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THE NEW ALGORITHM FOR SPLINE APPROXIMATION TOMOGRAPHY

D. Lokshtanov A.Leuvshin G.Panza

approximatian,
that
constant

Here we extend the approach for 2-D functien

developed by Inoue (1986) for the tasks of tomography. We suppose,
2-0 distribution of wave velocity <Cx,y> weakly differs from the
value, so the input data - travel times or phase shifts of
function plx,yi=1/cCx,yl

lying in 2-D

wave signals

are determined by integrals of slowness along
unperturbed straight rays. These travel timas along rays,
plane, are used for reconstructing the function pCx,y> on that part of the
plane, which is covered by traces. The number of traces is not larga and
they are not regularly spaced, 50 it is impossible to use the methads, ba-
sed on Radon transformation (Chapman, i987jKak,1983). In such practical for
lack of
approach consists in representation of unknown function plx,y> as a sum

of basic functions. Then the task is

seéismology problems situations with a traces the caonventiaonal

reduced to estimation of basic
functions coefficients by solution of system of linear algebraic equations
{Nolet,1987; van der Sluis et al.,1987). Dften the
the plane (or volume in 3-D case) is divided into rectangular cells and it
is assumed, that velocity is constant inside ®ach cell {(Aki et al.,1977),
stable, the smaoothed by

cannections between velocities in cells, for example by means of

investigated part of

To make solution more result is introducing
priory
covariance function (Tarantola et al.,1984). Sometimes, when it is known,

that the reconstructing map is quite smooth function of coordinates, as in

the case of long periad surface waves group and phase velocities, instead
of dealing with step basic functions, it is used Fourier or spherical
harmonics expansion (Anderson, 1984; Nakanishi et al.,1982). The lack of

such approach is that inspite of different density of traces, in every

point of investigated region the slowness is represented by the same

number of basic functions, so the resulted slawness distribution has

uniform detaility. This deficiency may be over come by using 2-D Backus -
-~ Gilbert such method the
smoothness of solution depends in each point on local density of

approach (Yanovskaya, 1984). In level of

traces,

but in the same time, the constructed basic functions have gaps of first

and higher derivatives, and it must be possible to represent a

, reconstructed function pCx,y> by a sum of two paCy).

functions ;a(xo.

depending on one coordinate.

Our approach for solving the tomography tasks is based on slowness

function approximation by 2-D cubic B-splines. Such spline approximation

is flexible to variety of 2-D smooth function shapes. By exploiting the

locally basic functions, the solution may have different detaility in

different points of investigated region. As in the work of Inoue, the

splines are subjected to tension to remove undesireable oscillations in
the parts, poorly covered by traces.

At first we describe the algorithm for spline approximation
tomography. Then we show the numerical model results with the same set of
traces, that are used later for determining Rayleigh wave phase wvelocity
maps in western Europe. After this the resulted maps are used for checking
the validity of the method by
spectra of seismograms, computed by ray perturbation

method.

comparing theoretical phase shifts in

and Gaussian beams

1., 2-D tomography with B-cubic splines.

Let us have the straight seismic traces Li’ that are 1lying in a

(X .S x=sX s ¥ .Sy £Y ). For each
men RO min mMax
trace we know the measurement result of the averaged value of the slowness

P2

rectangular plane domain 0

p.=—i‘f pCloar + k., E=1,N , C1)
Yo,
t

where Li_ the length of (-th trace, Ei

— the error of measurement. The
h

task is to reconstruct the function pix,y) in domain 0 from the results of

measurements Py We suppose, that the function plx,y? is smooth with
continueous first and second derivatives.
The function pCx,y”? will be approximated hy the function fCx,y>, that

is represented as a sum of M basic functions ¥ Sxry? H]
M
fCx,¥2> = L 9, {x, v . caz >
h=1
When the basic functions are 2-D cubic B - splines, the functions ¥l xyd
are determined by the following manner {(Inoue,1984; de Boor, 1978) .
Let Ax = (xmax— xmin)/Hx' Ay = (Y - ymin)/"y’ where H; and
HY are integer values, such as sz 1, Hyz 1. Consider a rectangular
grid , that is created by lines x = const = xmin+ inx. and y = const =
Ymtn+ jﬁy . £=—I.Hx + 2, j=*l.M&+ 2. Every grid knot is assuciated

with a basic functiaon Fijfx.y) - FiCx)FjCyJ. where

U

P
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aQ, x(Qn
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1 a x o 1
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L = — <
H Bs[(x Qe)/AxJ, Qz_xﬁ:3
B (Cx-Q 278 1, Q_=x<Q
- ] X ] 9
<
o, Q‘_x
and
aQ, =X . + {i+l-25, 1=0,4 » C 42
L min
and
8
Bl Cr>) = r /& ,
B (r> = c-3r? + 3r° + 3r + 126, 5>
B8 Crd = c3r® - ar® + a>ss,
B Cr> = ¢=" + 3r° - 3r + Loo8,
The function FjCy) is determined in a similar manner.
In accordance with introduced definitions, the formula ¢ 2 ) may be

rewritten in the next farm :

The cnefficients Cij are determined from the condition of minimum the

functional

N
obhe 2
P=iglwi(pi-pi >+ R 4R <7D
where
af .z af .z
= i, + Lo I )
R, N‘J'J'[(ax) Cay)l‘dxdy.
n
2 2 2
R =W ff[(-i-f—-)’+2cef)2+ca£)’;rdxdy, c 9>
z 2 o ax” axady ay
w., W, W - weights,
P ! J rex vt C 10
’ L H

i

2]

The introduction in the functional ( 7 ) the regularizing addendums R1
and Rz dampers unwanted oscillations of fCx,y> in these parts of (1 ,that
are poorly covered by traces. The functional (7) has the same form as that
one,used for finding configuration of 2-D elastic bar with flexwral rigity
D under tension 7. This bar is pulled laterally to points Cxi vV dt)
by zera free length springs of stiffness hi . The configuration of the bar

Fix,y) is determined from the condition of minimum strain energy of the

system :
N hi 2 a 7
U=L —=<f ~a> +] _[(szc(—?f;—oz + c_ByL)ZJ +
i=1 2

0

2 r4 2
+ sztc-‘z-zLJ’+2c"f)z+c"£)’n dx dy -
ax axady ay

The parameters Hx , Hy and weights W W, in (A) and (B), (?) may be

17 72

chosen from the next considerations. When W W increase and Hx s M

s
decrease, the dispersion of the estimates of ;luwﬁess values also decrease:
But in the same time increases biasedness of the estimates of slowness
values with respect to some reference model, for example homogeneous ane.
The optimal values of these parameters may be found from the condition of
minimum the total expected estimation error.

The minimization of (7) aver cij is equivalent to solving the system

of linear algebraic equations with matrix thNm , where Nh=(ﬂx+3)xcny+32.

2. Numerical examples.
The algorithm was used for analysis of Raileigh wave phase velocities
in Western Europe (Fanza et al.,1980). Before to present the processing
results we show the results of model experiments with the same set of
traces.
Our algorithm is based on approximation of 2-D Ffunction by cubic
splines in Cartesian coordinate system. So, first of all, it is necessary
to transform initial data for spherical Earth to the data for flat model.
We use the following tran sformation
x = Ro in tg Cos22 ,
¥y =R ¢, & C 11 2
VCx, 2 = v(B.wJ/sianﬁ.

that preserves the wave 'travel time between corresponding points

{Yanovskaja, 1982). In these formulas RU— the Earth radius, & = n/2 - ¢ ,



¢ is latitude and ¢ is longitude.

The initial data for the
slownesses, averaged along the unperturbed straight rays.For such approach
the

tomography algorithm are the values of

validity it is necessary, that velocity would change in region of

interest as slow as possible. For this, when the transformation {11} is

a .
used, the area under consideration is moved to equator, where ag(snne)=0.
After we get the
transformations reverse to (11) we have an answer in spherical coordinates
with

result in Cartesian coord i nate system, by

The first model example was processed for the media constant

velocity, e™9=3,75.

1. As was mentioned above,

The traces geometry (after transformation (11)) is

shown on fig. thesa traces correspond to real
traces, that were used for analysis of Rayleigh wave dispersion in Western
Inside the

velocities.

region
Near the

Europe. The results of tomography are shown on fig.2 .

the estimates practically the same as true

boder, where the area is poorly covered by traces, and the surface pOx.y2

are

aspires to occupy position with " minimum strain energy the result
differs significantly from the true madel. .
In the second model example the model wvelocity was computed by
formul a c”°d= 1. #/[6.23 + B.53£nC2ux/T;)stn(2q’VT;)J , wWhere Tx= Xmux-
.« T =¥ - ¥ The lines of equal levels far the true model
min h'J mo.x ™. n
and the result of tomography are shown on fig.3 . Despite of small density

of traces, inside of the area, we get quite good agreement between the

true and resulted models. In bath examples and following computations for

real data the slowness function approximated by 1& (4x4) 2-I} cubic

P-splines.

3, The results of real data analysis
Now we discuss the results of real data analysis. These data are ave-
raged values of Rayleigh wave phase velocities for traces, shown on fig.l.

The available periods are 25, S50 and 89 seconds .The results of tomography

are presented on fig.4. These results are very similar to thgse, obtained
19903 Panza et al., 17803

in previous investigations { Yanovskaja et al.,

Calcagnile et al.,1981).
In accordance with ( 1 }, the used algorithm is based on computation

of phase delay along unperturbed ray. Therefore, for the resulted velocity

maps it’'s very important to check the validity of such computations. For
this we compaired the synthetic phase slownesses , calculated by Gaussian

beams technique ( Yomogida, 1985 ) and by formula ( 19 ). During

S

computations with Gaussian beams method, for each pair of stations, Lying

approximately on the same greate circle with the

source, we determined
phase spectrum and then calculated the average slownesses by formula

over

P = Ap ~ CZnfARD , 12 )
where A¢ ~ the phase difference, AR - the distance between stations, f -
frequency.

Se far as we know the maps of phase velocity only for the investigated

i

;

v

i

region, for the Gaussian beams computations it’s necessary, that the
source is located in the same region. Therefore from the all events, used '’
in this work, we selected two, that satisfy this condition ( Tabl. 1).
Besides the information about phase velocity distributign, we also must
know the structure in the wvicinity of vrecievers and sources for
eigenfunctions computation. For this we used the simplest models - the

layer over halfspace, with thepretical phase velpcities, compatihle with

the results of tomography (Tabl.Z2).

The results of computations by described two methods are given in the |

W

tabl.3 .

and by Baussian beams method

The averaged phase slownesses, received by pertutbed ray method

are in a good agreement with each

Notice, that in spite of bigger variations of velocity function for 25 sec

e

LI

1

other. .

than for 50 sec, the difference between average slowness, computed by tua';

methods, are of the same order for both periods. Obviously,it is connected

with larger Fresnel zone fore larger periods. We have not made such campa—

rison for T=80 sec.,

because for this period variations of slowness func-—

tion are comparable with the errors of initial data. '

Conclusions.

In the paper we extended the approach for 2-D function approximation

with cubic B-splines to the tasks of tomography. The tomography algarithm

was checked by numerical model examples and real data processing. The re-

constructed maps of Rayleigh wave phase velocity in Western Europe were

used for controlling the validity of using tomography algorithms, based on

computation phase delays of propagated wave signals along uwnperturbed

straight rays.
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Table 1. The evenls paramelers.

Date Crigin Lime Coordinales Hagn. Deplh Statlion pair
6-5-61 16 04 33.1 37.4N 11.2E 6. 4 7a BES-MON
24-2-73 15 22 ou.8 368. 1N 4. 4E 6.3 33 MLS-SGR

Table 2. The stabtions siruclure models.

For all stations

qi- 1.73 BL' p‘l- 2.9, pz- 3.3

Stalion Coordinates The model paramelers
) B, Ckm/secd h Ckmd B_Ckm/sec)
BES 47 14 S9N 05 5@ 15E 3.88 3. 4.45
MOM 43 43 BON 07 25 33E 3.88 1= 1 4.495
SGR 47 42 32N 00 55 o1W 3.83 5.8 4.52
MLS 42 57 29N 01 04 SQE 3.78 34.8 4. 46

Table 3. The resulls of average slowness compultation Csecs/kmd

SlLation pair

BES-MON
MLS-SGR

Gausslan beams Strajght ray
T=2Ssec T=50sec T=29sec T=50sec
Q. 2740 0.2548 0, 2750 0. 2664
0. 2624 0. 2469 0. 2472

0. 2621

Figures

explanations

The geometry of traces, used for model experiments and real
data processing. Each trace corresponds to the pair of seismic
stations, lying approximately on the same great circle with the
SOource.

The resulted velocity distribution for
constant true velocity.

the model example with

The resulted
experiment.

and true wvelocity maps for the second model

The recanstructed maps of phase velocities in Western Europe.
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