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B.G.BUKCHIN

FORMAL DESCRIPTION OF A SEISMIC SOURCE

The description of a seismic source we will consider is based
on a formalism developed by Backus and Mulcahy in 1976.
We will start from motion eguation

o + £ = pu , .j=1,2,3 (13
iJ.) i i

Here u - i-component of displacements; b;— 2-nd derivative of
u, with respect to the time; o, elements of simmetric stress
a
tensor; o‘J e J}_:laolj/axj {the summation c¢onvention for re-
peated subscripts is used); p - density; f:_ components of
external force.
The stresses and dispplacements are connected by Hooke's law

ujj- Ablje

where e = 0.5{u
(W] i,

o 2ne-.J {in isotropic casel, ({2}

j+ u, a) - elements of strain tensor.

We will assume that before t=0 there was not any motion, so

&

initial conditions are following
usuam=g for t < O . (3

Elastic body under consideration is bounded by free surface 8,

It meens that homogeneous boundary conditions have to be satis-
fied:

(4)

. s = r
where nJ— conponents of the normal to the So.
The solution of the problem {1}-(4) can be expressed by formula

t

ui(x,t)=JdTJG.J(x;y:t—t)fJ(y,t)dVy (5)
o "Q
t
or ui(x,t)=[d1[ﬂ}l(x;y:t-t)f)(y,r)dv; . (6)

o
L

Here G‘j— Green function, Hij(x;Y;t)=Iij(x;y;t)dt .
o

and 0 < t < ta— time interval when f is not identically zero.

Sources of seismic disturbance.

Seismic disturbances most frequently arise from the action
of internal sources (earthquakes or explosions) in absence of
any external body forces., One must then set f;- 0 in (1), so
that the only solution that satisfies the homogeneous initial

{3) and boundary {4} conditions, as well as Hooke's law (2},
will be u = 0. Non-zero displacements cannot arise 1in the
medium, unless at least one of the above conditions is not true.

Following Backus and Mulcahy (1976}, we assume seismic motion to

be caused by a departure from Hooke's law within some volume of
the medium at some time interval £> t> 0.

Let ul(x,c) describe the displacements and o)](x,t) the
stresses that would have existed in the medium had Hooke's law
{2} been true everywhere in it. Let slj(x,t) be the actual
stresses. The difference

Fij(x.t) = oij(x.t)—s_j(x,t). (7}
called the stress glut tensor, is not identically zero within
the three-dimensional region Q2. That region we define as
source region. Within, and only within, that region, the
tensor flj(x,t) too is not identically zero.

We shall assume that @ lies wholly within the medium (does not
come out to the surface) and that, since some instant of time
te>0, Fij(x,t)=0 everywhere in the medium. The integral of Flj
over @ 1is called the seismic moment tensor {Rostrov, 1970;
Aki and Richards, 1980 ). As the true motion obeys the equation

s, = ph;. in accordance with (1) (fa0}, one derives from (7)
i, + g, =eu {8)
g =-T . (9)

where gj(x.t) we will define as equivalent force.

Then the resulting displacements are given by the same formulas,
{5) and (6}, with fi replaced by g,- Using relation (9) for g,
and the Gauss-Ostrogradsky theorem, we fipally get

ui(x,t)= dt G”uh(x;y;t—t)ij(y,T)dVy {10}
o\l

or
L]
L oe

u {x, t)=|dt H;LK‘X7Y‘t'T)r,u(Y'I)dV} (11)

o YQ

The GsJ’H' are here differentiated with respect to Y, -
i)

If the departure from perfect elasticity is confined to some

T

g o

i

E



arbitrary finite area at the inner surface I, the stress ulut
tensor becomes Flk(x,t)=mjk(x,t)6£(x), where 6E(xJ is a distri-

bution that satisfies

J5£€X)w(x)dvx = Jm(x)dxl

v =
for any function o(x). Integration over the volume V; in {10},

{11} will then reduce to that over the surface L:
i

ul(x,t)= IdtjG’Lk(x;y;t—t)m)k{y,r}dty

o "L
where the points y belong to L. If the departure from perfect

elasticity is defined as a discontinuity in displacement u at &
without a stress discontinuity, then we have
m (x,th=n (x)[u (x,t)]c‘ {x},
Ju q P jkpa

where n is the normal to I, [uv] - components of the vector of

discontinuity. For an isotropic medium we shall have
= + -
mjk A[up]np&jk + u(n|[uk] nh[uj]) ’
in the case of tangential {shear) dislocation we have
n [u] w0 and
el7p

ka=u(nj[uk] + nh[uj]) . {12)

If the departure from perfect elasticity is confined to a
small vicinity of x, (the region @ shrinks to a peoint}, then
ij(x.t)=miktt)6(x—xd

and the equivalent forces g, take the dipole form

ds {x —xu)
g, =Am|k(t) ax a3
Such a source excites a field of the form
L
u = }m [t} & (x;x ; t-1 )dt, {14)
i ik i,k 0
1
or
1
9.
u = J ka(t)HlLk(x:xU;t—t ) deE, (15)
8]
where the G.,' H‘j are differentiated with respect to ¥, at the

point ¥y = X,-
A point center of expansion (an ideally concentrated explosi-

on) in an isotropic medium will produce {aki and Richards, 1980)

m, o= omies, (16)
while for a point source of 8lip we shall have
mjh = m(t)(x}nll +xknj), {17}
where the Ml are upit vector components in the direction of the
discontinuity [u] {slip vector) and m(t) = ulbql. The quantity
m, = lim m(t) is called the seismic moment.
1=

Reilation between the temporal and geometrical parameters of
aseismic source and the spatio-temporal stress glut moments.

The region of an earthquake scource was defined above as
a region at each point of which the tensor F.j is not identical-
ly zero. The source duration is the time during which anelastie
motion ocecurs at various points within the source region, i.e.,
Flj is different from zero. Along with these concepts, we shall
deal with an instantaneous source, i.e.,a volume involved in
anelastic motion at some instrant t, and the local source dura-
tion , i.e., the time during which such motion occurs at some
point x.

This section contations formulas for estimating the geomet-—
ry of a source region and the time-averaged geometry of an ins-
tantaneous source, as well as formulas for estimating the source
duration and the space-averaged local source duration. Following
packus (1977}, Bukchin (198%) all these parameters are expressed
in terms of spatio-temporal moments of Flj(x,t) of total degree
{both in space and time) 0, 1, and 2. In turn, these moments can,
as shown below, be estimated by using long-period records
of the displacement at a number of sites at the free surface.

~(m,n)

The moment [ {g,1} of spatial degree m and temporal

degree n with respect te point q and instant of time t is a ten-
sor of order m + 2 and is given by

S lm,n)

Co (q.x} =
:j,ki...k

. (18}
5 n
- dv; F]j(x,t)(xkl- qkl)...(ka— qk"](t—t) dt

ko= 1,0, 3

I P L

where & is a volume outside of which we have I (x,t) = 0.

Later we will consider the problem of extracting the moments



{18) from long~period displacement records; for the present
we discuss the information on earthquake source involved in the
moments of total degree m + n, equal to 0, 1 and 2.

When I and j are fixed, the moments (18) characterize the
spatio-temporal configuration of the scalar field F.J(x.t)- A
seismic source is described by six (because rij is symmetric)
different scalar functicns, making an interpretation of its moc-
ments difficult. Following Backus (1977), we set up a correspon—

dence between an earthquake source and the scalar field

W

cltx,t) =2 (x, t) (19)
ij ij

regarding the geometrical and tempolar parameters of this field

as estimates of the respective source parameters.

Note that f:?’O)

mic moment tensor I Fij(x,tldv; {see Kostrov, 1970)}. The moments
Q

is a limiting value (as t +» %) of the seis-

of cix,t) are given by a formula similar to {18):

{m,n}

cu‘.”a(q'T) =
" {20)
n
= l dV* c(x,t)(xk - q, J...(x|I - q, yle=-t) 'dt
1 1 L] ]
If the moments of Flj(x,t) are known,the moments of ¢'™"’ can
be got from
{m,n) _ pio,ulaim,n}
ck Lok (q'T) - Flj ik Lk (21)
1 Y 1 m

Estimation of temporal and geometrical parameters of an
earthquake source. Suppose we know the moments (20} of cix, t)
as given by (19). The inequality c(x,t) 2 0 is assumed to be
true. According to Backus (1977}, many types of seismic sources
are consistent with it. Thus, it is readily shown that, when the
source is a plain ideal fault (the displacement discontinuity
vector lies in the rupture plane) the inequality is equivalent to

the requirement of the slip velocity vector being within n/2 of

some fixed direction. Backus (1977) puts forward some estimates of

the temporal and geometrical parameters of an earthguake source
based on the assunption of <¢{x,t}) being nonnegative. Source
locatjon 1is estimated by the spatial centroid q of the

field c(x,t}) defined as
q = l dv, clx, tyxdt / l av, clx, tydt , (22)

which can be written in the form

Mg =0, (23)
»
If mi{x) =I clx, t}dt is regarded as a distribution of mass 1in
Q

space, its center of mass is identical with the centroid q,.- In
a similar fashion,the temporal centroid T is estimated by

(0,0} 1o, 1)
< Tc = ¢

(o). (24)

The values of q, and T, combined define the spatic-temporal cen-
troid of a source. The source duration is estimated by 2arT,

where

{ar) % = l av_| ctx. ey {t-1 ) *de / l av_ | cix, t)de {25)

or, in our notation,

{0,2) {0,0)
.

{(a1)°% = ¢ {1 )/c {26)

Let r be a unit vector. The mean source size along r is
estimated by 21r, where

1f=l dav, de)quJrﬂdt/l av | elx, t)de (27)

We define the matrix
wo= Vg et (28)
Then lf can be written as a quadratic form:

lf =r  Wr {29)

T,
where r is the transpose of r.
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From (29)it follows that a source region has the least
size along that eigenvector of W corresponding to the least
eigenvalue and the greatest size along that eigenvector of
the same matrix corresponding to the greatest eigenvalue.

To interpret the moment ctti‘,the last of the moments of
cix,t) of total degree 0,1, and 2, we consider the following
problem. Amcng peints x = x0+ vt that move at uniform velocity,
find the one around which c¢{x,t) is concentrated in the best

manner in the sense of minimizing the function

dix v} = J av_ | ctx. o (x—xu-vt)T(x—xo—vt)dt ) £30)
2

As shown by Backus (1977), the solution is

2

X, =9, Vvt . v =w / (a1) (31)
where

w = c(nt)(qr'Tc, / RCILLE

Instantaneous source and estimation of its mean geometrical
parameters. Unelastic motion inveclves various domains of the
space as a result of source action. The source region discussed
above is the union of all these domains . An instantaneous
source is understood to be a time-variable volume which at each
instant of time includes points where anelastic motion occurs,
i.e.. the glut stresses are functions of time. In our opinion,
even approximate estimates of time-averaged geometrical parame-
ters for such a region may be useful in studying the processes
taking place at the earthquake source.

Thus, a point x at time tn belongs to an instantaneous
source, if Fi](x.t] is not identically zero within any vicinity
of t,- In a similar fashion to the above, we consider a scalar
field ci(x,t) given by (29) instead of a tensor field Fij(x,t):
at each instant of time the instantaneous source 1is a region
at each point of which cix,t) is not identically zero within any
vicinity of t,-

An instantaneous rentreoid is understood to be ql{t} as given

by formula

_.8_
git) = clx, t)xdv_/ 1 clx. t)dv, (323
As cf{x,t) 2 0, {32} defines the function for which the

following functicnal attains its minimum

F[z(t)] = | at c(x.t)[x—ztt)]][x—z(t)]dvx. (33)

As to the times t at which ci{x,t) = 0 over x, qi{t) may be de-
fined in any manner for these.

Similarly to (27), the mean size of an instantaneous
source aleng r is estimated by 2dr, where

7

o . )
d; = dv; c{x,t){[x-q(t)]r} dt / l dV; cix, thde . {34}

An estimate of d’r is thus obtained from knowledge of q{t} that
minimizes (33) . The solution {32) is expressed in terms of
the spatial moments of ci{x,t) which we do not know. We wish to
express dr in terms of the spatio-temporal moments {20) of
c{x,t). In the general c¢ase this can be done only approximately.
Namely., the q(t) in {34} will be fitted by a function vy(¢t)
that minimizes {(33) among polynomials of degree n. The existence
and uniqueness of this minimum was proved by Bukchin (1989).

We are going to derive explicit formulas for a linear appro-
ximation of q(t), i.e., when n=1. The mininizing function is then
identical with {30) discussed in Backus (1977) and

yith = q+ Ce-v_bw/ Ayt {35)

i.e., y{t} is the radius-vecter of a peint moving at a constant
velocity w/(A1)2, and which is at q at time T
Substituting y(t) from (35} into {(34) and denoting the appro-

ximate value of dr by dr, we get

.2 . wiw
d =r [ W - 2] r . {36)
’ (at1)
Note that the estimate dr iz an upper bound cn d‘, i.e., the

inegquality dr S d' holds.

Within the approximation considered, an instantaneous source
1



W W

(!‘\a)‘:
corresponding to the least eigenvaluc while the greatest size

has the least mean size along the eigenvector of W -

is along the eigenvector corresponding greatest eigenvalue of
the same matrix.

Estimation of averaged local source duration, Anelastic mo-
tion is excited at different points of the socurce region during
different time intervals that make up the source duration whose
estimation was discussed above. The local source duration at point
X, is understood to be the time interval during which anelastic
motion occurs at the point, i.e., c(xu.t) is different from zero.

The local time centroid 1(x) is defined toc be

{x) = cix, t)yedt / cix, thdt . (37}

bl
Here x belongs to the source region, so that I cix, t)dt # 0.
o

Since ci{x,t) z 0, {37} minimizes the functional
Q [w(x)] = l dv; c(x,t)[t*w(x)]zdt R {38)
i.e., 9(x) = 1{x) is the point where { is a minimum.

The space—averaged local source duration will be estimated
by 246 where, similarly to (25},

(ABlz = l dV* c(x,t)[c-1(xl]2dt / i dV; clx, t)ydt . {39)
From (38) , {39} it follows that
(28)* = o [vix)]/e*™ . (40}

The estimate 48 is this obtained by minimizing Q. In a similar
fashion to the estimation of the mean instantaneous sourse
sizes, A8 can only approximately be expressed in terms of the
spatio-temporal moments of c{x,t). 1(x) in ({40) can be fitted

by a function 8(x) that minimizes @ among polynomials of degree

nn in x. The existence and uniqueness of this minimum was proved
by Bukchin {1989).

Let the polynomial 0(x)} is such that Q [O(x)] is the minimum

- 10 -

of Q. Then ta0)° will be approximated by

(a8)*= ¢ [otx)]sc'®? . (41}
One can easily see that a8 £ AO must be true.
We'll consider the linear approximation of t{x), i.e., n=1, in
some detail. The expression for 6(x) ¢an then be written as
—_— T -
Bi{x} = 1+ u (x qc) . (42)
From {42) one can see that 0(x) is the arrival time at point x

for a plane with the normal u/lul propagating at velocity u/(uu),
so that B(qc) = T, We denote this plane by Iy, here u is the
slowness vector.

It is easy to get relations

T=1., Ww=Wu., (43)

Whence we obtain

0x) = T+ wW tx-q) . (44)
(a91%= (A - w'w lw . (45)
Formulas {26} and (29%9) provide estimates for overall

source duration and the mean socurce sizes, formulas {45)
and (36) estimate space—-averaged local source duration and the

time-averaged sizes of an instantaneous source. We now

derive a relation connecting these quantities. Let Zlu estimate

the scurce size along the normal to EB, and let 2du be time-

averaged size of an instantaneous source in the same
direction. Then we put r = u / ¥y u u in (29} and (36} and,

remembering that u = w'1w, derive from (29), {36} and {45)

d /1 = a8/at . (46)
u u

Provided the local source duration is small compared with the
overall source duration, i.e., A8/AT « 1, it follows from (29},
[(36) and {45) that the approximate relation A6 =~ lul1u holds,
so from (46} we get
d, /86 ~ 1/lul (47)

{one should remember that 1/lul is the velocity of the plane Ea).

opy
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Relations {46) and (47) demonstrate consistency between the
estimates of spatial (29), {36} and temporal ({25}, {45)
parameters of an earthquake source.

Relation between the moments of a stress glut tensor and
the moments of an egquivalent force. The displacement field exci-
ted by a source with the stress glut tensor F‘J(x,t} is the so-
lution te the boundary value problem (1) through (4} (the force fl
should be replaced by the eguivalent force g, given by {9} ).
Since the problem is correctly formulated, the equivalent force
gl(x,t) is uniguely determined by the displacement field ul(x,t)

due to it, while the stress glut tensor Fii(x,t), as can be deduced

from {9} , is determined by the displacehents {through gix. t)),
apart from the tensor Fi,€x,t) for which the following equality is
true

r . = 0

biLd
Determination of gI(x,t) based on (1) through (2} re-
quires knowledge of the displacement u(x, t) at any peint within

the medium. If we are interested in the moments of the equivalent
« . . . : . S (m, o}

force g “;") , ©or in those of its time derivative g‘“k" .
ik L

1 m 1 m

these can, as will be shown below, be expressed in terms of the

displacement or its spectrum at some finite number of peints at

“im,n)

tnenlang g are given by

the free surface {the moments of ¢

(18) with Fl' replaced by g, or él, respectively}.

We wish to find out whether the moments of rlj can be ex-
pressed in terms of those of an equivalent force. From the defi-
nition of moments of él and Fij {18) ,formula {9} , and the

Gauss-0Ostrogradsky theorem we have

:"""m = g:“-"’m «0 {48)
(m,n} _ plme1,0)
ik K tg.r) = rik L.k (q.1) +
1 m 1 2 m
{im-1,n) S{m-1,n)
+ r:k e w {g,1) + + Fik ‘h N (g, ) . (49)
2 3 m 1 1 m-1
nezo , me 1l ; i,k‘. .km =1,2.3

Relation {48) 1is mnatural, since the zero (spatially) moment

- 12 -

of g is the resultant of internal forces. The summation on the

right~hand side of (49) involves all elements of the moment
") Sbtained by cyclic permutation of Koowoiik .

Fixing m and n, and assuming some values of i,k1,...,km,
one can ocobtain from {49} a set of equations for the elements
of ftj;i”f'k (g,1). When m = 1, (49) becomes

3 ma1
SN PRITE T S ST (50}

From {18} and the symmetry of fji one deduces the symmetry of

={m,n)

I_],kl ,,l(m

with respect to 1i,3i and kI,...,k ,  the moment
m

Ctm,n) . . .
I"k" , being symmetric with respect to k... k. Formula
H - m
1 m

(50) gives the result that é:f:” is symmetric with respect

to 1 and k. In the general case the number of different elements

of ':TT:”” . which has the above symmetries is given by
R D T |
= +
Nf im (m 1)
To sum up, the number cf unknowns in {49) is N% . The number

of equations is determined by the number of different elements

s Am,nd
of !
1k Lk
1 m

number is

taking its symmetry for m &z 2 into account, this

Ng= 3{ml) {m+2})/2

The discussion in Baskus and Mulcahy (1976} shows that the
equations are linearly independent. Thus, when m 2z 2, formula

(49) defines a set of Nb equations in Nb unknowns, and
= - = + -
N Nf Ng 3(m 1} {m 2¥/2 . (51)
It is easy to see that we have N = 0 when m = 2, i.e., the num-
ber of equations equals the number of unknowns. Formula (49)

then becomes

(1,0t

S (2,0} _ opit,n) \
9ok k (q.1) = rlk ik (g1} + r.u;k fq. 7). (52)
1 2 1 2 2 1
A cyclic permutation of i,k1,k2 on the left-hand side of {52}
yields
Y _ opil,m . N ]
. I(q,n) = Fk k‘.(q,l) + lk “k.(q,z) {53
1 2 1 2 1 o



. 13 -
“{2Z,n) 3 _ nwi1,n) S, nd
Wl (q,1v}) = Fk<“k {g.1} + !k k,.(q'IJ (54)
2 1 2 1 271
The single solution of (52} through {54} 1is
{1, nk _
rlk‘;k_‘q") -
- {55}
<(2,n) {Z,n) _oot2,n)
= 0’5[ gl;kk (q.u)+ gk;k i(q",i g, sk ‘q'I)]'
12 2 2’
To sum up, the moments of F("'L"] for m s 2 are uniquely expres-—
sed in terms of ¢g'™"' by formulas {50) and (55%) . When m 2 2,
the number of unknowns in {49) exceeds the number of equati-
ons (see (51} ) and moments of the stress glut tensor cannot

be uniquely expressed in terms of those of the equivalent force.
This can however be done by using some prior information om the
source. Assumption that the source is a plane ideal fault, for
example, will provide such a unigness.

Relation between the displacement field and the moments of the
equivalent force.
We are going to discuss relations that connect observed displace-
ments with the moments of the eguivalent force and can be used to
estimate the moments.

Replacing f: by bi in (6) , we get a formula that expresses
the displacement u, in terms of the derivative ¢f the equivalent

force gj:
t
e +
u {x, t) = de I H”(x.y.t-ﬂgj(y,t}dvy .
] Q

Replacing in the expression the function Hij(x,y,t-t) by its

Taylor series in powers of y and in powers of 1. we get

o LY ( 1)" ¢ )
= - . m,n
Ui(xrt) m?‘l ngﬂm!n! gl;kl. mto'oJ X
(56)
a" a 9
X _ - — H (x.,y.t)]

at" dyk dyk i y=0

1 m

Expanding HiJ in powers of y , we assume the elastic parameters

- 14 -

to be sufficiently smooth. We have for the Fourier transforms

u.(x,m) and Hlj(x,y,m! from (56}
[+ o n
- _ (=1) - (m,n)
u (xw) = I I atar Yiie ok (0.0) x
mm=l neQ 1 m
{57}
R a a .
X {iw) ) 5—— H”(x,y,w)ly o
9, ¥,
1 L]
Since {66} and {57} involve infinite series, these rela-
tions cannot be used to compute the moments g™ "', However,

when the displacement function u.(x,t) and the integral of Green
function Hlj(x,y,t) have been lowpass filtered, the terms in

(56) and (57) start to decrease with m and n increasing
and one might then restrict oneself to considering finite sums
only.

Most of the low-frequency displacement energy is usually
transported by surface waves. The long-period displacements or
their spectrum in a surface wave can be represented by ({56}
and {57} , respectively. Hlj is to be replaced by the integral
of the appropriate long-period surface wave Green function for
the mTQEl and wave type in hand, and ﬁ‘j by the spectrum
G

{iw) "6 ..
i

Let ui(x,m) in {57} be the low-frequency spectrum of such

a wave, From formulas for ij one can deduce that the gquantity

a/ayk ...6/ayk H is proportional to w". We choose the time ori-

i
1
gin so¢ that the source starts at an instant clese to t=0, while
the origin of coordinates is chosen at a point that is close to

the region & or belongs to it. Let L=max* € lel. Then the moment

b'”'“’(o,o) does not exceed a value proportional to L"t: (ts is the

source duration). Assuming L and t, to be proportional guantities
for a seismic source, we conclude that, when wt < 1, the terms in
{57) decay at least as rapidly as (mte)m’". Thus, the infinite
sums in (56) and {57) can, with adequate accuracy for low
enough frequencies w, be replaced by sums invelving a few first
terms such that m + n £ M . Representing in this form displace-
ments (or their spectrum) in surface waves recorded at a number

of sites at the free surface, we can derive a set of equations

T

i T

i

L
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n

A - q )
for determining the moments g of total degree m + n = M .

Different types of surface waves and different modes yield inde-
pendent equaticns for é'm‘"] , as they contain different kinds
of information on the source preocesses. The moments can be simi-
larly estimated using body wave records,

We wish to note that the spatio-temporal parameters of an
earthquake socurce cannot be estimated directly from the moments
of the equivalent force {without using the moments of the stress
glut tensor), because the zero spatial moment of bi is identically

zeroisee formula {48) ).

- 16 -

SOURCE PARAMETERS' ESTIMATION FROM LONG PERIOD SURFACE WAVE DATA

Relation between displacement field
and seismic moment tensor
Let us consider a low frequency part of spectrum of the k-th
component of displacements carried by some Love or Rayleigh mode
uk(r,MJ. If frequency o is small (time duration of the source is
much smaller than period, and size of the source region is much
smaller than wave length), then we can approximate the source by
an instant point source and express uk(r,m) by formula
uk(r,w) = -(i/m)M;“ka,“(r,s,w} {58}

{we take into account only the first term for m = 1 and n=9 in

formula (57), Moo= F;3'01= 6::;”)).
Here an ~ elements of seismic moment tensor; r - point of regist-
ration; s - radius-vector of the source; ka(r,s,m) - Fourier
transform of surface wave part of Green function, which corres-
ponds to a given Love or Rayleigh mode:

ka.n!r,s,m) = akarr,s,m)/ds".
The summation convention for repeated subscripts is used
{m,n = 1,2,3; 1 corresponds to vertical coordinate z, 2 and 3 -
to horizontal coordinates x and y).

We'll consider only media with smooth horizontal inhomogene-
ity. It means that variation of properties is small along any
horizontal direction, in comparison with wave length.

For this assumption surface waves spectral parameters are
locally determined (they depend on horizontal coordinates x and y)
and are the same as in horizontally homogeneous medium with the
same structure as under the surface point (x,y}.

In this case function G'”.l can be described by formula

(m)

¢, (r.s.of = (-1 2aE Y o ,0,00) W Lm0, X
X exp({-ip) , (59)
where A = 1//8nu exp(—in/4)//(vcr)ln (CI)|" Jlw,r} ; © = oL/v :

v - phase velocity; ¢ - group velocity; Mﬂ marks the medium at

the source region and M - the medium near the station;

I= p[vig’[m,zl]?dz for Love wave (p - density),

I = Ip{[v("{m,z}]3+[V(2)(m,z}]J}dz for Rayleigh wave;
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2 M - .
V"’, V( - vertical and radial compoenents of vector eigenfunc-

tion of Rayleigh differential operator; V‘J)~ eigenfunction of

Love differential operator; V=L/I Q% - average phase velocity
L

along the path; L - the ray from 8 te r; s = {h,0,0); r - a point
on the free surface; L - the length of the ray L; J - geometrical
spreading;

for Love wave

w(lj(m,z,o) = 0, H(z’{m,z,m) = -i sing V(3){u,z),

(3) (3]

W fu,z,9) = 1 cosgp V (w,z);

for Rayleigh wave
W(l'(m,z,w) = V(I)(m,z). W(Z)fm,z,w) = -i cosg V(ZJ(m,z).
¥ (w,z,9)=—i sine v e,z
@ - initial azimuth of the ray L.

Derivatives ka , are determined by equations

m{m=-1)72 (k) £m)
Gy y = (1) " AW (@, 0,00, W (ﬁ,h,w)/&z[n.x
L]
X expi-iw} . (60)
Gk_.2= it cose G, _ . Gu.,3= i¢ sing G v

where £=w/v.

This same formulas [(58)-(60) describe generation of surface
- waves by instant point source in the case, when there are sharp
boundaries in the medium, but the scattering of energy at these
boundaries is small. This assumption can be made for the wide
class of models of media (Levshin, 1985). It is clear from for-
mula (59) that the Green function depends on the structure of
medium in the source region and in the region of station, on the
average phase velocity along the path and on the geometrical
spreading J{w,r).

If all this characteristics of medium are known the repre-
sentation (58) of the spectrum of displacements of surface waves
recorded at several points on the free surface for a set of fre-
quencies o gives us possibility to obtain a system of linear
equations for elements of seismic moment tensor. Different types
of waves give independent equations.

Main features of moment tensor correspondent to a plain
ideal fault

Let we assume that the source is a plain ideal fault - a shear
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dislocation. Let I be the plane of displacement discontinuity with

the unit normal n. Then the stress glut tensoer Flk{x.t) is given

by (12). For the moment tensor M,k= F“ﬁ:’ we have in this case
Mjk = njak + nhaj {61)
where

a= | dt I u(x)[bktx,t)]di = l u(x)[uh(x,m)]d{

Since [uh(x,t)] lies in E, the vector a lies in the same plane
and is orthogonal to n, i.e., an = 0 is true. Let b = a x n be
a vector that is orthogonal both to a and n. We then have nubk =
akbk = 0. Multiplying both sides of (61) by bk and summing
over k, we get Mjhbk = @, i.e., the matrix M has the eigen-
vector b corresponding to the zero eigenvalue. It is also easy
to see that M has a zero trace, for fErom (61) we have

Tr M = anak= 0 .

However since the sum of the eigenvalues of M equals the
trace, while one of the eigenvalues is zero, it follows that the
sum of the other twc must be zero. Hence, denoting the eigenva-

lues of M as A A A_, we have Al=1, A2=—k, AJ=0. Since

2’ 3
M is symmetric, the eigenvectors are mutually orthogonal
and form a basis on which Mjk is

M“ = Aajlaklw lajzak2 ’ {62}
i.e., all elements kﬁk are zZero, except M11= A and M11= -A.
Multiplying both sides of (61} by n, and summing over k, we get

ij as= & (63)

On the other hand, from (62) it follows that the following re-
lation must hold on the hasis composed of the eigenvectors of M

Mjk n.= A(n16 - nzﬁjz) . (64}

on the same basis, from (63) and (64) we have
|

IR}
a] = A(nlbjl— nzajz
Multiplying this by n. we get A(nf - n:) = 0 or nf=n§ (a3=
n, o= 0, a + b, n L+ b). Hence n bisects the vertical angles made
by those eigenvectors of M corresponding to nonzero eigenvalues.

The vector a bisects the other pair of angles made by the same

e

e

E

e
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vectors. So if moment tensor corresponding to an ideal fault is
determined then a pair of vectors a and n are determined too. But
one cannct distinguish between the two vectors based on knowledge

of the moment M alone.

Nonlinear invertion for moment tensor and source depth

As it was mentioned above if all characteristics of medium
are known the representation {58} of the spectrum cof displacements
in surface waves gives us a system of linear equations for elements
of seiamic moment tensor. But usualy the average phase velocities
along the waves' paths are very poorly known. In this case the
seismic moment tensor, depth of the source and corrections for
zero approximation of phase velocities of surface waves averaged
along paths can be determined by iterative procedure.

Let uk(r,m) - observed spectrum and uk(ifr.m) - theoretical
spectrum determined at i-th iteration by formulas (58)-(60) for
M o=u n= Y s ¢(il. Here MO0 e wO ey ANt
mn mn "mn | n mn
P N L P L I L L

0 o

M;:}— solution of the system (58) for h = hu and @ = @ = mL/VU,
where h0 and v,~ Zero approximation of depth of the source and
phase velocity.

Using a linear approximation of the dependence of deviation
uk(r,m)—uk(i'1zr,m) on corrections Aﬂmilf ah “dnd av '''we can

get an equation for these corrections

w (r,o)-u, ey = < tiseh (Ml esame T (s, 0080 e
k k mn kw,n
. . {65}
. G("lfr,s,m}hﬂf"] R T (L aysett).
km, n mn k
Here Gi;':'(r,s,m) correspondent to h = 17 ana g = ¢t

The summation convention for repeated subscripts is used.

Complex equation {(65) can be replaced by a pair of independent real
equations. A pair of such equations for AMLL', ah'' ana Aw‘i}
corresponds to every station for each mode and frequency. If we
measured spectra of displacements in surface waves at a few
points at the free surface for a set of frequencies we can get a
system of linear equations for chosen model of medium. The least
square solution of such a system <can be obtained at every
iteration.

After corrections Ay are found corrections of average
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phase velocities {under condition that the origin time of the

source and epicenter are known} can be calculated using relation
a(l/v) = sw/ (wL)

In conclusion of this section we'll show that soluticn obtained

above is not unigue.

We have from relations {(58}-(60):

u, (r.0) = 0 (0,0)P( hvlexp|-i0(r.a)] {66)
where Q fw,0) = -(i/o)aW'"’ (0.0.0) ;
for Love wave
(g a
Plo h,ot = £v'7 (o, 1) [0.5sin200 - M, ) + cos2e M, ]| +
(a)
. av {w,h} : _ .
* 4 eyt (sine M _- cose ij) H
for Rayleigh wave (1)
_ av (w,h) _
Plo,h,s) = Mo T
2 A - {2}
- (Mzzcos P + M3351n ¢ + M?351n2m)§V {w,h) +
1)
. . (1) av [to, h)
+ I (Mlzcosw + M1351n¢l[£V (w.h} + -H*Ag;—-—]

It is clear from appearance of the multiplier Plw.h,9) in
formula (66} that unique values of elements Mij and phases wir,w}
van not be determined simultaneously. If elements M‘2 and M13 will
be multiplied by -1, or all other elements of moment tensor will
change their signs, magnitude of the right part of relation {66}
will not change for all values of frequency o and azimuth ¢ and
variation of its phase can be compensated by correcting propaga-
tion phases wi{r,w). As a result there are four different moment

tensor solutions.

Direct trial of possible focal mechanisms

Assuming that the source is a plane ideal fault let us
consider a rough grid in space of angles (dip, strike, and rake}
determining a focal mechanism of the source,

Let models of media in the source regiom and in the stations
regions be given and coordinates and initial time of the source
be fixed.

Using formula {58} we can calculate theoretical values of
surface waves spectra for every possible focal mechanism. Compari-
son of calculated and observed spectra gives us scalar moment and
normalized residual. Results of this comparison can be represen-

ted by maps of residuals corresponding to all possible directions
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of compression and tension axes {in stereographic projection}.

References
We can obtain amplitudes residuals map as well as amplitude- 1. Aki K., Richards P.G., 1980. Quantitative Seismology. Vel. 1.
phase residuals map. Let u'''ir,e) be any observed value of 558 p.p. W.H.Freeman and Company, San Francisco, California.
displacement spectrum, i=1,....N, e‘;:, - corresponding residual 2. Backus G., Mulcahy M., 1976. Moment tenscrs and other phenomeno-
of |u(i)(r.u)|. sli)- residual of arg(u'?’(r,e)), J=1,....n. logical descriptions of seismic sources. Pt.l. Continuous displace-
We define normalized amplitude residual by formula ments// Geophys. J. Roy. Astron. Soc., Vol. 46. p.p. 341-362.
R - [( ; s(.)z,/( ; |u("(r,mllzl]112. 3. Backus G., 1977. Interpreting the seismic glut moments of total
are ian TP imt degree two or less// Geophys. J. Roy. Astrom. Soc., Vol. 51. p.p.

normalized phase residual : by f;)r:mula”2 125

Bph= % [(7515;:) Y/n ] ' 4. Bukchin B.G.,1989. Estimation of earthquake source parameters.
and amplitude-phase resida;l e - by formula In: Keilis-Borok V.I. (editor), 198%. Seismic surface waves in a

e = 1 - (l_aamp)(1“°phl' laterally inhomogeneous earth, Dortrecht, Kluwer Academic
We may use phase information not for all observed data, but for Publishers. p.p. 229-243.
any part of it {n < N). Say, for more or less homogeneous paths, 5. Levshin A.L., 1985. Effects of lateral inhomogenity on sur-
or for leng periods only. face wave amplitude measurements// Annales Geophysicae, 3, 4,

In the case of amplitudes residuals tension and compression p-p. 511-518.

axes can not be distinguished and map is symmetric with respect 6. Kostrov B.V.,1970. Theory of tectonic earthquake sources. Izv.
to the center (as it was shown , every solution has three AN SSSR, Fizika Zemli {Solid Earth), No.4, p.p. 84-101.

equivalent solutions). By use of any apriory phase information
{values of phase velocities of any surface wave under consideration
for chosen frequencies) it is possible to obtain a map of residuals
distribution for tension axis as well as for compression axis. The
best solution is unique in this case.

Results of direct trial can be used as zero approximation for
iterative procedure described above.

wy—

T

-



