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ABSTRACT Many organisms delay the initiation of repro-
duction even though such delay is not adaptive in a constant
environment. Theoretical arguments in this paper show that
delaying reproduction can increase fitness in a sufficiently
variable environment. This paper uses stochastic demography
to analyze the fluctuating population structure produced by
environmental uncertainty. The results explain previously puz-
zling features of life cycle delays observed in nature, predicting
that populations of the same species living in environments of
differing harshness can display different life history pheno-
types, a number of distinct life history phenotypes can coexist
neutrally within a single population, and genetic polymor-
phisms are easily maintained if heterozygotes have intermedi-
ate life history phenotypes.

Many organisms detay the initiation of reproduction even
though such delay is not adaptive in a constant environment.
Biologists studying life cycle delays such as insect diapause
(1-3), seed dormancy {4. 3), and cohort splitting (6-8) have
suggested that delay in a life cycle is advantageous in a
varying environment. This paper presents theoretical argu-
ments to show that life cycle delays can increase fitness when
environments are sufficiently variable. A significant and
essential improvement is made over existing theory (9-11) by
analyzing explicitly the changing age structure produced by
environmental uncertainty. My results identify the stochastic
evolutionarily stable state (ESS; ref. 12) for the extent of life
cycle delay appropriate to any level of environmental vari-
ability. They also provide explanations for the geographic,
phenotypic, and genetic variation in delays observed in many
natural populations.

Possibly the most influential early theoretical work on the
evolution of life cycle delays in a Aluctuating environment is
Cohen's 1966 paper (9), which does not analyze age struc-
ture. A considerable body of work has attempted refinements
to this paper, but all of it ignores age structure; a recent
review can be found in ref. 10. Livdahl (11) attempted a
theoretical treatment including age structure, which as he
pointed out is central to determining the consequences of a
varying environment, but his demographic and genetic anal-
yses fail to correctly describe stochastic variation. In recent
years, a theory of stochastic demography has been developed
{13, 14) that provides the essential theoretical basis for the
present paper. I show that the stochastic dynamics of age
structure may be important in understanding the evolution of
many aspects of life histories.

Delay, Fitness, and Stochastic Demography

I begin by defining a relationship between defay and fitness
and then consider its empirical applications. The discussion
initially focuses on a simple model for which ] obtain an exact
analytical expression for fitness and discuss its empincal
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applications. The key biological conclusions from this simple
model will be shown to hold for more complex life cycles.

Consider a population composed of immature and adult
individuals, in which some immatures delay passage to
adulthood. Suppose that a fraction p of immatures delays the
transition to adulthood in each breeding season and that s is
the survival rate of immatures. To describe environmental
variability, let adult fertility be a time-dependent random
variable {(say M,). The dynamics of the numbers /, of imma-
tures and A, of adults are described in discrete time by the
equation

Mr—l
0

/- _ P 1,
A stl—p) A

Changes in this population depend on the sequence of distinet
random fertilities M. M. etc.. so the population compositicn
does not reach a fixed value but changes over time. Stochas-
tic demography (13) shows that for reasonable random se-
quences of fertility the long-run growth rate of such a
population converges to a nonrandom number a. the sto-
chastic analog of the Malthusian parameter. This a serves as
a fitness determining the invasion of genes that alter the [ife
cycle in the following sense (i4). Suppose the population
consists of diploid randomly mating individuals in which
alleles 1 and 2 at a locus influence the life history in a random
environment. Then allele 2 can initially increase in frequency
in a population that is initially nearly homozygous for allele
1if ay» > ayy: here a; s the stochastic growth rate of a
population of individuals with the same life cycle as genotype
if. Thus, we may describe the evolutionary consequences of
delay by determining its effect on the (stochastic) fitness a.
By analogy with the deterministic situation. a stochastic ESS
occurs at the extent of delay for which a is at a maximum.

(1]

Delay Is Not Adaptive in a Constant Environment

In a constant environment {with M, fixed). a reduces to the
Malthusian parameter r (15). 1 will show that r is decreased
by an increase in the fraction p of individuals, which delays
development, if the population is not declining. [ will outline
the calculation for a general life cycle described by a standard
Leslie matrix (15). in which the first row contains fertilities
and subdiagonal elements contain survival rates. Delay in any
prereproductive age class { is described by modifying the
matrix as follows: change the i,i element from 0 to p and
multiply the ({ + 1). element by {1 — p)., An example is the
matrix on the right side of Eq. 1. Application of Caswell’s (16)
sensitivity formulae for » 1o such a modified matrix shows
that

or
—x (Vi -V,
ap

Abbreviation: ESS. evolutionarily stable state.
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where V| is the reproductive value of age class / individuals,
Noting that age class / does not reproduce {50 the 1,/ element
of the matrix is zero), the definition of reproductive value as
the left eigenvector of the modified Leslie matrix shows that
(Vioy = ¥ < 0 as long as r > 0. Thus. in a constant
environment and an increasing population one expects no
delav in any prereproductive age class. Under these condi-
tions, any argument for the adaptive value of delay would
have to invoke selection on some correlated trait (e.g.. if
delay were to result in enhanced survival or fertility, which
more than offset the decrease in r due to delay alone).

Delay and Fitness: An Exact Relationship

Shifting to a variable environment in the model of Eq. 1,
suppose that M, is a sequence of independent identically
distributed random variables. In addition, assume that each
M, follows a y distribution with coefficient of variation (ratio
of standard dewviation to mean) c. [ now show how the
stochastic dynamics of the population are analyzed to obtain
an exact anaiytical formula for the long-run growth rate a.
Readers uninterested in the technical details can go straight
to Eq. 8 below.

In analyzing Eq. 1. it is convenient to absorb s into M,, so
that in the equations that follow we can set 5 = 1. Defining
n = ¢~ Y3, write M, = mG,. where G, has y density

"

wrlgmwn, [2]

The average of M, is m and its variance is m*c = (m°/n). To
calculate the long-run growth rate of the population in Eq. 1,
it is first necessary to obtain the stationary probabiiity
distribution of the population’s age structure (13). It turns out
to be easier to work instead with a transposed (dual) version
of Eq. 1. Let X, be the transpose of the random matrix of Eq.
1 and consider the recursion

V, =XV (3]

The vector V, has a "‘backwards-in-time’" evolution, but it
has the same long-run growth rate a as the population vector
in Eq. 1—i.e.,

a=Elog{{v,(1) ~ ViV (1) + Vi (2101 [4]

Here, E indicates an average over both the random environ-
mental distribution (Eq. 2) and the stationary distribution of
the (normalized version of) vector V,.

I will work with V, because its stochastic properties can be
obtained analytically. Define

_ 1-p V(2
pVil)

where 0 < p < 1and the V,(i) are components of V,. Then the
recursion (Eq. 3) can be rewritten as

RI 3 [5]

Gy

Tt Ry (6}

1

where z = p?/m(1 — p). The stationary probability density C
of R, obeys the following integral equation (which is derived
and solved as in ref. 17},

Clx) = f ==d.\' Cly)z(1 + ylglz(l + yix],
0

with solution

C(x) = K—lxn—l(l + x)—ne—n:.t' ET]
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where « is fixed by normalization. Letting £ indicate an
average over the density C, and using Eqs. 4-6. [ find the
exact analytical expression

a=logp+ Eclogil - R). (8]

One can now compute a to any desired accuracy by gquadra-
tures ifor the analytically minded. the expectation in Eq. 8
can be recast in terms of hypergeometric functions}.

Life Cycle Delay Can Increase Fitness in a
Variable Environment

I now explore the effects of delay on fitness a for the mode!

- (Eq. 1) using the result (Eq. 8). The calculation of a requires

values of the extent of delay p and the product ms of the
average fertility m and the survival rate s of young. Fig. 1
shows the relationship between a and the extent of life cycle
delay p for different levels of environmental varnabilitv,
computed with m = 1.05 and s = 1. For very small environ-
mental variability (small ¢), 2 declines with p as would the
deterministic Malthusian parameter r. When the environment
becomes harsher and more variable (larger ¢). there is a
dramatic shift in the curve and a increases with p to a
maximum at an intermediate fraction of delay. Clearly. a
fitness advantage can result from a nonzero probability of
delaving the passage to adulthood.

Two other features of Fig. 1 have considerabie biological
signtficance. First, the delay fraction at which a is a maxi-
mum (the stochastic ESS of p} increases as the harshness of
the environment (c) increases. Second. the maximum in g
becomes very broad as ¢ increases, so that in a highiy variable
environment there is very little difference in fitness between
the ESS and a wide range of other delay phenotypes. I return
to the biological consequences of Fig. 1 after showing that its
features are robust to my choice of model and assumptions.

0.025-
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0.010F

0.005
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r

Fic. 1. Effect on fitness g of probability p of delayed passage
from immature to adult. Curves are fabeled with the coefficient of
variation of fertility and are drawn through points computed from an
exact analytical formula. See text for parameter values.
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The properties of fitness a in Fig. 1 do not depend on the
assumptions made about the random environment. Stochas-
tic simulations of model 1 using fertilities distributed accord-
ing to a lognormal distribution {instead of ¥} yield results
entirely similar to those in Fig. 1. The parameters used for the
simulation are the same as in Fig. 1. This shows that the result
is robust. although a stronger test should use a distribution of
qualitatively different shape. | have also examined the effect
of serial autocorrelation over time in the sequence of random
fertilities and find the qualitative results unchanged. [ will
discuss autocorrelation further in the context of complex life
cycles.

The Results Apply to Complex Life Cycles

I now show that the fitness—delay relationship for the two-
age-class model carries over to more complex life cycles. [ do
so by studying another example, but one that makes clear
how general cases can be dealt with. Consider a life cycle
with two prereproductive stages, eggs and larvae. and two
reproductive adult stages. Suppose that there is delav at the
larval stage, and let p be the proportion of larvae delaying
development to adulthood. As in the earlier example. I take
the fertilities of adults to be variable over time: denote them
by M;,, M,,. This population’s dynamics are described by the
modified Leslie matrix

0 0 My, My,

0 0
5 P 9]
0 s2{l—py 0 0O

0 ¢ 53 0

The survival rates are nonzero, 0 < s5; = 1 for all /. As shown
in general earlier, in a constant environment and an increas-
ing population, increases in larval delay p will decrease the
Maithusian parameter.

What happens when the four-age-class life cycle experi-
ences environmental variation? I will determine the effects of
delay by using a general analytical approximation to a and
then present supporting numencal simulations. The analyti-
cal approximation (I4) is accurate when the environmentat
variability is small and is obtained as follows. Let ¢, be the
variance and m, > 0 the average of M;,, and {, be the survival
rate to age class / with no delay. Let A be the dominant
eigenvalue of the population projection matrix with fertilities
fixed at their averages: this A solves a characteristic equation
of the usual sort. Write A; = A — p and define

w= LA i=1,2, (10]

and

w=L{1-p) /(A2 i=3,4, {11)
Here u; = 1and the u;, i > 1, are computed as the components
of the right eigenvector of the average of the four-age-class
random matrix. When § < p < 1, this average matrix is
nonnegative and irreducible, so it must have a positive
eigenvector whose components are proportional to these u;,
i = 1. Therefore, it must be true that A > p when 0 < p < 1.
It is obvious that A > p when p = 0. And when p = 1, the
average matrix is reducible and its largest eigenvalue is A =
1. Therefore, we have A; > Ofor0=p<landi; =0atp
= 1. ] allow for the possibility that the adult fertilities may
change in a correlated way, and write p for the correlation
coefficient between My and My, in each time interval. |
assume no serial autocorrelation. Finally, setting 7 = log, A
and applying directly the formulae of ref. 14, I find that

a9,

L) 4 A
a=r-[o3d + oui + Jpounow,]/24%Y,  [12]
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where
T=2+ muuy + (A/A)

The quantities in Eq. 12 have the following biological mean-
ings: if the environment is constant so that the fertilities are
fixed at their average values. r = iog, A would be the
Maithusian parameter. «; would be the stable proportion of
individuals in age class i, and r would be the mean generation
length.

To see what Eq. 12 implies about delay vis-a-vis fitness,
note the following: (/) as shown earlier for a constant envi-
ronment, r decreases to 0 as delay p increases toward 1: (i}
for a fixed leve! of delay p, fitness a decreases as the
variances o; increase; (iii) as the delay p increases toward 1,
the quantities u; and w, decrease to zero, whereas the
generation length 7 increases toward infinity. This last point
follows from the formula for = plus the earlier observation
that A; = 0 at p = 1. For a given amount of environmental
variance, this increase in  with large p shows that the second
term in Eq. 12 is much smaller for large p than for small p.
Therefore, increasing environmental variance has much less
effect on a when delay p is large than when it is small. Thus,
in sufficiently harsh environments we can expect higher
fitness with some delay than with no delay. This argument is
illustrated in Fig. 2, in which analytical values of fitness
computed using Eq. 12 are plotted versus delay, showing the
emergence of a stochastic ESS in a sufficiently harsh envi-
ronment. The parameters used in the calculation were 5, = 1
for all i, m; = m, = 0.525, and the coefficient of variation
shown along with each plotted curve.

The above analysis is illustrated and confirmed by simu-
lations. Fig. 3 is an example in which M,,, M,, are taken to
be perfectly correlated and lognormally distributed with no
serial autocorrelation. The parameters used for the simula-
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FiG. 2. Analytically computed fitness a vs. probability p of
delaved larval development. Curves are labeled with a coefficient of
variation that measures environmental variability and are drawn
through points computed from Eq. 12. Immature stages: eggs, larvae.
Aduits reproduce twice, their fertilities are perfectly correlated. and
there is no serial autocorreiation. See text for parameter values.
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Fic. 3. Effect on fitness a of probability p of delaved larval
development. Curves are labeled with a coefficient of variation.
which measures environmental variability, and are drawn through
points computed by numerical simulation. Immature stages: epgs.
larvae. Adults reproduce twice. their fertilities are lognormally
distributed and perfectly correlated. and there is no serial autocor-
relation. See text for parameter values.

tion were s; = 1 forall i, m; = my = 0.523. and the coefficient
of variation shown along with each plotted curve. Note first
the appearance of an ESS at intermediate delay when the
environment becomes sufficiently harsh, as predicted by the
theory. As in Fig. 1, the maximum in fitness becomes
significantly broader as the harshness of the environment
increases. There is one striking difference between Figs. 1
and 3: the peak fitness in Fig. 1 occurs at a much lower value
of delay p than in Fig. 3. The reason for the difference is found
in the structure of the two life histories. The complex life
history represented by Eq. 9 is iteroparous. and it is known
(18, 19) that iteroparity in itself can result in a fitness
advantage in variabie environments. Thus, the extent of
delay needed to produce a further fitness gain is expected to
be larger for the iteroparous life cycle.

Simulations also reveal an interesting aspect of serial
autocorrelation. For the four-age-class life cycle, Fig. 4
shows the effect of adding positive serial autocorrelation to
the random sequence of fertilities. At each time, the fertilities
are perfectly correlated and lognormally distributed. In the
simulation, the fertilities have the form exp{a; + 8;X,) where
X, is a sequence generated as a zero-mean, one-lag, autore-
gressive time series with standard normal shocks and a serial
autocorrelation coefficient of +0.5. The other parameter
values used were the same as for Fig. 3. Comparison of Figs.
3 and 4 shows that fitness behaves in essentially the same way
in a serially autocorrelated environment as in a purely
random one, However, positive serial autocorrelation clearly
acts as a variance magnifier, so that a population exposed to
a positively correlated environment of a given harshness
behaves in the same way as a population exposed 10 a much
harsher but serially uncorrelated environment.

Proc. Natl. Acad. Sci. USA 87 {1990,
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Fic. 4. Effect on fitness—delay relationship of serial autocorre-
latign in vital rates. Curves are drawn for the same model as in Fig.
1. Here the fertilities are perfectly correfated within each time
interval and have a positive serial autocorrelation. The curves are
labeled with the coefficient of variation of fertility in a single time
interval and are computed from a series of stochastic simulations.
See text for parameter values.

Confronting Theory with Observations

The theory in this paper vields predictions concerning in-
trapopulation and interpopulation variability in life cycle
delays; these predictions are supported by a wide range of
evidence. The predictions are as follows:

(i) Populations of the same species living in different
environments can be expected to display different amounts of
prereproductive delay. Notice in the theory that the delay
fraction at which g is maximal changes with c. Since geo-
graphically distinct populations {of one species) can often be
expected to experience different levels of environmental
harshness ¢, the present theory predicts that such popula-
tions would have different stechastic ESSs. Assuming selec-
tion is sufficient for the achievement of an ESS, such
populations would display different amounts of prereproduc-
tive delay. Interpopuiation vanability within species corre-
lated with environmental differences in habitat is well doc¢-
umented in many life history characteristics. Examples in-
clude cohort splitting in the rock slater Ligia oceanica (7) and
the timing and distribution of reproduction in the freshwater
leech Erpobdella octoculata (20).

(i) Two or more distinct life history phenotypes can co-
exist neutrally in a single population. Note that the theoret-
ically derived maximum in a is very broad for high ¢. showing
that many different life cycles are nearly equally fit in harsh
environments. Some of these life cvcles have delays very
different from the stochastic ESS. In consequence. two or
more different but relatively neutral life history phenotypes
can coexist in a single population. Examples of intrapopula-
tion variability in life history abound. In cases in which
phenotypic variability is documented but the possible genetic
basis undertying it has not been characterized, it is possible
that variation is being neutrally maintained..Examples in-

A
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clude cohort splitting in the woodlice Philoscia muscorum
(21). the timing of reproduction in E. octoculara (6, 22) and
in the sea squirt Botrvllus schlosseri (23). and development
time in copepods (24). Other examples are given in ref. 23.

tiif) Genetic polymorphism can easily maintain distinct life
histories in a single population. Note that the theoretically
computed fitness « as a function of - is a concave ¢ -rve with
one peak. Therclore genetic polymorphisias for the extent of
delay can be maintained as follows: if two homozygotes have
values of p on different sides of the maximum. a polymor-
phism is possible whenever the heterozygote has an inter-
mediate phenotype (because the heterozygote is fitter than its
constituent homozygotes; ref. 14). Intermediate phenotypes
for heterozygotes are commonly observed. Two studies
illustrate very clearly genetic variation for life cycle delays:
Istock (25) has shown that persistent heritable genetic vari-
ation underlies the variability in diapause fraction observed
within populations of the pitcher-plant mosquito Wyeomia
smithii, and Gilbert {26) has shown that genetic variation
underlies the phenotypic variability observed in developmen-
tal time in the white butterfly Pieris rapae. Both cases lend
support to the theory presented here. Other relevant exam-
pies are discussed in refs. 1, 3, and 27.

In theoretical work closely related to the present paper,
Orzack and Tuljapurkar (18} and Roerdink (19) have analvzed
the relationship between fitness and the extent of iteroparity
in a variable environment. Their qualitative conclusions are
very similar to those in i=iii above, suggesting that these may
be general features of life history evolution in uncertain
environments. As noted earlier, their work also bears on the
different peak locations in Fig. 1 for a population in which
adults reproduce once, and in Fig. 3 for a population in which
adults reproduce twice. Delay has less marginal value for the
population in Fig. 3 because repeated reproduction (itero-
parity) in itse!f can increase fitness in a variable environment.
I conclude that prereproductive delay and iteroparity are
unlikely to evolve together. For example, dormant seed
banks should be more common in annual plants than in
perennials, and diapause should be relatively uncommon in
insects that survive over more than one breeding season.

Life history theory based on fixed vital rates. or on
simplistic nendemographic approximations for varying envi-
ronments, is not capable of explaining the kinds of patterns
described in ~iii above. QOther critical assumptions of the
optimality theory of life histories are not met in some of the
examples cited here (20, 26). In my view, the selective forces
due to uncertain environments provide an evolutionary ex-

Proc. Natl. Acad. Sci. USA 87 (1990) 1143

planation for many of the observations that disagree with
classical optimality theory.
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