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Here we consider the Gaussian beams approach for evaluating theoretical seismograms
mn a medin with slow vatiation of s parameters. We shall begin from the Helmhaoliz
equation in 2D acoustic media and then discuss the procedure of surface wave
scismograms caleulation in 3D elustic media with slow Jateral inhomogeneries, The
formulas, describing the Gaussian beams, will be obiained by an extansion of the main
results for the peometrical ray method. It will be shown, that unlike the geometrical ray
method, the Gaussian beams approach gives regular resulis in the vicinity of caustics,
fews transition from the lighted zone to the shadow  and does nor require finding a ray,
prassing exacily through source and receiver. In our account we will follow nuinly the
results of Cerveny et al. (1982), Yomogida & Aki (1985), Yomogida (t988) and Ben--

Mepabem & Beydoun (1983).

1. The geometrical ray approximation,

Let us begin trom the homogencous wave equation in 21D media

2z
2 12 -
VU(X,i)“ 2, . Zu/‘;"yt)_oj (‘1)
Cex) It
where 04 i the displicensent porential or preassure as a function of space coordingtes
- 2
X (XE £ ) and time t is the wave velocity. Applying 1w (1) the Fourier

transform with respect 1o tinge t . we pel the homogencous Helmhelts equation:
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FUG w) + 57“37;) Ui, w)=0 (2)

Solution of (2) will be constructed by means of the asymptouc ( W > ca ) ray

series expansion (Babich & Buldyrev, 1972, Cerveny et al., 1977):

Ulx,w)=exp[wrt ()] ) U l&)-iw) 3)

K30

We shall determine the series solution by seuing the coefficients of each power of 7y
separately equal 10 zero. The highest power is two, and for any nonzero choice of U o

this coefficient will be zero, if we choose & . 10 satisfy the so-called eikonal equation
2 ;2
(vt) = ¢ (4)
Seuing the coefficient of €J  equal to zero, yields the equation

(v*T)U, + 29T -¢U, =0, (5)

which is called the transport eguation. When just the first leading term in (3) s

keeping, the constructed solution
Ulx,w)= expliwt (¥)] U, (¥) (6)

gets us the geomerrical ray approximation.

3
2. The Hawillon - Jucobi syster and solution of the eikonal equalion.
The cihonal equation (4} is the first order nonlinear partial  dilferential  cquation,

belonging 1o the class of Hamilion - Jacobi equations:

, .
? -
-
where H is the Hamilionian, vector consists of the gencralized coordinauies and
- el
}D is the vector of conjugate momentums l,l//?) 15 a function we are looking
for. The Haniilton - Jacobi equations are solved by the method of characieristics, that
reduses the pantial differential equation o the system of ordinary differential cyuations.

- B - -
At 1he hypersurfuce H/P, ?f) m the phase space (/D ; ? } the fullowing

5 /24
a/%/-;(%;o/@ +§%¢d%):o (8)

-

In particular, ? and /5 will be belonged 1o the hypersurface H//ﬁ): é): 0 if

Ao L Ab s (9)
2H/9p, IH/ 39, ’
Jd d
where S is an independent variable. Fromi (9) we get the so-called characteristic

couations:

dH (10)

dy, oK dp;  IH
754/_ B 99,

ds ap
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the Function 51/ we are looking for can be found by integration along charucieristic:
g IH
5‘/=S’/*/(Zp.——-a’s. (12)
o - /4 QP
So 4 J

- —
So, to determine the vilue ‘7!}/?) from the initial conditions Sﬂ/%) = WO we
- —n

need first of all 1o find characteristic, passing through the points ?o and i (solve

v 5 ¥ dy _ IH (11)
rral s “Z@ﬁg”
4

-
twey - point boundary value problem) and then the value S”/? ) will be abtained by
integration along this charactenstic.

Now let us return to the task of solving the eikonal equation (4). Here we have the

following parallel with the general case, considered above:
— - —
Y-~7, g X, P>V

To get the characieristic eguations we must choose the concrete form of Hamiltonian,

HiE, )= [1pl-1/e(7)]-0 (13)

where

- . 1%
/D - slowness vector, P =Vt ) ///)//: (/Df 4."52"2 ) .

Now, usang (13} and (100, we derive the so-called ray tracing equations;

dx
g o CP
dp

Jo T V(E).

?

/ﬂ/)

Irom () we also have, that
1
- 2H ¢
/0/?'//:[;(5}5;)] ds (15)

and for our choice of Hamiltonan {13

2 44/
[JZ(%.%)] =1 (1€)

S50, S in cquations (14) is the arclength along the ray path. From (12) we also get
(s) L d
Cis) =7 + f oy f 17
0 Cl3) ? (47)
So

and here we obtiined, that & (S) has the physical meaning of the travel tme along

aray.

3. Solution of the transport cquations,
IC we mwltply the ransport equation (33 by the U , the resut can be written in the

feliowiny fonn:

O/r'V(UjPT):(//'V(UOZ“CL\—)’):07 (jc?)
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where YV is the unit vector perpendicular o the ling of constunt L (wavetronts)
and determining the direction of the ray path. Now, let us create unlimitly mrow ray

tube by two adjacent rays (fig. 1) and integrute (18) over the area between two infiniwely

close sections of these tube. Then, applying the Gauss' theorem, we obtain:
2

c
where a/ is the ray parameter: if, for example, the wavefield is generated by a point
source, J’ cun be the angle between some reference axis and the initial direction of
the ray at the source point; _7 6)5 a/ is the cross - section of the ray wbe and

-

y Ks ) is the so-called geometrical spreading. The vector Z.:-" \) in (18) is the
flux energy vector for the acoustic medium, so the formula (19) describes the luw of
preserving the total energy, flowing through thé section of the ray tube.

Finally, using (6), (17) and (19} we get, that the geomewrical ray approximation

yields to the following expression:
Uls,w) = \/3——%’— exp[f;u)f E?';‘) a/f]- (20)

Up 1o now we have just derived, that U (S; w) is inversely proponional 0 y(S)
but we have not received yet any procedure of \7 calculation.

The geometrical ray approach is valid for a media with slow varation of its
parameters, or more precisely, variation of the slowness J/C (.;) must be small on
the scale of the radius of the first Freznel zone (Chernov, 1960; Ben-Menabem &
Beydoun, 1985). But from (20) it follows, that even for a such kind of media this

method can’t be applied for calculation sthe wavefield in the vicinity of cuustivs, where |

j/S)is equal to zero.

U"J(S)SJ = const = @°(y)d Y, (19)

7
4. Dynamtic ray tracing system and paraxial ray approxinmation,
According 10 the geomenical ray  approach, w construet a sofuton of the eikonal
equition ot any poant of acoustic media, we need 1w find aoray, passing through this
po
point, and then evaluate  the ravel time & {5) by ineegration along this ray. Now let
ws expand e constructed selution in the nepghborhood of the ray and 10 this end we
will use the wcthod, inttally suggested by Popov and Psencik (1978). Lo solve the task,
they intoduced the ray-cenmtered coordinates (S, ? y: S corresponds 1o the
—
arclength ulong the ray, i is a distance from the ray, measured along the axis /7,
perpendicular 1w the ray path (fig. 2). Now, the expression for the travel time in the
] ) ~
neighbowhood of the ray (paraxial wuvel tmes) can be found by & Taylor series
expansion with respect w i around the point (S, 0 )
~ ~ / 2
Cls,g)=T(s)+F Mg
7

z
- ¢ TR =0

wuhM - 9 ‘?’z and where we also have taken into  account, that Virha-=
g . . e .
Truncating the Taylor expansion of L at the quadratic 1erm of ? means, that the
wavefront around the point ( 3, 0 i approxinuted by the parabola, undCM is
the curvature of the wavefroni at (S; 0 )

To find M in (21) we need to differennate the ray tracing equations (§4) wids

—»
respect o the ray paramcier 3/ and then project the results onto the A direction:

d =ch

ds ’ )
/

(99
A A

Lp o2 2E
d's " 9%

Here we used the notations:

(21)



(23)

Now, as

_ 2 2t 2T 2
P 2528 g

we obtain for M

M=P/Q (24)
Also, from (19) we have:

H)SY =285, o 96)= BB -0l), (25)

Thus, solving the system (22) of two hneur differential equations of the first order,
which is called the dynanmic ray wacing system, we find in the same time the
geometrical spreading term j{g)-

Now, using the paraxial approximation (213, we are able ¢ evaluate the wavefield

e
not only along the central ray 3 , but also in some vicinity of it

U (5?) SDKJ C(.S‘ E’XP {La)[/c_(;i)' /Zr{‘;) z,] ng)

4
To find the ol solution at the point (S,? ¥ owe must sum contsbutions of all

possible central riys, so
U/S)ga):f(ja[.s,g,)&/a’ - (29)
J2
where [JJ /S; ?) iy detenmined by (26).

5. The Gauwssian beams approach.

o
Following the notations of Cerveny et al, (1982), It us denote by A /5) the

fundamental mamx of linearly independent real solutions of equations (22) :

Q,(s) Q, (s)
T (s)= : (29)
Pj (S) P,?, K‘S)

The first solution Q_r CS’)? th’ @) corresponds to the initial conditions Qj [So) = 17
pj(ﬂ,,)f ). and that is a "ptune wave” initial condivons, since keeping /D . 92%- =0

while changing O = 3 Xn generates paraxial rays, which are initally parallel
o the relerence riy. The second solution Qz (S) 7 /D‘?J Kg) corresponds to

— i/
the initial conditions OL (’So) "0, /D‘-,_(So)‘féo) and that is a "point source” initial

conditions, since the coordinates of the starting point for the paraxial ray and the central
ane e the same. Namely just these sccond innial condiions are wied in conventional
geometrical ray approximation technigues to find the geometnical =preading jKS) by
solving the dynamic ray wacing equations,

Now any complex solunon of (22} can be expressed by sem of 1wo linearly

ndependent real solutions:

Qls) =E,Q (S) e Q_L/S)
n sy ~ nif,,\ ‘ (“’Zn 7N ('29)
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where 51 and g_z, are complex valued  constants. Following, Cerveny et al.

(1982), let us rewrite the formula (26} in the next form:
) /e rs) T k) 27 3
U, ls.8)= PLe)Vss) 5P W[L/S)*.zmﬂ] PZ;)}, (30)
where

K(s)=C(5)Re Pg’é): 1(5) {3 T %)j N/)/cff)

Now we have received a Guusstan beam sohition with an amplitude, exponentionally
decaying with a distance from the central ray K Kg) denotes the curvature of the
phase front of the beam and L é) is frequency - dependent effective half-widih of

the beam. Also from {29) we have

_fi/_s_) _ EF(5)*R,(5) (31)
Q(s) EQ,(5)+Q,(5)

with 5 = gj /5,7_ (il gg # 0 ). S0, instead of dealing with two col}zplcx constans
e
we can be concentrated just 0[} the parameter é (the quantty E-?, following
e/ A
from the amplitude term Q . can be included without loss of penerality into the

amplitude erm ¢/X) ). Now let us show, that if Im /£)<0 . the following

conditions are satsfied :

Q(s)# 0

. that provides finite amplitudes at caustics;

n Im(P/Q)>0

To prove the first condition, let us mention, that

, s0 the solution is concentrated close Lo the central ray.

Ael T(s) = QI3)P (5)-

S0 QIKS') Q,?, (S) can never be both equal o zero ar the same poing S (caustics
for plane waves and for a point source are at different places). The expression (32) 18
checked by us ditferentiating with respect to K and wsing the dynamic ray tracing
equitions (22).

To prove the second condition, let us note, that

m( P *?
I’"(‘g)z Ice[czfz i

Iml€)
c(5)QQ"

Tnlf) o
QQ*‘ (}DIQ_?,—PJ,Qj)—

where we used furmwala (32),
ln their work Cerveny et al. (1982) suggested the following expression tor 5

& -G (=)

In the homogeneous media L /S) is a hyperbola and the chaice (33) provides, thac
L(S) has a mininmm value at S :Sc (source position) and the beam widih is 25
narrow as possible a1 the receiver position S :S-;_ .

Now the last step we necd to deermine the Gaussian beams solution (30) is 10 find

the wnplitude factor ¢/J) According to Cerveny er al. (J982), this faclor can be

Fis)Q,(s) = consl = C /S) (32)

B alith
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cvaluated by comparizon of high - frequency asymplotic solution of wave cquation for a

Iine source in homogeneous soedia /
. /a)) ( ) < ([ we 7 (34)
x = ex — L
UGz) ZCo ) ey ,

and the steepest descent approximation of the integral (27), where UJ’ /‘g) i)

determined by (300
Uy (5,) = Al @(3,) Cof, (AL exp [(.: Y Tl 41—}? (35)

here J/'L iy an angle between the reference axis and direction from the source to the
X )

receiver puoint X'L H A /w is the result of Fouder transformation of the source

time function; y2 is the distance from the. source 10 the receiver. Equating (35) to

(34) (it is supposed, that the media model is homogencous in some vicinity of the

source}, we finally get :
. 1/
@/a’)w;j;(é)"' (36 )

with £ evaluated, for example, by (32).

6. Surface witve scismograms caleulation by the Gauvssian beams method,

Here we present the formulas, describing the procedure of surface wave seismograms

calcalmtion by the Gaussiag beams method i 3D media with weak and smooth Literal

inhomugeneties. As for surlace wave the ray trajectories are consirained on the free
(%)

surface (where Clx 15 distribution of phase velocity tor a piven Tregquencey),

the procedure here by quie similar w0 21 acoustic case, considerad in the previons

13
scction. Die 1o this similaity we will not give here the derivations of all reguired
formwtas, For details see, for example, Yomogida and Aki (F987), Yomogida (1988).

l‘ar surface wave problem  the results similar 10 (20), (27) have the following forns:
o . 7
Uls,q,2) = /P/J)%/sg,z)d&’, (37)
L4

—

- ] 0 M) 2
U«r/g’?"z)”[U/s)J,/s)O/s)]&e”/bf‘“”“s)* 4°)f (55)

with

(F-c(IME)gt)e, (s 5) (59)

- for Love waves,

(Erels)ME)g i )t (5,2)+idn, (5,2)  (40)

- -
- tor Rayleigh wiaves. In the formulas (38)-(40) t ’ n are the unil vectors,
cortesponding to the ray-cemtered coordinates (S 1 respectively, while Z isa

unit vertical vector, é’_{ /S, B) ? tj /S, E)) ’ZZ (gz 2) are the "local™ Love and

Rayletgh waves eigentunctions. "Local” means, that the eigenfunctions ar any point on

the surface are corresponded o the lalerally bomogencous media, defined by the vertical
struciure anl this poinl; C/-S) and Z}/_Q) are "local” phase and gronp
(0% o
velociies; —z-j /S) Is @ hinematic encigy mtegral 1/2/ff! 7 {or
[
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l.ove waves and AZ [j') (Z * Z )QJE for Rayleigh waves; the value T /S)
is determined by nlegration along the ray (17), while M/S) Q&) by solution of
dynamiv ray wacing equanons (22). Solving the ray trucing equations (14) and dynamic
ray acing equations (22), we replace the 2D wave velocity function C/X ) by phuse
velocity distribution at the considered frequency.

To complete the formulas, we also need w0 present an expresston for the amplitude
factor ?ﬁ/g’) We suppose, that the wavefield is generated by a point source with the
moment tensor MLJ (L‘)/.'-' A’,y,Z) (e.g., Aki & Richards 1980, chapiers 3 and 7)
and that a media swucture is laterally homogencous is some vicinity of the source. In

that case, ¢/X) is expressed by the following way (Yomogida & Aki, 1987) :

_ 1 @ (s.)
$6)- e\ vt |

where for the Love waves

[ } { kfj(g)l stna’co,s'a/ Mé{xcog a’+

f (41)

4y
+MX£{ sen - MW 5[an053’]~ %3—4 [sz sind-M,, m.saf]j

and for the Rayleigh waves

{ } ) [Kzzm)[Mxxw’ng f[MXg M

/
Myy siny ]+ L;;]h [/“l cosy +

x) sind cos & *

o,
My sind [+ 721y My, .

(43,

15

la the formulas (42), (43) }\/ is the wavenumber, K= a)c . while /) 15 the
sowee doepih.

Up 10 now in this section we considered just one made of Love or Rayleigh waves.
Dxaling with several modes, we must sum the results (37 over cach individual mode.

Now lct us discuss some practical aspects, arizing when implementing the Guussian
beams techuique for evatuating the surface wave seismograms. First of all we need o
form the media model. We use the Jayered structure model, where the layers parameters
vary slowly with horizontal coordinates. To define this model the free surface of the
investigated region is covered by rectangular prid anf for euch grid point we form a
vector of vertical structure paremeters. At cach frequency he distribution of phase

veloeny £ //\-")

valucs at the grid poins (using the cubic splines, we suwtislfy the requirernents  of

is determined by cubic splines interpolation of phase velocity

-
continuity of phase velocity function C(X) with its first and second derivatives). The
values of phase velocity at the grid points are found by sum of phase velocity for basic
horizontally laycred model and perturbation term, calculmed by varational formulas. The
inegral (37) is replaced by summing with some step A X while the ry tracing
equations and dynamic ray tacing equations are solved by Runge-Kutta scheme of the
founth order. After evaluating the results in the frequency domain, we use the FFT
technique 1o obtain the surface wave seismograms, The described procedure is quite

eltective and cin be implemented, tor example, on PC with modest resources.

e R

e

e
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