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The conventional approaches for surface wave data analysis, aimed 10 find media model
parameters, consist mostly of the following three steps. First of all the raw seismograms
are filiered to suppress nonstationary unwanted waves, that are not accomodated by the
useful signal model. After this the fillered records are used to extract from them such
wave characteristics, that are determined by the investigated region only. Commonly
these characteristics are surface wave group and phase velocity (or slowness) dispersion
curves. And, at the third step, the derived dispersion curves are used for finding the

investigated region model parameters. Namely this last stiep will be considered here.

1. Determination of media parameters from surface wave dispersion curves.

Now we consider a task of finding the media model parameters from Rayleigh wave
phase or group velocity (slowness) dispersion curves. The model is represented by a
stack of horizontal homogeneous layers, bounded from abave by the free surface and by
the homogencous halfspace from below., The sense of the model depends on a way of
dispersion curves extracting. For example, if they are obtained as a result of
tomography procedure, then the inversiont of each reconstructed “local” dispersion curve

would give us parameters of "local” vertical structure model. Otherwise, this model can
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describe the horizontally averaged structure between source and receiver or between
several receirvers,

S0, let us have observauons of Rayleigh wave fundamental mode phase slowness
Pa(w“) (/D = I/C‘ ., C - phase velocity), available ar frequencics W,
l:‘f,...,/\/‘ The errors of observations will be denoted by }’ , while its standard
deviation by 3 . Now, the task of dispersion curve inversion can be formuluted as
finding such values m of media model parameters, that provide the best fitiness
between theoretical slownesses PT/ w‘_ 3 m J and observed ones.’\lf this fiuness is

g

determined in the least-square sense, then the parameters estimates /?7 are found by

minimizing with respect to m the following functional
N 2
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Here vector /77 consists of parameters of the layers, namely their thicknesses,

densities, compressional and shear wave velocitics. When observational errors have
Gaussian distribution and uncorrelated at different frequences, the functional (1)
corresponds to the functional of maximum likelyhood, that provides optimal statistical
., s —»
properties to the estimates /72 .
By the similar way, if insiead of phase slowness observations group slowness

o
observations ‘? ( a)‘:) are available, the parameters of the structure model can be

found by minimizing the functional

N
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2, Determination of medium parameters from spectra of wave records.

Up 1o now we assumed, that only one mode observational dispersion curve is available.
In the most cases it is really so and this mode is a fundamental one. But in some cases
the main portion of recorded energy represented not only by fundamemal mode, but by
sum of fundamental and higher modes. In this case, if dispersion curves for diflerent
modes can be obtained separately, then instead of functionals (1) and (2) we use the

nextk ones

. 2
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In this formulas & - the number of considered modes, a)‘c/ - the frequency value
for { -th observation for J -th mode.

Now ler us have the case, when the signals for different modes interfere with cach
other in the time-frequency domain and it is impossible 1o extract each of these signals
separately without their significant distortion. In such siwation the media model

parameters can be invened directly from the initial records or their spectra.
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Consider, for example, the task of determining the horizontally layered structure

. . . . . ‘
model parameters 27 between two scismic stations, lying approximately on the same
great circle with the source, We assume, that at cach station the scismograms of radiat
and vertical displucement component are available and the main part of the recorded
energy is carried by Rayleigh wave fundamental and first modes. In that case, for

observations in the frequency domain @t both stations, we have the next relation
— — —
-
= +
Ulw,) = T(w,m)Clw,) 7(«4), (5)
where

-l
U (u)x)— four dimensional vector, containing the results of discreie Fourier transform

of the observed (Hiltered) seismograms, taken at the frequency U-)K

Ulw,)

fJ; (W,)

It

(U, ), U tw,) (s)

J]

(Uge (W), 5”28/0')1)),7- (7)

8 - the station index, f=f,.2)‘ ”‘ze 9 ui’@ - the spectrum of radial and
. £/
vertical displacement componenet; { :[“1) ; U)K =,2$7(/.@

of the analvzed part of the seismograms; T - symbhol of transposition. The muarx

D . duration

Ed
-
T/a)ty m) of the size (4x2) depends on media modsl parameters 27 1 phase
- - 1
slownesses Pﬂ /L')K ’ m ) /01‘ /“)K ’ ”7) of the  Rayleigh  wave

tundamemal and  first mode; the values of the eigenfunctions at the free suface

. - - =
Zot(wg;m). .{o;_z(u)x,m).‘[jz/“)x,m) .ng/a),()fﬂ).; the  distance

5

A ,Q between the stations and the factor g , describing the geometrical spreding :

—>y_ R{w}&)’—;;) — (g)
T(U)mm)— [ %E/wx,*;")[;(a),(,ﬁv’)

and here /Q is the marrix of etgenfunctions values at the free surface

'Zo'z (“)K 7 };;)

R (i, )= ,
k? ,.zoz (Ujk,m.)

oy ( “as ”) (9)
g (W, 77)

while the diagonal matrix L controls phase shifts in spectrum of fundamental and first
mode due to propagation between stations 1 and 2

exp feid p, (e, 7 )aR] 0

L, m) = (10)

o exp {Lu) p, (u)&f;)d £

__}
Also in the formula (5), C (UJK) - the two dimensional vector of unknown “input”

signals of the fundamenal and first mode at the first station (if eigenfunctions are

2 .2

normalised in a such way, that at the free surface ZDZ Zoz = 1 .
2 2 =z T _

T’fz # Zj;_e =1 | then vector C =(C0 , Cj) consists of complex amplitudes

of fundamental and first mode displacement vector in the plane /QZ ). In the sime
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formula 7/9‘)() ‘"(71 /H)K)? 72 /WA’)) - four dimensional noise vector. We
g - I3 — N .
swppose, wat M [ 3 (0,0 = O, M[50w) 7 00,07 5, y F/,)
M - muthematical expectation, ¥ - Hermitian conjugation symbol, Bﬁ: 4/. - Kronecker
delta symbol.

Our observation model (3) is really a model of nonlinear regression analysis, and

-

for estimating of /7 . we can use the optimal statistical methods, as the method of

-
maximum likelyhood (ML). 1If suppose, that noise 7/“9() is Gaussian, then the

functional of maximum likelyhood for observations (5) will have the following form

id N
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(11)
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and it depends not only on “useful” parameters /;1’ . but also on unknown regressors

Clw,)

and the sample size is increasing, asimplotically optimal estimates of informational

' K{I?..., AN . When the number of nuisance parameters is fixed

parameters are ML estimates, derived by maximization of ML functional both with
respect to nuisance and informational parameters. In the considered task the number of
nuisance parameiers {unknown regressors) is equal 1o ZA/ and proportional 10 the
saniple size G’N . Nevertheless, the ML estimates of ﬂ—'J) ., found by maximization of
(11} with respect to ’;'_; and E[wz) zm:\)_/\7 consistent ( Kushnir &

Lokchtanov, 1988 ).

7
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-» 3 i
When /7 is fixed, the maximum of Z/ (1} with respect A /;:"'z) is

achieved at the poing

Elwd = [Tl Tw)] " rw)b)  (rz)

—

by minimizing of the functional

N
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5= / 2
Tlw, m) U] (13)
In the formulas (12) and (13) we suggesied, that /L_%()K) = _Z , where .Z- is 4
unit matrix. The common case of arbitrary F’ ~an be reduced to the considering one

5 e Aoy
by the following changing of variables U"‘ F : U? 7= F /.

e
The functional (13) depends onlx on observations V/U)K) and informutional

u-’
parameters /7

- So, we do not need any assumptions about the source parameters
and media between the source and investigated region, In the same procedure  we
cxploit not only the dispersion properties of Rayleigh waves, but also their polarization

features. The described scheme was used for invering Rayleigh wave seismograms,

recorded at the NARS's stations (Kushnir et. al., 1988; Lokchtanov & Trusov, 1990).
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3. Algorithm of nonlinear minimization.

As it was derived in the previous sections, the suggested procedures for inversion of
surface wave data require minimization of functional ((1}-(4) or (13)) with esscatially
-
nonlinear dependence on the media model parameters /n . So we have a problem of
choosing the most suilable scheme for nonlirear optimization, We suggest to implement
one of the best of such schemes, based on the method of conjugate gradients (Polak,
. ") . .
1985). According to this scheme minimization of the functional ?9/”7 is realized by
successive search for the points of the minimum in so-called conjugate directions in the
h
space of parameters £ . Determination of these directions requires calculation of the
nd ->
gradient V¢/m_) at each step of the iterations. If ¢/)’H) is a positive definite

quadrauc form in space 4 , then the point- of the minimum is reached during 47

iterations.

The conjugate gradient method Jeads to the following iterative scheme:

-
1. The initial point M,  is assigned and

-

d,=-v@(m,)

is calculated.

-
2. For K= 0?... 5 n-4 the point #7144 7 is caleulated according to the

iterative  procedure

4

where GJ. s is determined by one-dimensional nunimization, i

Blm, +4,, ) = »:anyﬁ (g +Ad,)

—

If k 2>/ , vector a//( is calculated by formula

—

dy = @) P, (14)

X

where

1

Vﬁr/@)vﬁ/’%}) (ﬁ_)
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P

The process ends when //V¢ /mkff )/X or // 5;/(1‘1 - }‘;;K //is

sufficiently small. In opposite case we go to step 2.

In the case of gﬁ/ﬁ) not quadratic with respect to f;; the procedure of
searching for the potats of the minimum usually does not end during A sweps. In
this case, if local quadratic approximation rapidly vary from iteration to iteration,
the method begins to genertie in several sieps such directions of "movement”, that
are not effective for minimization. Taking this into account, the iteration
procedure 1-3 is constructed uswally by cycles with A erations each of them,

and every new cycle begins from the steepest descent iteration 1, Iatroduction of
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such iteration of steepest descent also provides the global convergence to the

algorithm.

Often, the value of )6 x is calculated not by formula (15), but with the following

expression

v ¢7/.'-”.z) /V 95/’;’.&')" PP/};K—.{)) (jg)
P v (m, ) vl
Py VPP y)

For quadratic forms formulas (15) and (16) are cqualent {as V¢ T/;?;k ) V¢/5£)=
{ ). But for nonquadratic function it is much more preferable 1o use (16). The reason
is that due o nonquadratic effects and inexectitude of one-dimensional minimization, the
procedure can temporally “suck”, as it begins to generate directions of minimization,
that are almost perpendicular 10 [;;K) . In a such case
V¢/f;1‘1,1)= Vﬂ/@) and ﬂka‘j % (  ‘Then, according to (14), the next
direction of minimization will be close 10 -V¢/ ” kel )and the “stick” will be got
over. The formula (15) does not posseses the same ability,

4. The forward problem solution

According 10 the implementing scheme of minimization at each step of ileration
procedure we must solve the forward problem - calculae eigenvalues, eigenfunctions
and their derivatives with respect to the media model parameters.

For solving the dispersion equation

Flwpm)=0 (17)

: —»
(0 - frequency. p - horizontal slowness, /%7 - media model parameters) we

use the method, developed by Kennett (1979,1981) and Kerry (1980). According to their
approach, the dispersion funciion F/ u)/ /J, )';1. ) is represented through martrixes E.D
(2x2), TD (2x2) of reflection and ransmission coefficients of ~-SV waves for

11

a layered swucture under the free surface and also the matrixes /’]‘3 (2x2)’ /7U

(2x2), depending on paramerers of the upper layer:

Flip, m)=det (n,Ry + ny Vet Tp =0 (14)

The matrixes E_@ . 7:@ are evaluated by the scheme, suggesied by Kennett
(1974).  According 1o this scheme at first we calculute the marixes Z.D; 'ZU s
tD) fU , of reflection and transmission of P—S v waves  for individual
boundaries and then use a recurcive procedure for evaluating /e D and 712) . Solving
the dispersion equation, we fix slowness /D and vary frequency . In elastic
media matrixes /e'o 3 7-:0 don't depend on a frequency ¢ . So, when
slowness ID . is fixed and frequency &) s varied, the main pant of calculation of

2 0, T.@ is rcalii:d just ance. Therefore, we can fastly evaluaie the dispersion
function lx),P, ”J,)for many different values of W and by this way 10 look
for the roots of the dispersion equation. The roots Lt)L (P) ( Lo the number of
mode) are found by changing the sign of dispersion function. In comresponding interval
of &  the value of root is defined more precisely by the bisection method.

For evaluating the derivatives of phase slowness P with mespect o model
parameters, we use the formulas, obtained from variational principles for surface waves
(Aki & Richards, 1980; Keilis-Borok, 1989). If we introduce in the media model small
perturbatons of density 5}2 [Z) and Lame parameters JA /E)) %/Z} ,
then the perturbation of Rayleigh wave phase velocity [ (= _!//0 ) owill be

determined by the following formula

Yala azg 2 N
SC=W {./(kz;;;) o Adz

+ofc¢[2/<zzi * z(a%)zv‘ (&, - %z—) 5«42’3“
(79)

- /wz('lf +Z;)§__}Oa’zf?}

where
C>
__ 2 Z - .
U - group velocity, K = a?/c ) Ij'/ﬁ/zz *ZI)fo 7
'zt Zi} - Rayleigh wave cigcn[unclioﬁs. For horizomally layered struciure  ail
?
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underintegral cxpressions in (1Y) can be represented by sum of exponential terms
(upgoing and downgoing /D and SV waves), so analytical evaluation of these
integrals is straightforward.

The same variational approach was used also for obtzining the derivative formufa

of phase velocity with respect to boundary level positions (Kushnir et al,, [98%;
Bukchin, 1990)

oc .. kD[ A2 W[ ]}'L *

55, e (KAl

L 4
(K3 [pd] - " 5Lp]) % ~5[/L//5,§2) - (20)
2

5[0 am) (S22)*]f

In this formula 5[ J means the difference of inside bracket terms, evaluated just

over and below the  #7 -th boundary:

5[] =f(2,-)-F(2,+

When using the funclional)) or {4} for inverting the group slowness observations,
9/ My (? !/U U - group velocity)

group slowness derivatives with respect to model parameters. Taking into account, that

- 9K _ d(wp)
7 0 e d w

we nced also the formulas of

we pet

) _ )g o [0
ol v 5% (35

The terms a/o/()mk' are evalualed by the formulas (19) and (200, while derivative

with respect to frequency by the finile difference approximation.

Concluding remarks.,

Now we have all required “bricks” for inversion of surface wave data by means of
nonlincar minimization. Let us also mention, that inversion of dispersion curves from
computational point of view is much more simple task than inversion of records
spectrum, requiring the minimization of a guite complex functional with a lot of local
extremums. So, practically, it is preferable first 1o invert just dispersion curves and then,
may be, to improve the model parameters estimates by minimization of (13), where

polarization features of Rayleigh waves are also exploited.
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