= {(n-2)(1 -1/} ~ (1/n) (8.2.5)

where the asymptotic limits are for large n. The parameter n controls the
variance of fertility and when n — co we get F; — 1.
The average projection matrix from (8.2.2) is

o (D) i) ) o2



ead
ties
sily

lar
ect

tch

tic
’T-
in

ve:

1)

»f
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with dominant eigenvalue Ag solving
A = my{FYAg — map(F) = 0. (8.2.7)

For this average matrix, the stable ratio of old to youang is & = (p/Ag) and
50 we can write

ro = log A = log (p/4). (8.2.8)

Also the convergence rate of a population governed by b to the stable state
is determined by the subdominant eigenvalue A; of b, and we have

= log [As] = log (m2(F)p) - ro. {8.2.9)
These two equations will be useful for comparison with the stochastic re-

sults to follow.

2.1 EQUATION FOR DISTRIBUTION
The equation for Uy, the ratio of old to young in (8.2.1), is

p
Ui = . 8.2.10
t+1 Ft+1(m1 + m'ng) ( )

It will be convenient to work with the quantity

Ry = (mU/my), (8.2.11)

so that

1 1
zFyy (14 Re)’
with z = (m?/map). In this model wehave0 < Fy < 00 and 500 < R; < o0.
Assuming that in the steady state R, has a probability density function
C(z), and recalling that (8.2.3) is the density of (1/F}), we can write

C(z) = j dyC(y)/ dwb [r— (11i-y)] g(w),

where §(-) is the Dirac delta function. Changing variables to do the integral
over w produces an equation for C:

RH-I = (8212)

c@) = | Tayc)e s elzi ). (82.13)

2.2 DISTRIBUTION

Inserting the explicit (8.2.3) into (8.2.13) yields an integral equation which
was (happily) solved by Dyson (1333), and the solution (verifiable by sub-
stitution) is

C(z) = k712" (1 + 2) e, (8.2.14)
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where « is a constant which ensures that the area under C(z) is unity,

K= / dzz™ (1 + ) """ {8.2.15)
0

Figure 8.2.1 plots C for three different values of n. For n = 10 and 2
coefficient of variation in fertility of 0.3, the distribution of age structure
is seen to have substantial variance with a peak quite different from the
“stable” value determined by the average vital rates in b.

The smoothness of C allows us to compute expectations easily,in contrast

to Section 8.1, Figure 8.2.2 plots the average E R, as a function of (1/n);
Figure 8.2.3 plots the variance of R, as n changes.

2.3 GROWTH RATE

We can compute a using (4.2.10) which translates here into a double inte-
gral. Witk M, = (population at time t), (8.2.11) and (8.2.1) show that

a = E log (Mi41/M) = E log[m Fi(1 + R:) + p] - E log[m3 + mi Ri] +logmy -
= jd:/dwC(r)g(w)log [%1(1+z)+p]
- /d:C(:) log (m3 + myz) + log m;.

However, it is easier to use (8.2.12) in the first line of the above equation
and get

a = E log (map/myRes1) + E log(ma + myReyq) — E log(ma + my R,).
In the steady state the last two terms cancel, so we get a single integral
a =log(myp/m;) - E log R,, (8.2.16)
= log {map/m;) -~ /d:C(z)log z.

The form (8.2.16) is very convenient for numerical computation. For ana-
lytical work it is easier to use (8.2.12) again and observe that

—ElogR, = —E log Riy1 = logz + E log iy + E log (1 + R,). (8.2.17)
From (8.2.3) the reader may show that
E log F; = logn — ¥(n) (8.2.18)

where 1 is the logarithmic derivative of the gamma function (Abramowitz
and Stegum 1972, Sec. 6.3.1). From the definition of z(= mi/map) and
(8.2.16)—(8.2.18), it follows that

a= -;—log (1:2) +ElogF + %log(zn) +Elog(1+R:). (82.19)
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FIGURE 8.2.1. Stationary probability density of scaled age structure as defined
in the text. Parameter values are my = 0.25, m3 = 1, p = 0.75. The classical
stable ratio is indicated for vital rates fixed at these parameter values. The most
spread-cut density is for n = 10, the next for n = 100, and the most peaked for
n = 100
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FIGURE 8.2.2. Mean age structure for increasing variance in fertility. Parameters
as in preceding figure; the classical stable value is shown
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2.5

VARIANCE OF 4 X (OLD/YOUNG)

100 X {1/n) RNCHEASlNG
VARIANCE

FIGURE 8.2.3, Variance in age structure for increasing variance in fertility. Pa-
rameters as in preceding figure
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SYNERGY, CONSTRAINTS,
CONVEXITY

This book deals with many of the differences between the multidimensional
dynamics of structured populations and those of scalar growth models. It
is important to identify those features of the structured case which differ
markedly from the scalar case. The first two sections below show that the
differences can be quite considerable. Section 1 discusses the effect of au-
tocorrelation. Section 2 presents an example where serially uncorrelated
random variation raises the growth rate of a population above its possi-
ble deterministic growth rate. The third section summarizes a potentially
useful result of Cohen concerning the parametric sensitivity of stochastic
rates. The last section shows how strong constraints on population vital
rates can lead to “scalar” behavior.

1 Autocorrelation

Consider the general projection model IV 1 = X 41V, and suppose that
b = E X,. There are 3 growth rates relevant to this model. One is a as
defined in Section 4.2.1. The second is the growth rate of the average pop-
ulation (cf. Chapter 7),

logp = ‘lingo %logEM,. (10.1.1)

The third is the deterministic growth rate given by using the average vital
rates, rp = logAg = log (dominant eigenvalue of b). We know {Jensen's
inequality) that

a < log u; (10.1.2)
thus, when vital rates are 1.1.D. (Section 4.1) we have that

a <logu =rg. (10.1.3)

In general (i.e., with Markov rates, Chapter 7) serial autocorrelation can
complicate matters and we may have

a<ry<logu (10.1.4)
or

rg < a < log u. (10.1.5)

Cohen (1979) provides numerical examples. These effects of autocorrelation
are unique to multidimensional structured population models.



82 1. Autocorrelation
2 Synergistic Effects of Environment

Even when there is no autocorrelation, structured populations can behave
dramatically differently from scalar ones. A striking illustration is provided
by situations in which the randomness of the environment makes the dif-
ference between population growth and decline.

Consider a population with 2 age classes and suppose that the popula-
tion’s vital rates are given by one of 2 Leslie matrices,

A= (i;: 3;:) , (10.2.1)

or

-0. 16 + 0.09
B=(15/16 1 1/16 + ) (10.2.2)

1 0

Take the environment to change randomly so that in each time interval the
population’s Leslie matrix is A with probability of p or B with probability

(1 - p). If we set z = 0.142857 and p = 0.5 a numerical simulation (of -

5000 iterations of the stochastic growth process) yields an estimate a =
+0.1954 with a sample standard error of 3 = 0.0047. Thus, the population
should increase with probability one over the long term. Yet computation
of dominant eigenvalues of the matrices shows

log Ag(A) = —0.0209,

0.2
log Mo(B) = -0.0087, (10.2.3)

Therefore in the absence of a random environment with matrix A or B
fixed forever, the population would decline. We have here a synergistic
effect of random variation. Key (1986) suggested this term in the context of
a multitype branching process using special kinds of matrices. The example
given above is easily generalized to more parameters or dimensions.

An equally important aspect of this example is that it shows decisively
that the logarithmic mean dominant eigenvalue (of the underlying matrices)
cannot accurately describe a, since

LM = 0.5[log Ag{A) +log Ae(B)] < 0, {10.2.4)

whereas a > 0. It should also be obvious that this example derives funda-
mentally from the multidimensional character of the problem, and would
not be possible without age structure.

The reader who is curious about the provenance of (10.2.1) and (10.2.2)
should note that | started with simple rational members as entries. The
phenomenon above is not special in any numerical sense but occurs over
a range of values of z. Finally it is possible to deduce a general rule for
constructing such examples with many age classes (although I will not
discuss it here).
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GROWTH RATES FOR
SMALL NOISE

The long-run growth rate a is central to questions of evolution (Chapter §),
prediction (Chapter 14) and extinction. However, it is only useful if we can
describe how vital rates and uncertainty determine a. This is difficult be-
cause there is no general formula to compute a for arbitrary vital rates
and variability. In addition, the exactly known cases of ¢ (Chapter 8) do
not generalize; worse, they reveal singular behavior near parameter limits
where demographic ergodicity is lost. One useful and general approach is
to develop a systematic approximation to @ when the magnitude of random
variation is small. This was done by Tuljapurkar (1982b) and the results
have since been applied to a number of ecological and demographic prob-
lems. The method and some extensions are presented below.

1 Second-Order Expansion of a for General
Matrices

In the random-rates model write the matrix of vital rates as a sum of two
parts
X.=b+eH,, (12.1.1)

where
b=E(X:) and E(H.) =0. (12.1.2)

The average matrix b is assumed to be primitive and have a simple spectral
decomposition (as in Section 2.2). As usual, let Ag,u,v be the dominant
eigenvalue and corresponding right and left eigenvectors of b. The parame-
ter € in (12.1.1) measures the magnitude of random variation since the n*?
moment of {X¢ — b) is proportional to €*. The temporal character of the
vital rates is described by moments of variation at one time, such as

¢(0)=E(H,® H,), (12.1.3)
and by covariances across time, such as '
C(z) = E(Hg @ H;+[), £ > 0. (1214)

I assume (see Chapter 4) demographic ergodicity and that H is a station-
ary, rapidly mixing stochastic process.

[€
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We begin by observing that the stochastic growth rate can be computed
as

a= ¢Iir3o %E log(e, X, X, o Xu)
= tli’% %E log(v, X X, ... X, u). (12.1.3)
The matrix product in (12.1.5) is now expanded by using (12.1.1) to get
XeXeo1... Xy =(b+eH )b+ €H: 1)...(b+¢H,) (12.1.6)

¢
=b'+e) b bI

i=1
t-l t-" . . . .
+€2 Z Z bt-'_JH,'.i.ij-lH.'b‘_I + O(Es)
i=l j=1
=0 +eSi+ €Sy + 0(e%). (12.0.7)

Next compute
log(v,{b* + €Sy + €25y + O(e*)ju)

_ t (v!sltu) (‘U, Sggu)
= log(v,b’u) +log [1 Te (v,b'u) ¢ (v, b'u)

+0(e%)| (12.1.8)

Using the fact that
(v,b'u) = A(v,u), (12.1.9)
and letting (v,%) = 1 as in Chapter 2, continue with (12.1.8) to get
(1’,51:14) 2(”#52!"')
N ST
2( S1eu)?
2A%¢

To use (12.1.10) in (12.1.5) we need the following computations

log{v, X,... X u) =tlogAg + ¢

+ O(&%). (12.1.10)

(v, S1eu) i (v, Hiu)

, 12.1.11
AS o ( )
(u,-:';:u) z (v, H iu)? EZ(" H"‘ii" B a1, 12)
0 i=1 izl j=1
i)
t=1 t—y
(v, Szgu) E Z (v, Hl+;f-:1 'H, "') (12.1.13)

i=] j=1

B e e el b T 4+ e e

L ——————
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In (12.1.13) insert the simple spectral decomposition (2.2.10) which says
that

O™ = AT {uvT +q™), m21, (12.1.14)
and get
("’ 52!"-‘ Z (v, H|+IH u) +§‘ ‘ (v, H.+Ju)(v H,u)
=1 i=1 j=2
““%vHWqJILm
S AL
i=1 j=12
t=1 t—i (v, H..,.,u)(vH ) ol (v, H.+,q’ B )
“hE 22>
1=l y= =] y=1

Z (v, H.+1U)(° Hu)

(12.1.15)

Between the first and second steps we use the fact that I = uo7 +(I— u.vT)
where I is the identity matrix.

Now put (12.1.11)-(12.1.15) together into (12.1.5) and take the limit and

expectation, using stationarity. The following intermediate steps are worth
checking:

lim lE z (v, H u)2 (v v)Te(0)(u @ u)

7
t=oo ¢ i=1 A
t—-11t-1 oe
Lim -E ('U, '+Jq ng) = Z E(‘Uy Hj.i.lqj-lH]‘u).
t—oo t :
=1l y=1 =1
The final expression for a up to second order in ¢ is
T i .
a = log Ag — € (v @) c(?)(u@ u) + € ZE(v,H,-Hq"lH;u)
—€°E (v, Hyu)(v, Hu). (12.1.16)

2 Serially Independent Random Variation

Focus now on the important case of 1.I.D. fluctuations in the vital rates. I
will drop the parameter ¢ and simply refer to (¢H,) as the deviation. In
the absence of serial autocorrelation only the first two terms of (12.1.18)

survive and
(v®v)7c(0)(u®u)
2A5 '

a=>logly - (12.2.1)

20
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As one expects, @ < log Ag when ¢(0) # 0. It is very informative to rewrite
(12.2.1) by making use of the sensitivity analysis of Section 11.1. Recall
from there that for the average matrix b one has

X o
%-i-; = v(i)u(j). (12.2.2

(Here vTu = 1 by suitable normalization). The reader may now deduce
that (12.2.1) can be rewritten as

1 3o X .. "

-~ —_ —_— —_— 2.3

a ~log Ap IV E (Bb.- ) (abu) Cov(ij, kf), (12.2.3)
O (iykey M

where the sum is over 1 < i,4,k,£ < n and
Cov (ij, k&) = E(H ¢)is(H)ke. (12.2.4)

The sensitivity of @ to random variation is therefore measured by squares
(and pairwise products) of the sensitivity of A to average rates, This fact
determines the differing effects of random variation in different vital rates.

3 Serially Independent Variation in
Age-Structured Populations

Age-structured populations are the motivation for this theory and their
projection matrices are Leslie matrices as in Section 2.4. Using the no-
tation of that section, the stochastic growth rate for serially independent
fluctuations in all vital rates is

1 g\ 2
a&‘logz\o—m;(a—fg) Var (F;)
1 Ao\ ? 1 aA N
w2 () -2 (5) () e

1 g\ [ 9% .
-7 2 (&) (5) vz

1 aAO a/\g
-3 (5) (58) evenmy s

The variance and covariance notation should be transparent. E.g., Var(F;)
is the variance in fertility at age i while Cov(F; F;) is the covariance between
survival rate at age ¢ and fertility at age ;.

The results of Sections 2.4 and 11.1 can be combined to obtain important
special cases of (12.3.1). I will list the final result in each case and let the
reader do her own algebra.

M

| =
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1. Fluctuations in juvenile survival, taken to mean survival of the youngest

age class. If this survival rate is a random Py = py + Z, E(Z;) = 0,
Var(Z;) = o = c?pi, then

o™ log Ao — = (1-—13-)2 (12.3.2)
= log Ag 2—1.07 ) 3.
2. Uncorrelated fluctuations in all fertilities. Thus at each age { the
fertility at time ¢ is Fi¢ = fi + Zit, E(Zi) = 0, Var(Zy) = o7,
Cov(Z;; Z;;) = 0 for i # j. Here

T i(tiAg o)
Lillice %i)

a2logly ~ o7
o

(12.3.3)

3. Correlated fertiity fluctuations. Here we take F, = fi + Z;; with
E(Zy) =0, Cov(Z,; Z;4) = 0.0, so that

(T, irg o)’ _

alogly ~ 2Tz

(12.3.4)

There are many important applications of these results, some of which
are described in Chapters 14-17 of this book.

4 Higher-Order Expansions and the Loss of
Ergodicity '

The formulation of Section 12.1 clearly can be extended to higher orders
by carrying the expansion (12.1.6) to higher orders in . The results are
instructive although the algebra is not. (Details of the analysis will appear

in a forthcoming paper). Here I present the results of a 4th order expansion
for the case of L.I.D. random variation in the transition rate from class 1 to
class 2. In the age-structured case, this is just the survival rate.

The expansion method through order ¢! yields the result

€80 E8Puy i,

eElgd - St T T
820"
+ )‘4 wT(l_Q)-ly
0
etd?ot

s (wew)(1-989) (yoy). (12.41)
Q

A novel feature of this expansion is the appearance of the inverse matrices
shown. Recall that ¢ has eigenvalues (\,/X;) so ¢ ® ¢ has eigenvalues
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POPULATION STRUCTURE
FOR SMALL NOISE

This chapter extends the expansion method of Chapter 12 to the population
structure vector ¥, and the reproductive value vector V. As a byproduct
of this analysis we get information on the growth rate of population over
time, and on the serial correlation structure of populations over time in a
varying environment. We learn how the history of environmental perturba-
tions is filtered by population response. The first section below deals with
the method itself while later sections consider implications of the results.

1 Expansions for Structure and Reproductive
Value

The decomposition (12.1.1) and its attendant features from Section 12.1

are the basis for what we do here. The population structure vector Y
obeys the equation

Y= MY,/(e,MY,). (13.1.1)
where the matrix M is the (now familiar) product of random matrices
Mg=Xng_1...X1. (131.2)

Similarly the (normalized, i.e., components sum to unity) reproductive
value vector obeys the backward-in-time equation

Vi=M]Vi/(e, MTV ). (13.1.3)

The objective here is to use these equations to gain insight into the statis-
tical properties of ¥ and V. Accordingly I focus on the long-time behavior
of these vectors, when the effects of initial conditions have been erased
by time. Assuming that demographic weak ergodicity holds for (13.1.1),
and therefore also for (13.1.3), we may choose an injtial vector that makes
calculations convenient, without having to worry about the effects of the
particular choice made (at least for steady-state statistical properties).

The choices we make are

Yo = u, (13.1.4)
and
V¢+1 =7v. (1315)

25



98 1. Expansions for Structure and Reproductive Value

The next step is to use the expansion (12.1.7) in (13.1.1, 3) along with
the choices above, and obtain the corresponding expaasions of ¥, and
V) to second-order in the parameter ¢ (which measures the amplitude of
environmental fuctuations). The results are:

Y:~u+¢1l- ueT)Rn + 52(1 - ueT) [Rae — (e, Ry)Ry:], (13.1.6)
where
Ry = S,u/), i=1,2 (13.1.7)
Similarly,
Vixv+e(l-vel)Pr+ €(1 - veT) [Py - (e, Pr1¢)P1e), (13.1.8)
where
P =S%v/Al, i=1,2 (13.1.9)

In working further with these expressions it is useful to note some prop-
erties of the objects (1 - ueT) = k, say, and (1 — veT) = k. First, direct
calculation shows that

k= k,and  R®=h. (13.1.10)

Further, if we apply matrix k to any power of the average vital rate matrix,
then the spectral decomposition (see {12.1.14) ) shows that
kO™ = AT k(uvT +q™)
=Alkq™, m>1. (13.1.11)

Similarly, applying k to the transpose of any power of b shows that
R(AT)" =22R(gT)", m2 1. (13.1.12)

Finally, note that
(e,k) =(e,h)=0 (13.1.13)

This last fact is the least significant, and it simply ensures that the vec-
tors ¥ and V' in the expansions have the right normalization. However
(13.1.10-12) show that k and h act as projection operators which extract
the transient component (remember that g™ — 0 as m increases) from
powers of the average vital rate matrix.

2 Properties of Structure and Reproductive Value
The expansion {13.1.7) reveals several facts about ¥, . Recall from the

definitions in Section 12.1 that E (R;;) = 0, since that term is linear in
the random deviations H;. Therefore the average value of Y, differs from

24
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