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A.L.LEVSHIN
SURFACE WAVES FUNDAMENTALS
INTRODUCTION

Surface waves form the longest and strongest portion of a
seismic record excited by explosions and shallow earthquakes.
Traversing areas with diverse geologic structures, they "absorb”
information on the properties of these areas which is best re-
flected in dispersion, the dependence of velocity on frequency.
The other properties of these waves - polarization, frequency
content, attenuation, azimuthal variation of the amplitude and
phase - are also controlled by the medium between the source
and the recording station; some of these are affected by the
properties of the source itself and by the conditions arcund it.

In recent years surface wave seismology has becoms an
indispensable part of seismological practice. The maximum ampli-
tude in the surface wave train of virtually every earthquake or
major explosicn is being measured and wused by all national and
international seismwmeclogical surveys in the determination of the
most important energy parameter of a seismic source, namely, Ms
magnitude. The relationship between Hs and the body wave magni-
tude my is routinely employed in identification of underground
nuclear explosions., Surface waves of hundreds of earthquakes
recorded every year are being analysed to estimate the seismic
moment tensor of earthquake sources,to determine the periods of
free pscillations of the Earth,to construct regional dispersion
curves from which in turn ¢rustal and upper mantle structure in
various areas is derived,to evaluate the dissipative parameters
of the mantle material. Work began on surface wave "tomography"”
of the Earth's mantle - indentification of lateral inhomogenei-
ties and elastic anisotropy from worldwide seismic observations.
Surface waves from explosions and earthquakes are being used to
study hardly accessible areas, for instance, in a search for
major sedimentary basins in the arctic shelf.

These spectacular successes of surface wave seismology
have been made possible by recent developments in long-period
seismic instrumentation, seismic arrays, the array-like use of

national and international networks of long-period stations.

On the other hand, computerization helped to develop
methods for analysis of surface wave observations that could
more accurately estimate surface wave dispersion and polariza-
tion. Techniques of quantitative data interpretation have been
developed that can effectively determine velocity and density
models consistent with the observations and evaluate the non-
uniqueness and resolution of the data.

All these results were essentially based on an advanced
theory and efficient techniques for calculating the spectral
characteristics and wave fields of surface waves in vertically
and radially varying structures, Further development extended
some of these results to the media with lateral inhomogeneities.
Two types of lateral inhomogeneity were treated in details.

One of them is a sharp discontinuity between two vertically
inhomogeneous quarter-spaces. The other one is characterized by
very smooth variations of properties along horizontal directions.
These lectures will present a short introductieon to funda-
mentals of surface wave propagation in the Earth. No proof of
statements concerning surface wave properties will be given. For
more detailed information see Aki & Richards,1980;
Ben-Menahem & Singh,1981;Keilis-Borok {ed), 1989,

BASICS OF THE SURFACE WAVES PROPAGATION THEORY

a. What are surface waves?

Seismic waves radiated by a natural or artificial source propagate
in all direction outward the point or zone of excitation. So the
wave fronts or surfaces of egual phase are close to spherical ones.
The energy which is transferred by such a body wave decays with a

distance from the source as R". Although in the course of further
propagation through inhomogeneous medium the form of body wave
fronts becomes distorted they penetrate at the all parts of the
medium according to rules of geometrical seismics. 5¢ body wave
propagation is essentially three-dimensional and in general there
is no preferable direction or limitations for propagation except
the Earth surface. As velocities as paths of body waves having
different frequency content are basically the same.

Surface {and their close relatives channel) waves have

i -

i

s



essentially different manner of propagation. The necessary
condition for their generation is existence of some discontinuity
of elastic properties or a waveguide with velocities of elastic
waves being lower than in surrounding medium. They concentrate
near such a discontinuity or inside such a waveguide and
propagate along them. As a result their propagation is essentially
two-dimensional, i.e., they may be considered as propagating waves
in (horizontal) x,y - directions and standing waves in the third

(vertical) z -direction. Their surfaces of constant phase are

cylindrical and their amplitudes decay with the horizontal distance

~-1f2

from the source r as r . So a stationary surface wave 1s decribed

by expression

-1/2
£(z) (r) exp (iot-iefw,r}),

where t iB a time, w is a circular frequency., fiz) is a distribu-
tion of an amplitude,with depth; this distribution may be gquite
complicated but for big enough 2z it decays exponentialy. Phase

¢lo,r) = wr/C{e} and C{e) is a phase velocity.The volume which is
illuminated by a propagating surface wave depends on its frequency

and increases in direction perpendicular to the propagation
direction as a frequency becomes lower. So the reason for higher
intensity of surface waves lies in the two- dimensional character
of their propagation.

The simplest well-known example of surface waves is a Rayleigh
wave along the free boundary of homogeneous isotropic elastic half-
space. Another simple wave of this type is an interface Stoneley
wave along the boundary of elastic and liquid halfspaces or two
elastic halfspaces with special properties. Both types of waves
can be described as superposition of inhomogenecus longitudinal
and shear plane waves propagating with the same phase velocity C
independent on frequency.

The phase velocity of Rayleigh waves C'g is in the range of

0.87b< Cﬂ<0.96b , where b is the shear velocity in a halfspace,

and depends on the Poisson ratioc (see APPENDIX 2). The phase
velocity of Stoneley wave C‘,t is less than minimal body wave

velocity in the medium and depends on elastic parameters of both

halfspaces.

More general type of surface (or channel) waves is generated
in presence of waveguides able to tunnel the wave energy. Typical
examples of waveguides are shown at Fig.l. Such waves can be
considered as a result of constructive interference of infinetely
big number ¢f elementary body waves. Each elementary wave has
some phase delay depending on the wave path, presence of
caustics and phase shifts in result of reflections at disconti-
nuities.. The constructive interference may take place when these
elementary waves have the same phase velocity and the same phase
delay. It is possible only at some frequencies. As result their
phase velocity depends on frequency. Many properties of these
interferentional waves especially in high frequency range may be
deduced from the ray theory. The real Earth models combine
discontinuities of physical properties and waveguides of different
types. It makes all phenomena connected with surface wave
propagation more complicated and difficult for analysis. It is
essential to use efficient computer codes for their studies.

Now we will give more accurate description of surface

waves. At first we'll formulate basic elements of the problem.
b.Basic equations.

Surface waves are considered within the framework of linear
elasticity theory, mainly for perfectly elastic bodies.
Internal sources of disturbance are described by means of equi-
valent forces. Small departures from perfect elasticity in
wave propagation theory can be treated by means of perturbation
theory.

Equations of motion. Equations of motion for a peint x

with coordinates (xl,xz,xa) acted on by body forces have the
form { Aki and Richards, 1980 )}

L + fl = pﬁ;. (1.1)
Here the Ulj are components of the symmetrical stress tensor;
the fi's are components of body force per unit volume; p is the

density:; the ui's, components of the displacement vector. The
subscripts i,j take on the values 1,2,3. A symbel with a dot

above it denotes a time derivative, a subscript j when preceded



oy

by a comma means differentiation with respect to the spatial
coordinates X Summation over double {mute) subscript is
understood everywhere below, unless otherwise indicated.

° The stress tensor 1is linearly related to small strains
e through Hooke's law

ij

o (1.2)

lj=clquepu
ciqu being a tensor of elasticity constants that depends on x.

It has the symmetries ciqu=c“pq=c“qp=c“”.

Subsequent discussion is mainly confined to isotropic

: = AL & + 8 & + & b
bodies €iipg 13 pq ul ip Iq iq JP) !

°11 being the Kronecker delta. The Lame constants A and u

determine the velocities of elastic waves, a and b:

a= [(r + 2u)/p]”2 for compressional (P) waves,
b= [l.l/p}”2 for shear {(S) waves,
Hooke's law for isotropic media has the form
AS O + 2ue (1.3)

oij = Y] i)
where @ =e _ is the dilatation.
Small strains and displacements are related through
e, = 1/2 (z.li‘j + uLi) {1.4}
Initial conditions. The medium is assumed to be at rest
before the time t=0:
"J' u e 0 when t<0. {1.5)

]
Boundary conditions. Any elastic body that we shall consi-

der below is bounded { wholly or partially} by a free surface So.

This means that the following relation holds

Ti(n) = g = 0 (1.8)

s,
where the nj are compenents of the cutward normal to S, m. Here
and below, the Tn(n) are components of traction T{n), i.e., the
force on an element of area dSB.

Conditions at interfaces. The functions ai{x), bi(x}, p(x)
are assumed to be positive and piecewise continuous. There is
welded contact at any surface where these functions are
discontinuous, i.e., the displacement vector u and stress
tensor o, are continuous across an interface.

Sources of disturbance. Elastic motion is excited by a
vector field of body force f that is a function of spatial and

time coordinates (its physical meaning will be discussed later
by Dr.Bukchin}.

It will be assumed in what follows that the field is
spatially finite, i.e. fj(x.t)=0 outside some closed region 2, v
which will be termed the source region.

T

The time derivative of fj is assumed to be a finite function

of time,i.e. f (x,t}=f (x,t)=0 when £0 and £ (x,t)=0 when t>t_.
Green function. To molve a forward problem in elastic wave
theory is to determine the displacement vector field uJ(x.t) and
the stress tensor field uxj(x,t) that obey Egs.{1.1),(1.3),1(1.4}
and the initial and boundary conditions {1.5)},{(1.6).
When the body force field is concentrated in space at
x, and in time at tu, and points along the xj-axis, i.e.,

fj(x,t) = aljb(x-xo)a(t—tul

8 being the Dirac delta function, the resulting displacement
u(x,t) is called the fundamental solution, or Green function for
the boundary value problem {1.1), (1.5), (1.6){(Aki and Richards,
1980}, It will be denoted 6°!’
being Glj(x;xﬂ;t-toi.

e

(x;xn;t-tul, its i-th component

The solution for an arbitrary force fJ(x,t) that is zero
when t<J can be expressed in terms of the Green function as

follows
t

u (x, t) = Id%IGlj(x:y;t - T)fj(y,T)dV; (1.7)

o Q .
where dV is an element of the volume @ (source region) within b

which fj(x,c] is not identically zero.

L i

¢. Surface waves due to a point source in a vertically
varving half-space .

We shall now confine ourselves to considering a far more
restricted class of models compared with those outlined above,
viz.,ones in which the properties of the medium are functions of
a single coordinate., The theory of surface waves for such media
is fairly complete (Levshin, 1973; Aki and Richards, 1980,
Ben-Menahem and Singh,1981); we shall briefly summarize it below.

We shall deal with a vertically varying half-space having L
the cartesian coordinates x = x, (- &x< » ), y = x, (-® <y<w ), ;

1
z = x, {0 ¢z<®» } and bounded by a free surface S, {z=0). The

L

velocities a and b, the density p are functions of z only. The



medium is homogeneous below =z = 2, that is, al{z} = a(z2+0), ponents of the Green function in this basis will be denoted Gkn,
eq

b{z} = b(Z+0),plz) = p(Z+0) when Z<z<® ; also,b{Z+0) = max b(z), . .
where p stands for the z-,r- or e-component, the index g taking

a{Z+0)=max alz}.

It is known that the full solution u(x,t} for such a medium on the values 1,2,3.

can be represented in an integral form. Its principal part at

The com ent &kn £ a f
large f{compared with the wavelength) distances from the source pon s pq are lLoun rom

region @ to observation site is formed by surface waves. It is

-~ b expl-in/&) expl-it Dr)
supposed that the depths of both source region and observation G = . X
i i i Fa Y 8x Yy & r
site are much smaller that the horizontal distance between them. KD
The surface wave part of the solution separates into two inde- PN PN (1.8}
pendent fields u, and u, {Rayleigh and Love waves]) with 8 Vu P (e, 2) vV, 1 {a,h)
[ ]

different polarizations. We shall frequently employ the symbol D x / o e

n
{D = R or LYin what follows to indicate the relevant wave type. Y cununnrun Y oot

Green function; surface-wave part. The surface-wave part of . .
' P P Here the V;“ are eigenfunctions belonging to the discrete

. D .
the relevant Green functiom ¢ can be represented as a sum of infi- . R . .
P spectra of the one-dimensional problems discussed in details in

nitely many terms {(modes, normal waves) . . , ; .
¥ ¥ ¢ APPENDIX 1; since an eigenfunction is determined apart from a

o .0t = vk(a’(m,O) a1;

G?j= u§16t7(x;xo:t)‘ b=R.L constant, we shall assume that v,
CkD(m)=m/Ekn(m) is phase velocity, E‘D(m) being the inverse

the mode with k=1 being usually called the fundamental and the A
function of mun(E):

others , higher modes (overtones). We shall denote N .

[ dchb]

i -
kD Cun da

Fourier transforms, spectral transforms of time functions,by the

%o ] (1.9)

Ukn(w)=[T

is group velocity;I:z

same letters as their originals, but with a = above. The contri-

}

bution of each mode can then be represented as is proportional to the mean kinetic energy

transported by a mode over a cycle of oscillation

(1]
:?= %— Rej G:?(x;x 7m)elmtdh (0) = (1), 2 (2),2
3 1000= [ et ttvg 2w 2 1 dz;
kD 4]
where Gkn is the lowest frequency {the mode does not exist at {1.10)
i . =
frequencies below mku) I;f'= I p(z)[(vial)lzdz

We shall employ two sets of coordinates whose origins are at
the "epicenter" - a point at the free surface lying at the same
vertical with the source (point xo): a cartesian set (x,y,z} and
a cylindrical one {z,r,o) in which the angle ¢ is measured clock-
wise from the x-axis {as viewed from above). A force applied at
the source will be projected onto the cartesian unit vectors e,
ez, e, We also introduce at in a receiver point x a local
vector basis e , e e, for which e, is parallel to e e is

directed along the radius vector of the cylindrical system and
e, is in the direction of increasing ¢. The corresponding com-

o

The values of ap ,aq and .1'p .1'q are given in Table 1.1.

Note that (1.11) is asymptotic, being true when gkur »»1, I>*h,
r»>z. 1f these conditions are not satisfied, not only the asymp-
totic formula {1.11}) is not true, but the very separation of the
field into the “body" and “surface" wave parts may turn out to

be somewhat forced.



Table 1.1
1
b P i lp q Bq 9
z 1 1 1 icoso
R -1 2 2 ising
@ i} - 3 1
z 1] - 1 ising 3
L r 0 - 2 -icose
[ i ] 3 0 -

Displacement field due to spatially concentrated forces.
When the source is a combination of point forces
f =K {¢t)8({x~x_)
q q o

the resulting displacement becomes

v P ixix el = ¢° & (a).
[ o P9 9

This gives an asymptotic formula for u::
“vb expl-in/4) exp(-ifknr)
u o= x
P Y 8n E, T
{1.11)
te ) N
e Vv Plo,2) W (w,9,h)
x—2t
/ (0) // (o}
7 Ceo%ofun Coolvntin
where
ti b .
Wla(a v, T )K (w). (1.12)
q k q

Displacement field due to spatially concentrated dipcles.
When the source is a dipole of the form

_ 9 & (x-xo0) _
fq— mq.(t)—‘a‘i:"— {g.5=1,2,3),

the resulting displacement is

“kD_ kD
u =
P P9.," g%

(w}

. X kD .
Making use of asymptotic estimates for G:q . that do not involve

terms that would fall off with distance faster than e,

- 10 -
we get an expression for u:D of the form (1.11}, where
Wi 5% . (1.13)
qm g=

kD
qe

Like mqa, B is symmetric in ¢ and s. The formulas for B*®

are listed in table 1.2,

Formulas {1.11} to (1.13) together with the complementary
tables 1.1, 1.2 provide a conmplete asymptotic description of
surface wave fields excited by point forces and dipoles in a
vertically varying half-space. Extension to more complex point
forces is straightforward.

“*a

s

e

L o
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Table 1.2
kD
D q s Bqa
z (2)
1 1 ~E cosTe V' {w, h)
.2 (2)
2 2 -Ekns1n ® V, {w, h)
3 3 dvzl)(m.z)
dz z=nrh
R 1 2 -(1/2)e, sin2e V.? (o, h)
. (1) dv:Z)(m'Z)
1 3 |tiszrcosee, v 0 m v —g——] ]
. (1) dviaj(m,z)
2 3 (.1/2)51ntli[E“2V‘l {o, ) + ——EE——“““—"’z=b}
. €2
1 1 -(1/2) ¢ sin2e V, {w, h)
2 2 (1/2)¢, sin2e v, (a, h)
3 3 1]
L 1 2 (1/21€, cos2e V,” (e, h)
dV(a'(m,zl
1 3 {i/2)sine — |z=h
dV:E)(m,z)
2 3 - {(i/2)cose — |z=h
P
d. Physical interpretation
Formulas like (1.11), (1.13) for spectral displacement

amplitudes in surface waves can be given a simple physical
interpretation. Apart from the first factor, a complex constant,
they involve three more factors, each of these being controlled
by certain physical conditions and parameters of the observatio-

-1/2

nal procedure. The gecond factor, (Eknrl exp(—isknr),

-12 -

describes the effect of cylindrical geometrical spreading affec-
ting the energy flux of a surface wave and its propagation-

assosiated phase delay , EkDr=mr/CkB . which steadily increases
with the distance and is a nonlinear function of frequency. The
functions Cun{m,' L&D(wl, i.e,, the dispersion curves,are deter-

mined by the properties of the medium conly, namely, by the velo-
city and density distributions a{z},b{z),p(2).

When weak dissipation is present, the resulting attenuation
and the extra dispersion due to it (see below) will naturally be
incorporated in the same factor,

(1

)
The third factor. s_ V, Ple,2)lc U T

(U))—II’Z
kD kD kD

;. is controlled

by the receiver depth z and the recorded component of displace-
ment pi{p=z.r,e).Actually in a seismic experiment, the horizontal
seismometers are usually oriented east-west and north-south;
knowing the epicenter coordinates, however, one can convert the
N-§ and E-W components of the seismogram to the r- and ¢-compo-
nents by means of a simple linear transformation.

It follows from (1.11}-{1.13) that a Rayleigh wave (D=R) is
elliptically polarized in a vertical plane that contains the
source at x and the receilver at x, that is, its ¢- component is
equal to zero, while the z- and r- components have a phase dif-
ference of n/2. The direction of particle motion and the form of

(1)

. (@, z) which

the ellipse are controlled by the ratio Viz'(m,z)/V

depends on the frequency, receiver depth, and the properties of
the medium. The guantity xk(w) = [ViZ)IM.O)/Vi"{M,O)] ig called
ellipticity; it equals the ratio of horizontal and vertical axes
of the ellipse along which particles of the free surface are
moving in the process of R-wave propagation. It must be borne in
mind that it is only for purely sinusoidal oscillations that one
can speak of a strictly elliptic particle motion; particle paths
in transient motion may be very unlike ellipses, even though
remaining in the vertical plane. Love waves (D=L} have the o -
component of motion alone, i.e., are linearly polarized in a
horizontal direction normal to the Rayleigh wave peolarization
plane.

The variation of displacement amplitude over depth is fully



determined by the eigenfunctions V:Ip;m.z), i,e. by the proper-
ties of the medium, receiver depth, and the frequency, being
independent of epicentral distance r. '

When the frequency response of the recerding instrument is
to be included,the relevant complex expression can conveniently
be incorporated in the third factor.

-1/2

The last, fourth factor is W (w,e.m{c o 1'% ' ? This

kD kD KD
depends both on the medium and source parameters; source depth,
the relative locaticons of source and receiver, and the source
mechanism, i.e. the relation between components of the force
vector R;(t) or of the seismic moment tensor mq.(t}.

Expressions for " are given below for simple point sources
constructed to imitate explosions and earthquakes.
{l)Center of dilatation

dv“)

. L [ v {@,2)

dz z=h

{2)
- E.RIG)V;

(ﬁ.b)] miw)
(1.14)

W'=0
In this case the fourth factor depends on frequency,the medium,
source depth and spectrum.

{2) Point shear dislocation along a direction x
which is tangent to an area with normal n. Dencte

nx=sinv COSd ny=sin7 sina n_=cosy

ux=sins coss xy=sina sins uz=cosB
{2 and & are azimuths of the horizontal projections of n and x
as measured from the x-axis; v and p are angles which the two
vectors make with the vertical 2z2). #° can be expressed as

follows:
av'??
H*R=[2cosﬂcosv—zﬂfL—Iz_h—zeknsinﬂ siny cosl(bé-@)cos{a - w)ViZj(w,hl
. _ . av,? (e, z) .
+ i[sing sinv cos(a'—wi][zuvk (0, 8) + ———™ 8|, ]] mi{w),
(1.15)

_14_

H*L=[gkLsinv sinp sin(aoa-mlvta)

{w,h)- i(sinB cosy sin(é-¢} +
(3)

av) (o, z) .
dz z=h]m(m)

In this case the fourth factor is controlled by frequency, the

+3iny cosp sinla-9)}

medium, source depth and spectrum.as well as by source geometry,
viz., orientation of fault plane and slip vector with respect to
the source-receiver pair.

To illustrate the above expressions we present in
APPENDIX 2 some simple examples of elastic media and surface

waves arising in them.
SPHERICITY CORRECTIONS

Much of work in seismology uses surface waves that propagate
to such great distances and penetrate to such great depths as to
require corrections for the Earth's spherical shape. Indeed,
large magnitude earthquakes excite surface waves of so large an
amplitude that they can travel several times round the Earth
before dying out because of dissipation in the medium. A seismic
station then records twe sequences of waves that travel in
opposite directions.

We define a set of spherical cocrdinates with the origin at
the center of a sphere of radius Ro' putting the receiver at the
point x{R,©,9) and the scurce at xU(R.,O,D) where R‘= R, - h, and
shall consider the p~th components of displacement corresponding
to the local vector basis ep(p=R,e,¢). Let 5 be the total dista-
nce travelled by the wave:

- 9
e = (-1) 8 + 2r{l1 + g},

where 1=0,1,2,... is the number of the Earth's great circles the
wave has travelled; g = 0 or 1., depending on whether the wave
comes from the epicentre or from the opposite direction. In that
case formulas (1.11) become for ©® # jn
~kD exp(-in/4) expl-ieoR 6/C + (in/2}(21 + g)
(1] kD
qu(x:xu;m) = X

// 8n //ansiﬂe

i g ST P
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i) (i)
e V r (w,RY e V 9 [w,R )
p k q k 2

/ (0} / o)
Y CoVinun Y CooViolio

phase velocity is defined as

wR
0

c (e} = —— {1.17)

®0
Yoot 1/2

and group velocity as

U {ew) = —| R {1.18)

VARIATIONAL FORMULAS

a. Integral formulas for phase and group velocities.
The theory of perturbations yields the following integral

(1.16)

formulas for phase and group veleocity in a vertically varying

half-space:
172
2 1
1y, (2} (3), (4} 5) ) to)
+1 e (11 e rteiy
kR kR kR E kR kR £2 kR kR kR
kR KR
- 172
1) 1 (2) (o)
= +
CIIL IkL t2 Iltl /IIIL
KL

[ 1
U = 1.(1) + I(z] b o—_ [ I(’J) + I(l]] ] / [C I(O)

kR KR kR

{1.19)

(1.20)

i1) (0}

e T / Cortin
where the integrals Ii: are
o

(3)
kR

X
2) 2 (zy 1°
Iki = Ia [ [V; ] dz
x

® (1)
dv
4y .2 k (2}
I“ = ‘[ap 3z Vu dz
> (2)
dv 2
(58) _ 2 K
Ie = lb [ [ L ] dz
@ (1)
(6) FH dvk 2
Ikn = lap [ 3z ] dz
@
(1} 2 @ 12
1’llL = |bp [Vk ]dz
o
(312
I‘E) = lbzp [ dv; l dz
kL —_—
dz

{1.21}

The formulas for a radially varying sphere are similar.

b.Partial derivatives of phase velocity. Solution

of inverse

problems in surface wave seismology is greatly facilitated by

the formalism of partial derivatives which is used

to determine

phase velocity perturbations due to small perturbations in the
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velocity and density distributions.Consider a small perturbation
6x(z) in the parameter x{z} (x =a, b, or p} that vanishes every-

where except within the interval z, <« z < z., The resulting

.
phase velocity perturbation 3C (o) for a fixed frequency w is

acuntm.z)

8¢ = -[— sn(z)dz

kD
o

The kernel 3Chu/ax is a partial derivative of Clbwith respact to
¥ ({or, to be more exact, the "response" of CH_j to a b&~like
variation in x(z) at the point z). When © = constant,the aCkD/aM

are given by expressions

(1) 42
ac, _ @ [ S 1 av, ]
(o) k
da UIIRII:E Ekﬂ dz
(2) {1
3y Do [[v‘” . 1 av, . 4 av v‘z']
{0) k k
ab U elir €.n dz Ep dz

dp 2p da ab 12
(1.22)

BC“_ o
da

t2y
a, b [[ V‘“}z+ [1 av' ]ajl

(o) k
b Yo T £, dz
9, - ! 5C b - CfL [(31]2
(£0] ] x

dp 2p ab 1o

Similar formulas exist for the spherical case.

Partial derivatives of group velocity at frequency w can be

found numerically from derivatives of phase veloclity at two

close points o = mea, w,= me'a (Rodi et al,1975).

au ] vl ac ac
= —2 |2 - @ _—t — +
ax 2c} c| o ax
w o @ (03 w2
(1.23}
1 v | 1%fec ac .
+ — O =] -~ — s
2 [ Iw dx o an o

K T T i

- R
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¢.Dependence of phase velocity on the depth of an interface be-

tween layers. The variational relation stated in Woodhouse {1976)
may be used to obtain formulas for partial derivatives of phase
velocity with respect to interface depth. Let h be the depth of
some interface within a vertically varying half-space and [x]j

he the jump of any function x(z) at the interface z=h , i.e.
[x]'= x{h+0)- x(h-0). Then the following relation is valid for

Rayleigh waves

a
ackli CkR

— X
P R AR |
2 2 2 4
x {mz[[yiz»(h,] + [V:n(m] ][p]f - [——%—R] [v:"(h?] [ul®

- {1.24)

[0] 2 {2) : + dv:l) 1

- [—] [v cm] fa2ult + |arauy f—2—| |+
(o k -
kR dz

dv:z) 29+
+ |y |——
dz R
For Love waves we have

ac ¢’ 2 2 2
KL _ kL zf,., 03] + _ | @ (3) +
sl ) e - ) )

] 2o IkL

dv:a)z .
+ |u LI {1.25)
dz _
EFFECTS OF ANELASTICITY.
The stress-strain relations in a weakly dissipating medium

become integro-differential expressions {( Kogan, 1966; Akopyan,
Zharkov and Lyubimov, 1975; Aki and Richards, 1980; Levshin,
Ratnikova and Saks,1980). Propagation of harmonic waves can then

be conveniently examined by using complex frequency-dependent
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elastic moduli Klw,x), wi{e,x) instead of frequency-independent
ones K(x), u{x} for a perfectly elastic medium. Accordingly, we
have complex frequency-dependent P and S wave velocities af{w,x)
and b(e,x), respectively.

Dissipation caused by confining pressure is characterized
by the quantity Qk= Re iVIm R, while that caused by pure shear,

by 0 = Re u/Im u. Dissipation in propagating elastic waves is
controlled by Q- and Qh

Qb = Qu = Re b/Im b
2z 2 q-1
-1 4b -1 4b Re a
o = [ap (1o 2] eg ] . e
a k 3182 Woogg2 2 Im az
A frequent assumption is Q;1= 0, giving Q_.i = Qb EE?. Denote com-
4b"

plex velocity perturbations caused by small dissipation as

talw,z), $bi{w,z). The corresponding perturbations in phase velo-

city Cnn(ml can be evaluated from the perturbation theory:

T oec, te,2) ac, (o, z)
acw {a) = '[ [ - E— talw, Z} +——-é—B-—— tblw, z) ] dz

Assuming Qa, Q to be independent of frequency in a broad

b
frequency range,the velocity pertubations 8a,8b become (Akopyan,
Zharkov and Lyubimov, 1975; Aki and Richards, 1980:; Levshin,

Ratnikova and Saks, 1980}

ala )
aa(m,=_ﬂ_[_ﬁ1nz +d.3_]
e, o
(1.26)
blw )
sblw) = o [—%m @ +%]
Q i

where @ is the reference frequency for which we know the velo-
city distributions a{z), b(z). In that case

sc, () = [—iln @, 3 ]Sw(m) (1.27)

where
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w

[ atz) ac btz)  ac ]
g = J LI K0 1 g
vo WAGEET ooz |
and, for the particular case Qk = 0,
®
[ ab(2) ac, . ac, | b
Seo” I [ 3alz) oz ' 3B J-?E dz {1.28)

Knowing 6Ckntml, one can easily find the attenuation coef-
ficient for surface waves at frequency o:

w Im(3C ) w §

e (w) = = = L0 (1.29)
kD c 2 2c 2
kD kD

and the apparent th(w) as determined from surface waves:
Qmuiml = u/[2akntm)ULD(ul] {(1.30)

With dissipation present, the second factor in surface wave
displacements, {1.11) and {(1.13), becomes

kD nC’.n

kD
or, in the spherical case ,

iwéR 5
[ [ 1 -

c

v
(l
kD

, -1/2
Ds;nei exp [ -

+ 1 ~%— (21+g)] exp[—ukn(mlaxu]

SYNTHETIC SEISMOGRAMS

To pass from spectral to time representation of surface
waves, i.e., to synthetic seismograms, one should be able to
compute Fourier integrals of rapidly oscillating functions invo-
lving the factor exp(—i{hnmr], where r iz large. Wave forms can
conveniently be evaluated by using asymptotic formulas of stati-
onary phase (Copson, 1965;0lver, 1974) or Airy integrals (Olver,
1974; Pekeris, 1948).

We wWrite the spectrum of a surface wave as

, s
(¢ ) "% exp [ - —%ﬁE- [ 1 - —8& _ 1n —%; ] ] exp[-a (v} 1]
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u:p - 1 ¢:U(w,h,z,w} exp[—i{k“(wlr].
yr
where Q:D is a complex-valued function that slowly oscillates

when » is varied. In that case

M = =2 ReI ¢ *Plw) explilut-t (w)r)] du =
q n'r 9 kb
kD
U (o) ¢ ()
wf2 L ep—t L _t1 ) x (1.31)
/Td0_Tal7da]

WED
§

dw
where stationary phase points mj(t) are roots of the equation
r~r/UkD(u)= 0.
The approximation (1.56) is valid within those frequency

n dUkD(o) -
x exp [ imt—i&ku(w r + 4 3 sign ] + olr ) .

ranges where dU;D{m)/dh does not vanish, the conditions being
stated more precisely by Pekeris (1948). To evaluate the contri-
bution due to the vicinity of « where dU, (w}/dw = 0 (called
Airy phase), one needs the Airy integral

as3 dlul E{t)
ity = 2 1__ ge .
q /—]—l- rslﬁ 3 3 1/3
[ - de, Jde| = ]
' {1.32}
f3

« explilot-g (o)r)] + o{r 2’

where FE(1) is an Airy function of t:

d’e -1/3
T = {t- r/Uw(m))["‘-z{—-—;& - ]
dw w=w

It follows from (1.56), (1.57) that the waveform 1is controlled
by group velocity. If we divide the dispersion curve Uun(“) into
portions having the sign of dUkn{m)/dw constant, each such
portion can be represented by a quasi-sinuseoidal oscillation

of varying frequency S5 (r/¢t) where 8 (r/t) is the inverse function

of L&n(m) within that portion. The contribution of an Airy phase

can be represented by an oscillation of quasi-constant frequency

w.

The amplitude of motion with apparent frequency w falls off

. . . . . - -1iz . R
with increasing distance 1like r ! {r Y2 i5 due to geometrical

e L i

.t b

L
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1/2

spreading and the other r’~ is caused by the spreading of a

signal with time). The decay of Airy phase amplitude is slightly
slower, like r *'° ( r''’? instead of 7% due to a slower
spreading with time). The actual amplitude of a harmonic compo-
nent depends on several factors: we recall that ¢:D(w) depends
on source mechanism and depth,source spectrum, structure of the
mediun.

The complete seismogram u:(t) is obtained by adding all
the modes present inside the time interval of interest. One
cannot always ascribe a physical meaning to the contribution of
a particular mode, because several modea may interfere in such
a way that they cannot be separated either in the time or fre-
quency domain {Levshin, 1973). For this reason one should not
attach significance to anomalies in the polarization, dispersion
and other spectral characteristics of a mode , unless the mode
can be separated from other modes in the time or fregquency
ranges studied under actual experimental conditiens.

The formulas for evaluation of theoretical seismograms dis-
cussed above are not always convenient for actual computation,
owing to the narrow intervals of frequency where asymptotic
approximations are wvalid and the difficulties in joining the
intervals . Numerical methods are usually employed for calcula-
tion of synthetic seismograms (Aki and Richards, 1980; Schwab et
al, 1984}.

- 24 -

REFERENCES

Aki E.and Richards P.G., 1980. Quantitative Seismolegy.
W.H.Freeman and Cc, San Francisco,v.I,II.

Akopyan §.Ts., Zharkov V.N. and Lyubimov V.M., 1975,

On the dynamical shear modulus in the Earth, Dokl. AN SSSR,
v.223, No.l, p.87-90.

Ben—-Menahem A., S5.J.Singh ,1981. Seismic waves and
sources. New York, Heidelberg., Berlin .Springer-Verlag

Copson E.T., 1965. Asymptotic Expansions. Cambridge
University Press.

Keilis-Borok V.I. (ed}, 1989. Seismic surface waves in
laterally inhomogenecus Earth. Kluwer Publ.House, Dordrecht,
[Originally 1986 ,Moscow,Nauka (in Russian)].

Kogan S§.Ya., 1966. A review of seismic wave absorption
theory. Izv. AN S3SR, Fizika Zemli {Scolid Earth), No.l1,
p.1-28; No.12, p.1l-16.

Levshin A.L., 1973. Surface and Channel Seismic Waves.
Moscow, Nauka. (in Russian}.

Levshin A.L., Ratnikova L.I. and Saks M.V., 1980. On
dispersion and attenuation of elastic waves in rocks.

In: Methods and Algorithms in Interpretation of Seismological
Data. Moscow, Nauka, p.134-141 {Computational Seismology. 13}
{in Russian].

Olver F.W.J., 1974. Asymptotics and Special Functions.
New York, Academic Press.

Pekeris C.L., 1948. Theory of propagation of explosive
sound in shallow water. Geological Society of America Memoirs,
Mo 27.

Rodi W.L.,P.Glover , M.T.C.Li and 5.5 Alexander, 1975.

A fast accurate method for computing group velecity partial
derivatives for Rayleigh and Love modes, Bull. Seismol. Soc.
Amer., vel. 65, p. 1105-1114.

Schwab F., Nakanishi K., Cuscito M. et al., 1984. Surface
wave computations and the synthesis of theoretical seismograms
at the high frequencies. Bull, Seismol. Soc. Amer., vel. 74,
p. 1555-1578.



R i

i T

e



