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Large-Scale Waveform Inversions of Surface Waves for Lateral Heterogeneity
2. Application to Surface Waves in Europe and the Mediterranean

ROEL SNIEDER

Department of Theoretical Geophysics, University of Utrecht, The Netherlands

Lincar surface wave scattering theory is used to reconstruct the Iateral heterogeneity under Europe and-the
Mediterranean vsing surface wave data recorded with 1he Network of Autonomously Recording Seismographs
(NARS). The waveform inversion of the phase and the amplitude of the direct surface wave leads 1o a variance
reduction of approximately 40% and results in phase velocity maps in the period ranges 30—40 5, 4060 s and
60-100 5. A resolution analysis is performed in order to esublish the lateral resolulion of these inversions.
Using the phasc velocity perturbations of the three period bands, # two-layer model for the § welocity under
Europe and the Mediterrancan is construcied. The § velocity penurbations in the docpest layer {100—200 km)
are much more pronounced than in the 1op layer (0—100 km), which conlimms that the low-velacity zone exhibils
pronounced laterat varistions. In both layers the § velocity is low under the western Mediterrancan, while the §
velocity is high under the Scandinavian shield. In the deepest laycr a high § velocity region extends from Greece
under the Adristic 10 nonthem [aly. Several inlcresting smalier featurcs, such as the Massil Central, arc
reconstrucied. One of the spectacular features of the reconsirucied modcls is a sharp transiiion in the layer
between 100 and 200 km near the Tomquist-Tesscyre zone. This would indicate that there is a sharp Lransition
at depth between Ceniral Evrope and the East European platform. The wavefonn inversion of ihe surface wave
coda leads 1o good waveform fits, bul the reconstructed models are chaotic. This is due both to a lack of
sufficient data for a good imaging of the surface wave encrgy on the heterogencitics and 1o an appreciable noise

component in the surface wave coda.

INTRODUCTION

One of the main tasks of modem seismology is to map the
lateral heterogeneily in the Earth. Low-order spectral models of
lateral heterogeneity have been constructed using P wave delay
times [Dziewonski, 1984], surface wave dispersion data [Nataf et
al., 1986), or surface wavclorms [Woodhouse and Dziewonski,
1984: Tanimoto, 1987]. These studies produced extremely smooth
Earth models because of the low-order expansion of the
heterogeneity in spherical harmonics. However, recent large-scale
tomographic inversions of P wave delay times have shown that
lateral heterogencity exists down to depths of at lcast 500 km on a
horizontal scale of a few hundred kilometers [Spakman, 1986a.b].

Lateral variations i the P velocity on this scale can be
analyzed accurately using delay time tomography. In principle,
tomographic inversions could also be applied 1o § wave delay
times. In practice, this is not so simple because the presence of the
low-velocity layer renders the S wave tomography problem highly
nonlinear. In fact, it is shown by Chapman [1987] that the
tomographic inversion problem is illposed if & low-velocity layer
is present. The fact that the low-velocity layer exhibits strong
lateral variations [York and Helmberger, 1973; Souwriau, 1981;
Paulssen, 1987] poses an additional complication.

One could use surface wave data instead because Love waves
and Rayleigh waves are strongly influenced by the § velocity.
However, fundamental mode surface wave data (which are mos!
easily measured and identified) that penetrate as deep as 200 km,
have a horizontal wavelength of the order of 300 km. This means
that latcral helerogeneitics on a scale of a few hundred kilometers
arc no longer smooth on a scale of a wavelength of these waves.
Therefore tay theory, which forms the basis of all dispersion
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measurements, cannot be used in that case. Up 1o this point, this
fact has been consequently ignored.

The breakdown of ray theory means that scattering and
multipathing effects can be important. In the companion paper
[Snieder, this issue; (hereafter referred to as “paper 1")), linear
surface wave scattering theory is presented. It is shown in paper 1
how this theory can be used to map the lateral variations of the §
velocity in the Earth, With this method, complete wavelorms of
surface wave data can be inveried, so that not only the phase but
also the amplitude can be used for inversion. Unfortunately, there
is at this point only linear theory for surface wave scatlering in
three dimensions [Snieder, 1986a,b, Snieder and Nolet, 1987;
Snieder and Romanowicz, 1988; Romanowict and Snieder, 1988]
which limits the applicability of this method. Large-scale
inversion of both the phase and the amplitude of surface wave
data has also been performed by Yomogida and Aki [1987], who
applied a scattering formalism to the Rytov field of surface waves.
However, their method is based on the assumption that surface
waves satisfy the two-dimensional wave equation, which has
never been shown (and which is probably not true).

In this paper, large-scale waveform inversions using linear
scattcring theory, as presented in paper 1, are applied to surface
wave data recorded with the Network of Autonomously
Recording Scismographs (NARS) [Dost et al., 1984; Nolet et al.,
1986] for events in southern Europe. The inversions with linear
scaticring theory, which will be called the "Born inversion,” are
spplied both to the surface wave coda and to the direct surface
wave. Details of the inversion method with numerical examples
are shown in paper 1. .

“Fhe Bom inversion is first applied to the surface wave coda. To
this end the nature of the surface wave coda is investigated in
section 2, and the conditions for the validity of the Bom
approximation for the surface wave coda are established. In
inversions of the complete waveform, parameiers like the source
mechanism, station amplification, ew., should be specified
correctly. ‘The procedures that are followed in this study are
reported in section 3. As shown in paper 1, it may bec
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Source-reciever minor arcs.
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Event 5300 (Algena), staton NEO3, depih=10 km.
T ] v T

Fig. 1. Source-receiver minor arcs for the seismograms used in the
inversions. The dashed minor arcs correspond to the esismograms used in
the computation of the spectra for the westem Mediterranean, while the
minor arcs used for the spectra for the paths in Europe are dotted. The
seismograms for all minor arcs (dashed, dotted, and solid) are vsed in the
waveform inversions.

advantageous to perform a nonlinear inversion first for a smooth
reference mode! in order to render the problem more Linear. The
results of this nonlinear inversion are shown in section 4. Section
5 features waveform inversions of the surface wave coda, while in
section 6 the Born inversions of the direct wave are shown. The
reliability of these results is investigated in section 7, where a
resolution analysis is presented. A two-layer model of the S
velocity under Europe and the Mediterranean is finally presented
in section 8. .

2. NATURE OF THE SURFACE WAVE CODA

Before proceeding with the inversion, it is instructive to study
the surface wave coda in some more detail. In this study, surface
wave daia recorded by the NARS array [Dost ez al., 1984; Nolet et
al., 1986) are used for shallow events sround the Mediterranean
and & deeper event in Rumania. Figure 1 shows the source
receiver minor arcs for the seismograms used in this study.
Because the inversion is linear, it is important 10 establish first the
conditions for the validity of the Bom approximation for the
surface wave coda.

In Figure 2 & seismogram is shown for an eveni in Algeria
recorded at station NEO3 in Denmark, low passed at several
different periods. For the seismogram low passed at 16 5, the
coda has approximately the same strength as the direct wave. This
means that the Bomn spproximation cannot be used to describe the
surface wave coda at these periods. However, for periods larger
than 20 5 the coda is much weaker than the direct wave, which
justifies the Born approximation for these periods. Low passed
seismograms recorded in the same station for & Greek event a
approximately the same depth are shown in Figure 3. For this
event in the seismogram low passed at 25 s, there is still an
appreciable secondery wave train (around 700 s) just afier the
arrival of the direct wave, and the Born approximation for the
surface wave coda is therefore only justified for periods larger

T>30s.

T>25s.

1400

time (s.)

Fig. 2. Low passed seismograms for an Algerian event recorded in NEQ3
{Denmark). .

than 30 s. (This is confirmed later by Figure 45.) Therefore only
periods larger than 30 s have been used in the inversions
presented in this paper. It is verified that for all recorded
seismograms low pass fltering a1 30 s leads w a coda level which
is low enough to justify the Born approximation.

This condition for the validity of the Born approximation may
be overconservative. In a field experiment, surface waves reflected
from a concrete dam on a tidal fiat have been used successfully 1o
reconstruct the location of this dam using Bom inversion [Snieder,
1987a]. Due to the very large contrast posed by this dam, the
direct surface wave and the reflected surface wave had
approximately the same strength, and Born inversion was strictly
not jusiified. Nevertheless, an accurate reconstruction of the
location of this dam was achieved. The reason for this discrepancy
is that the geometry of the heterogeneity precluded multiple
scatiering. In such a situation, linear inversion gives at least
qualitatively good results.

Event 3082 (Greece), station NED3, depths13 k.
v T T T v

T>¥0s.

T»25s.

T>16s.

I A 1 A i
600 800 1000
time {s.)

1 i
1200 1400

Fig. 3. Low passed scismograms for a Greek event recorded in NEO3
(Denmark). .
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Fig. 4. Spectra of the direct wave, surface wave coda, and background
noise for wave paths through the western Mediterranean,

The examples shown in the Figures 2 and 3 show that the coda
level is very different for the diffcrent wave paths. This is verified
by dividing the seismograms in two groups. One group consists of
seismograms for with wave paths through the westem
Mediterranean (the dashed lines in Figure 1), while the other
group is for the wave paths through eastern and central Europe
(the dotted lines in Figure 1). For each group the spectrum of the
direct surface wave is determined, as well as the spectum of the
coda (defined by group velocitics beiween 1.6 and 2.9 km/s), and
the spectrum of the signal before the arrival of the direct wave.
The spectrum of the signal before the arrival of the direct wave is
considered 1o give an estimate of the background noise level.
From an academic point of view this is acceplable because body
waves and higher-mode surface waves are noise for our purposes.
On the other hand, this procedure may give an overestimate of the
background noise.

The spectra for the paths through the western Mediterranean are
shown in Figure 4a. Note that the average coda level is much
weaker than the strength of the direct surface wave, even for
periods as short as 16 s (0.06 Hz). For periods larger than 25 s
(0.04 Hz) the noise level has about the same strength as the coda
level. The means that inversions using the surface wave coda for
these periods can only give meaningful results if there is an
abundance of datz, which leads 1o a system of linear equations
which is sufficiently overdetermined to average out the
contaminating influence of noise. For the wave paths through
eastern and central Europe (Figure 4b) the situation is different.
For all frequencics the coda level lies above the noise level,
although for periods longer than 50 s (0.02 Hz) this difference is
marginal. For these seismograms the coda energy increases
rapidly as a function of frequency; for periods shorter than 22 s
(0.045 Hz) the coda spectrum is even higher than the spectrum of
the direct wave. This means that there is only a relatively narrow
frequency band where the Born approximation is valid and where
the coda stands out well above the noise level.

The fact that the coda level for the paths through eastern and
central Europe increases more rapidly as a function of frequency
than for the paths through the western Mediterranean has
implications for the depth of the heterogeneities that generate the
coda. In order to quantify this notion a normalized coda level can
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be defined by subtracting a coristant noise level from the coda
spectrum and by division by the spectrum of the direct wave. This
normalized coda level is approximately equal to the mteraction
coefficients, see equations (1) and (5) of paper 1. (One should be a
bit careful with this identification because an organized
distribution of scatterers leads to extra frequency dependent
factors; see Snieder [1986a] for an example of scattering of -
surface waves by a quarter space.)

The normalized coda levels are compared with the interaction
terms for different heterogeneities the Figures 5a and 5b. (In this
example the absolute value of the inleraction terms is averaged
over all scattering angles.) These inhomogeneities have a constant
relative shear wave velocity perturbation down to the indicated
depth, while the density is unperturbed; furthermore, A=54. For
the wave paths through eastern and central Europe these curves in
Figure 5b can only be compared with the interaction terms for
periods Jonger than 30 s, because the condition of linearity bréaks
down for shorter periods. All shown heterogeneities fit the
normalized coda level within the accuracy of the measurements.
Also, it follows from Figures la and & of paper 1 that these
heterogenecities have approximately the same radiation pattern.
This means that for these wave paths it is virtually impossible to
determine the depth of the heterogeneity from the surface wave
coda. For the paths through the western Mediterranean this
situation is different because it can be seen from Figure Sa that a
shallow heterogeneity (or topography) fits the normalized coda
spectrum better than a deeper inhomogeneity. This is an indication
tha! the ldteral heterogeneity in eastern and central Europe is
present at greater depths than in the western Mediterranean.

3, PROCEDURES FOR THE INVERSION OF SURFACE
WAVE SEISMOGRAMS

In order to perform waveform fits of surface wave data, several
parameters and procedures need to be specified. All inversions
presented in this paper have been performed with the model
shown in Figure 6. This model is equal 1o the M7 model of Nole:
[1977}, except that the § velocity in the top 170 km is 2% lower
than in the M7 model. This compensates for the fact that the M7
model is for the Scandinavian shield which has an anomalously
high § velocity. The anelastic damping of the PREM model

Paths through Europe
T 1

: T L M T v T
—=~ ghrect wave
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ok —-— bafora direct wave H N
o &
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L
T O N
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wnl -
(=]

0.0 002 0.03

Frequency (Hz)
Fig. 4b. Spccira of the direct wave, surface wave coda, and background
noise for wave paths through castern and central Europe. -
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Paths through the western Mediterranean
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Fig. 5a. Nomalized coda level for the wave paths through the western

Mediterranean and the (normalized) imegrated radistion for different
inhomogeneities as defined in section 3.

0.02

[Dziewonski and Anderson, 1981] is assumed: this damping is not
varied in the inversions.

For the source mechanisms and the event location and depth,
the centroid moment tensor solutions, as reported in the
International Seismological Centre bulletins, are used whenever
available. For the remaining events the source parameters from
the Preliminary Determination of Epicenters bulletins are used.
For the Rumania event the source mechanism as determined from
GEOSCOPE daz (B. Romanowicz, personal communication,
1986) is employed. No inversion for the source mechanism is
performed because the NARS stations provide only a limited
azimuthal coverage, which means that the source mechanisms are
poorly constrained by the data. The source strength is usually
rather inaccurate; this parameter is determined by fiting the
envelopes of the synthetics to the data envelopes. The events used

Paths through Europe
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Fig. 5. Nomalized coda leve! for the wave paths through eastem and
ceatral Europe and the (nomalized) integrated radiation for different
inhomogeneities as defined in section 3,

T ¥ T T T T ¥

= X
W  —— S-velocity

4.5

4.0

Density {kg/m**3), S-vetocily(km/s)
_ 35

3.0
T
1

1 A 1 " A A 1 1 i 1
50 100 150 200 250 300
Depth (xm) .

Fig. 6. Staning model for the inversions,

i FI i
350 400

in this study are, in general, rather weak {ms=5-6), so that the
reported source mechanisms are not always reliable. All
seismograms with a strong difference in wave shape between the
data and the (initial) synthetics have not been used in the
inversion. Surface wave recordings that triggered on the surface
wave have also been discarded,

The station magnifications are not included in the inversions
presented here. The station magnification includes not only the
instrumental magnification but also the magnification effects of
the local environment of the station. As a check, the inversions
presented here have also been performed with a simuitaneous
mversion for the station amplifications. Even though this
produced station magnifications as large as 10%, the result in the
medels for lateral heterogeneity was minimal.

In paper 1, the waveform inversion is formulated as the least
squares solution of a large mairix equation. The rows and columns
of this matrix can be scaled at will (Van der Sluis and Van der
Vorst, 1987]. It has been shown by Tanimoto {1987] that it is
important that each seismogrant gets more or less the same weight
in the inversion. Similarly, the different frequency components
within each seismogram should have a comparable weight. For
the shallow events used here, the low frequencies are not excited
very well. In order 1o compensate for this, data and synthetics are
scaled in the frequency domsin with a factor V. In the
inversions for the surface wave coda, a sciling with M, /Vsina is
applied, where M, is the strength of the moment tensor and A is
the epicentral distance. This factor corrects for the different
strengths and geomerrical tpreading factors of the different
events. In the inversion for the direct wave the seismograms are
scaled in such a way that maximum amplitude in the time domain
is equalized, :

Last, in the Born inversions both for the <oda and the direct
wave, each seismogram is scaled with a factor VT + E/<E 3. In
this expression, E is the energy of the data residual of the
seismogram under consideration, while <E > denotes the average
of this quaniity for all seismograms. This weight factor ensures
that the seismograms with appreciable misfits get more or less the
same weight in the inversion, so that the contaminating influence
of outliers is reduced. In the meantime, seismograms with a good
mnitial fit have a low weight in the inversion; this prevenis a small
amount of spurious noise in these seism grams getling an
excessive weight in the inversion, '
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4. NONLINEAR INVERSION OF THE DIRECT WAVE

As mentioned in paper 1, it is advantageous o perform a
nonlinear inversion of the direct wave first because this renders
the Born inversion more linear. For this inversion the procedures
described in paper 1 are used for determining the phase velocity
perturbation of a smooth reference model. In this inversion the
phase velocity is determined on a rectangular grid of 12x12 points
in the domain shown in Figure 1 and is interpolated at
intermediate locations using bicubic splines. The relative phase
velocity perturbation 8¢/c is dssumed to be constant in the period
bands 3040 s, 40~60 5, and 60100 5,

In Figure 7a the phase velocity perturbation for periods
between 60 s and 100 s is shown for the unconstrained case, i.e.,
=0 in equation (21) of paper 1. Note that the phase velocity
perturbations are not confined to the vicinity of the source receiver
paths. This is an artifact of the bicubic spline parameterization,
which has an oscillatory nature near places where the interpolated
function changes rapidly. These artifacts can be removed by
switching on the regularization parameter ¥ in expression {21) of
paper 1. The constrained solution (y>0) is shown in Figure 7b.
This reguiarization goes at the expense of the waveform fit, and it
is subjective how much regularization one wants to impose on
these solution. However, in this study the nonlinear inversion for a
smooth reference model is only the first step in the complete
waveform inversion, so that there is no need to obtain the
maximum information from this nonlinear inversion. For periods
larger than 30 s the resuliing reference models for the employed
value of ¥ (see, for example, Figure 75) produce a waveform fit
which is sufficiently good 1o warrant a linear inversion for the
remaining data residual. (This means that the phase shift between
the data and synthetics is at the most 45°, and that the amplitude
mismatch is not larger than 30%.) These reference models for the
phase velocity perturbations are used in the subsequent Bom
inversions. Waveform fits of the nonlinear inversion are presented
in section 6.

{ r'ﬂlfr A

4

Fig. 7Ta. Relative phase velocity perturbation (8¢ fc } for periods between
60 and 100 s determined from unconstrained nonlinear waveform fitting

(y=0).

1207

Fig. 7b. Relative phas:; velocity perturbation (8¢ /c ) for periods between
60 and 100 s determined from constrained nonlinear waveform fitling

(y>0.).

5. BORN INVERSION OF THE SURFACE WAVE CODA

The Bom inversion can be applied both for inversion of the
direct surface wave, as well as for the coda. In this section the
waveform inversion of the surface wave cods is discussed. The
surface wave coda is extracted from the full seismogram with 2
time window that allows group velocities between 1,74 and 2.90
km/s. At both ends this window is tapered with a cosine taper over
a length of 100 s,

In this inversion the depth dependence of the heterogeneity is
prescribed to consist of a constant relative § velocity perturbation
SP/p down to a depth of 170 km, while the density is unperturbed.
The perturbations on the Lamé parameters are equal. In the
inversion a model of 100x100 célis is determined (with a cell size
of 35x35 km?), so that 10,000 unknowns are determined in the
inversion. The 42 seismograms produce 2520 data points, where
the real and imaginary paris of each spectral component are
counted as independent variables. This means that the resulting
system of lincar equations is underdetermined. Increasing the cell
size has the disadvantage that the scattering integral (5} of paper 1
is not discretized accurately. Imposing a smoothness constraint
also is no option, since scatlered surface waves are most sensitive
to abrupt lateral changes of the heterogeneity., As argued in
section 2, it is difficult 1 obtain a good depth resolution for this
kind of inversion. This, and the consideration tha: for a fixed
depth dependence of the heterogeneity the resulting system of
linear equation is already underdetermined, makes it unjustifiable
to perform an inversion with more degrees of freedom with
respect to the depth dependence of the heterogeneity.

The result of the Born inversion of the surface wave coda for
periods between 30 and 100 s is shown in Figure 8. For this
inversion, three iterations have been performed; according to the
results of paper 1 this is sufficient to image the heterogeneity. The
reconstructed model has a messy appearance and is dominated by
ellipsoidal structures, These structures are reminiscent of the
"smiles” that occur in improperly migrated sections in exploration
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Fig. 8. Relative § velocity perturbation (SB/B) from the inversion of the
surface wave coda, The heterogencity extends down to a depth of 170 km.

seismics [Berkhout, 1984]. Note the oscillatory nature of the
solution, which is & consequence of the fact that this image is
reconstructed essentially with a correlation method (paper 1). It
can be seen in Figure 1 that the majority of the paths in central
Europe runs in the southeast-northwest direction. The ellipsoidal
structures in eastern Europe and between Sicily and France are
centeredd around these paths. This means thar just as in the
synthetic example of section 8 of paper 1, the shape of these
ellipsoidal stripes does not necessarily coincide with the locations
of the scatterers and that some smearing of the true inhomogeneity
along these stripes (smiles) has taken place in the inversion. More
data, and especially more crossing paths are needed to obtain a

Fig. 9. Filtered envelope of the model in Figure 8.

SNIEDER: LARGE-SALE INVERSION OF SURFACE WAVE DaTA, 2

1% ;i
Envelope of model tor point scatterers.

Fig. 10. Filtered envelope of the model determined from a waveform
inversion of synthetics computed for positive (circles) and negative
{iriangles) point scatterers with /B constant down to a depth of 170 km.

better resolution along these ellipsoidal stripes. The direction of
these ellipsoidal stripes is thus determined by the geometry of the
events and the stations; it does not necessarily reflect the structure
of the inhomogeneiry.

This directivity of the oscillations in the reconstructed model
can be removed by compuling the two-dimensional spatial
envelope of the solution in Figure 8 Subtracting a smoothed
version of this envelope from the enivelope itself enhances the
contrasts in the final solution. The result of this procedure is
shown in Figure 9. One should always be careful in applying this
kind of image processing techniques because it may introduce an
unwanted degree of subjectivity in the resulting patierns. On the
other hand, these methods may help lo extract some order out of
an apparent chacs. Unfortunately, in the resulting model (Figure
9) this goal is only partly reached. Some of the heterogencities
could be relaled to familiar geological structures such as the
Tomquist-Tesseyre zone and the northemn edge of the African
continent, while other heterogeneities appear 1o be distributed at
random. :

In order to establish the significence of these resulis, the same
inversion is performed with synthetic data for a model consisting
of nine positive and eight negative point scatterers. The envelope
of the resulting model is shown in Figure 10. The heterogeneity is
reconstructed near most point scatterers but also in areas away
from these point scatterers (Spain, southwest France, Aegean Sea,
elc.).ﬂﬁsnmsd\nevmiflhedmwmmiscﬁu.mae are
insufficient data to constrain the resulting model. For noise-
corrupted data this effect is aggravated. -

Nevertheless, & reasonable good fit of the surface wave coda is
achieved, with a variance reduction of 25%. It may appear
surprising that the variance reduciion is only 25%, despite the fact
that the system of linear equations is underdetermined. However,
the linear equations are not only underdetermined but also self-
contradictory. This can be seen for example in Figures 4a and 45,
where the average amplitude spectrs for the coda show a jagged
appearance. (This is even more pronounced for the individual -



SNEDER: LARGE-SALE INVERSION OF SURFACE WAVE DATA, 2 12,073
Fit of {coda)data and synthetics. tor T>50 5. Event 3218 (Greace), station NEQ2.
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Fig. 11a. Examples of the waveform fit of the surface wave coda, low
passed at a comner period of 50 5.

spectra.) The scattering theory leads, in gencral, to much
smoother spectra, so that it is impossibie to fit all spectral
components perfecdy, thus producing an imperfect variance
reduction.

Some waveform fits of the surface wave coda are shown in
Figures 11a and 118 both low passed and high passed at a comer
period of 50 s. For periods larger than 50 s (Figure 1la) the
waveform fit is poor. This is consistent with the results of section
2, where it was argued that the coda level does not stand out very
well above the noise level. However, for the higher frequencies
(periods from 30 to 50 s, see Figure 115) a reasonable waveform
fit is obtained. Most of the beats in the surface wave coda are
reproduced in the synthetics. It should be remembered that the
seismograms in these figures only show the surface wave coda. In
order 1o see these data in their proper perspective, a fit of the coda
(band passed for periods between 30 s and 50 5) is shown in
Figure 12 together with the direct wave. Unfortunately, the fact
that good waveform fits are achieved does not establish the
reliability of the resulting models because the linear system of
equations is underdetermined.

Fit of (codaldata and synthencs, for 30 5. «T<50 5
L 1 v

data
synthetics

\/\/\N\/\;\N\/\N\/\[\/\/\w

3218NE12

of 321BNEGZ

I 1

1000 1200

800
time {s}
Fig. 11b. Examples of the waveform fit of the surface wave coda, high
passed at a comer period of 50 5.

Hme (s)

Fig. 12. Full waveform fit of the surface wave cods, high passed at a
comer peried of 50 1.

Inversions for heterogeneities which extend to a depth different
from 170 km produce almost the same model; only the strengths
of these heterogeneities differs from the model shown in Figure 8.
An inversion for data band passed between 30 and 4G 5 gives
virtzally the same result as Figure 8, which confirms that for
longer periods the surface wave coda contains a large noise
component and not much scattered surface waves.

These results do not imply that mapping lateral heterogeneity
using the surface wave coda is impossible. In fact, it has been
shown in a controlled field experiment that successful imaging of
the surface wave coda is possible (Snieder, 1987a]. However, the
surface wave coda data at our disposal are currently too sparse o
produce an accurate reconsiruction of the lateral helerogeneity.
This is exacerbated by the fact that the noise level in the surface
wave coda is relatively high, which can only be compensated with
& redundant data set. Large networks of digital seismic stations, as
formulated in the ORFEUS [Nolet et al., 1985] and PASSCAL
proposals, are necessary w achicve this goal. Alternatively, the
Bom inversion of the surface wave coda might be used in regional
studies where one wishes to study tectonic features such as
continental margins or the boundaries of major geological
formations. A system of portable digital seismographs would be
very useful for this kind of investigations.

The directivity of the solution in Figure 8 is related to the
source-receiver geometry. This means that apart from a denser
network of stations, we should aim to employ these station in such
a way that the wave paths of the recorded waves cover the domain
of interest in a more or less homogeneous fashion. Furthermore,
threecomponent data might help to constrain the location of the
inhomogeneity because the horizontal components implicitly
contain information on the backazimuth from the receiver to the
scatterer. Numerical experiments, similar to the experiment that
produced Figure 10, could be used to determine which station
configuration should be vsed to image a particular structure. In
this way, the design of networks can be related to & particular
geophysical or geological problem.

6. BORN INVERSION OF THE DIRECT SURFACE WWAVE

Linear scattering theory can also be used to describe the
distortion of the direct wave [Snieder, 19875). This distortion can



12,074

Fig. 13a. Relative phase velocity perturbation (¢ /c ) for periods between
30 and 40 s as determined from nonlincar waveform inversion plus a
subsequent Born inversion. The dominant wavelength of the employed
waves is shown for cotnparison.

either be due to ray geometrical effects or to multipathing effects
that are not accounted for by ray theory. In the Bom inversion
presented in this section, the isotropic approximation is used
(paper 1). This means that the relalive phase velociry
perturbations are retrieved from the linear waveform inversion of
the direct wave. This quantity is assumed to be constant within the
frequency bands employed (30~40 s, 40-60 s and 60-100 s).

Fig. 135. As Figure 13a, but for periods between 40 and 60 s.
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(Note that in contrast to the case for the surface wave coda, the
direct wave stands out well above the noise level for all employed
frequencies; see Figures 4a and 4b.) A separate Born inversion is
performed for each of these frequency bands, so that the phase
velocity perturbation is determined independently for each
frequency band. In order w justify the isomopic approximation
(paper 1), a time window is used to extract the direct wave from
the complete seismograms.

The Bom inversions presented here are performed for a model
of 100x100 cells with a cell size of 35x35km?2 In the Bom
inversion of the surface wave coda in section 5, no a priori
smoothness constraint was inposed because scattered surface
waves are most efficiently generated by sharp lateral
heterogeneities. This led 1o an underdetermined system of linear
equations. For the Bom inversion of the direct wave the available
data set also produces an underdetermined system of linear
equations. One altemative would be to increase the cell size, but
according to the example of Figure 7 in paper 1, rather small cells
are needed to produce the required focusing/defocusing. Instead
of this, the smoothing operator of equation (26) in paper 1 is used
in this inversion to constrain the solution, In these inversions the
values @=0.66 and N=4 are used, which implies an effective
correlation length of 140 km. The Bom inversions are performed
in three iterations (see also paper 1); it has been checked that more
iterations do not change the resulting models very much.

The phase velocity perturbation for the three frequency bands
ere shown in Figure 13. The phase velocities are the result of both
the nonlinear inversicn for the smooth reference medium and the
subsequent Born inversion. Sce Figure 76 as an example of the
contribution of the nonlinear inversion for the smooth reference
medium to the phase velocity model of Figure 13¢.

Note that the resulting phase velocity patterns  vary
considerably on a scale of one horizontal wavelength. This means
that ray theory cannot be used to model the effects of these
heterogeneities, while surface wave scattering theory takes effects
such as multipathing into account. Surprisingly, Figure 13¢ for the
phase velocity determined from Born inversion is not too different
from Figure 7a for the unconstrained nonlinear inversion using

Fig. 13¢. As Figure 13a, but for periods between 60 and 100 5.
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Event 3218 (Greece), station NE12. 30 s.<T<40 5
T T M

data ; !

-------- synthelics L
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nonlinear fit
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Fig. 14. Waveform fit for periods between 30 and 40 s for the laterally
homogeneous swaning model (lop), after the nonlinear inversion for a
smooth reference meodel (middle), and afier Bom inversion {bottom), for a
Greek event recorded in NE12 (Spain).

ray theory. The smaller-scale features of Figure 13¢ are absent in
Figure 7a because the spline interpolation does not allow these
small-scale features (nor does ray theory). Nevertheless, the
overall pattern in these Figures is the same. Apparently, ray theory
is rather robust 1o violations of the requirement that the
heterogeneity is smooth. This may explain the success of
dispersion measurements in siluations where ray theory is not
justified. Most of the information on the § velocity structure
under Eurcpe in the crust and upper mantle is determined from
surface wave dispersion measurements. For example, Panza el al.
[1982] delineated a heterogeneity between Corsica and northern
Italy with a scale of approximately 250 km, from anomalously
low Rayleigh wave phase velocities between 40 and 60 s. Their
results are therefore inconsistent with the (ray) theory that they
employed. Nevertheless, this low phase velocity anomaly is also
visible in Figure 13, which is constructed using surface wave
scaltering theory.

Event 4042 (Greece), station NEQT, 30 5.<T<40 5.
T T T T

T T

data
~~~~~~~~ synthetics ,,

i

lat. homn.

nonlinear tit

time {s}

Fig. 15. As Figure 14, for 2 Greek event recorded in NEO1 (Gothenborg)
for periods between 30 and 40 5.
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Event 5300 [Aigeria), station NE15, 4D s.<T<60 s.
T "

T
data
........ synthetics

lat. hom.

nonlinear fit

tme (5}

Fig. 16. As Figure 14 for an Algerian event recorded in NEIS
(Netherlands) for periods berween 40 and 60 s.

Waveform fits aftér the nonlinear inversion for the smooth
reference model and afier the subsequent Born inversion (the
“final fit") are shown n Figures 14-19. In Figure 14, resulis for
station NE12 near Madrid are shown. The amplitude of the direct
surface wave is changed considerably in the inversion. Note that
the waveform: fit has slightly deteriorated in the nonlinear
inversion. The reason for this is that the 42 seismograms are
inverted simultaneously, so that it is possibie that the fit of one
seismogram is improved at the expense of another seismogram.
In Figure 15 an example is shown for a seismogram recorded at
NEO! (Gothenborg). For this seismogram the amplitude is already
quite good for the laterally homogeneous starting model, but the
phase is adjusted in the Bom inversion. In the preceding
examples the Bomn inversion realized the fit between data and
synthetics. This is not the case for all seismograms. In Figure 16 a
seismogram for mn event in Algeria recorded at NE1S5
(Netherlands) is shown. For this seismogram the nonlinear
inversion performed most of the waveform fit.

By superposing the seismograms for the three frequency bands,
seismograms for the full bandwidth (30100 s) can be

Even! 3218 (Greece). station NE12. 30 5.<T<100 5
T L) T v

T

~— data
weeee gythetics

nonlinear it

finat fit

.

1

500

L
600 700 800

time (s)

Fig. 17. As Figure 14 for the full bandwidth {30—100 ).
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Evenl 5300 (Algeria), stalion NE15, 30 5.<T<100 5.
. v T ~

T T L
— data

—- Syninetics

400
time (s)

' Fig. 18. As Figure 14 for the full bandwidih (30-100 s).

constructed. Figure 17 displays the seismogram of Figure 14, but
now for the full employed bandwidth. The final fit between the
data and the synthetic is extremnely good. Note that the tail of the
direct wave (around 725 s) is fitted quite well after the Bom
inversion, For the recording of the Algerian event in NE1S, the
full bandwidth data are shown in Figure 18. The trough in the
waveform sround 420 s has been adjusted well in the nonlinear
inversion, whereas the fit of the start of the signal (around 400 5)
is improved considerably in the subsequent Bom inversion.
Unfortunately, the improvement in the waveform fits is not for all
seismograms as dramatic as in the preceding examples. Figure 19
features the waveform fit for a Greek event recorded at NEO2
(Denmark). The phase of the signal is slightly improved in the
nonlinear inversion, but the final waveform fit is not impressive.
The quality of the waveform fits Is expressed by the variance
reductions shown in Table 1. Both in the nonlinear inversion and
in the subsequent Born inversion the variance reduction is of the
order of 25%, although this differs considerably between the
different frequency bands. In the nonlinear inversion for the

Event 3218 (Greece)}, station NE02, 20 5.<T<100 5.
1 1

- dala
--=--- Synithetics

roniinear fil

time (s}

Fig. 19. As Figure 14 for a Greek event recorded in NEO? (Denmark) for
the full bandwidth (30—100 s).
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TABLE 1, Variance Reducticns for the Waveform Inversions

Pericd, s Nonlinear Bom  Nonlinear + Bom
30-40 5% 20% 3%
40-60 317% 2% 54%
60-100 21% 25% 41%

smooth reference medium the solution is rather heavily
constrained (compare Figures 7a and 7&) so that larger variance
reductions could be achieved with the nonlinear inversion. The
smallest variance reduction occurs in the period range from 30 to
40 5. This is not surprising because these surface waves have the
shallowest penetration depths and are therefore most strongly
subjected o lateral heterogeneity and therefore most difficult to
fit. Surprisingly, the variance reduction for periods between 40to
60 s is larger than for 60~100 5. The reason for this might be that
surface waves between 60-100 s. are influenced by the low-
velocity zone, which is reportad 10 exhibit sirong lateral variations
[York and Helmberger, 1973; Paulssen, 1987). The total variance
reduction is larger than the variance reduction obtained by
Yomogida and Aki {1987) for surface waves which propagated
through the Pacific. (They obtained a variance reduction of
approximately 309%.) However, it is difficull 10 compare these
resulis because on the one hand the paths of propagation of the
surface waves that they used are much longer than in this study
but on the other hand Europe and the Mediterranean is much more
heterogeneous thap the Pacific.

7. A RESOLUTION ANALYSIS OF THE INVERSION
FOR THE DIRECT WAVE

Just as with the inversion for the surface wave codz, the quality
of the waveform fit is no measure of the resolution of the
inversion. In order to address this issue, synthetics have been

Fig 20. Synthetic model of the relative phase velocity perturbation
(8c/c) for the resolution experiment of section 7.. The source-receiver

minor arcs are superposed.
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Fig. 21. Reconstruction of the model of Figure 20 afier the constraired
nonlinear inversion for periods between 60 and 100 s,

computed using asymptotic ray theory [Woodhouse and Wong,
1986} for the phase velocity model shown in Figure 20. For
convenience, the minor arcs of the used source-receiver pairs are
also shown in this Figure. The resulting synthetics have been
subjected to the same Iwo-step inversion as the surface wave data
from section 6. As a representative example, the results for the
period band between 60 and 100 s are presented in this section. In
Figure 21 the model as derived in the nonlinear inversion for the
smooth reference model is shown. The thin lines show the model
of Figure 20; in the ideal case the inversion would reproduce this
model. Since enly the direci wave is used in this inversion, the
solution is only nonzero in the vicinity of the source-receiver
minor arcs, Apart from the positive anomaly in the northern
Adriatic, the heterogeneities are placed more or less st their
correct location. The reconstructed model after the subsequent
Bormn inversion is depicted in Figure 22,

The strength of the model afier Bom inversion is closer to the
true mode] than after the nonlincar inversion alone. However, the
magnitude of the reconstructed heterogeneity is still much less
than the magnitude of the input model. The physical reason for
this is that the model used in this resolution lest consists of
elternating positive and negative anomalies. A smearing of these
anomalies leads to a reduction of the magnitude of these
anomalies. In the true Earth an aliemation between positive and
negative phase velocity anomalies may also occur, so that the
reconstructed models (Figure 13) may underesiimale the true
phase velocity perturbations.

Surprisingly, the heterogeneities arc better positioned after the
Bomn inversion (Figure 22) than after the nonlinear inversion
alone (Figure 21). The reason for this is that with the ray
geometrical nonlinear inversion one basically measures cerlain
path integrals over the source receiver minor arc (see eguations
(102)~(10d) of paper 1), whereas in the Born inversion more
complete wave information is used.
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wave paths runs in a bundle from Greece 1o northwestern Europe
and encounters & suite of posilive and negative anomalies. This
leads 1o a smearing of the solution under Germany and Denmark
in the northwest-southeast direction and a subsequent
underestimate of the true inhomogeneity. A similar smearing in
the northwest-southeast direction is visible in the northem
Adriatic; this area also suffets from & lack of crossing ray paths.
One of the most conspicuous features in Figure 13 is the high
phase velocities under Greece. This is no artifact of the inversion
because this feature is not present in the results from the
resolution analysis (Figure 22).

In conclusion, the reconstructed phase velocity models are
meaningless ouiside the dotted line in Figures 24 and 25. In the
area enclosed by this line, lateral smearing in the northwest-
southesst direction occurs under Denmark, Germany, and the
northem Adriatic, while there is an east-west smearing in the
southemn Medilerranean. ’

8. A MODEL FOR THES VELOCITY UNDER EUROPE
AND THE MEDITERRANEAN

The phase velocity perturbations presented in section 6 can be
converted to a depth mode!l using the phase velocity information
of the different frequency bands. However, these phase velocities
are influenced not only by the composition of the crust and upper
mantle but also by the crustal thickness. The crustal thickness
under Europe and the Mediterranean -is known from refraction
studies, and it is therefore possible to comect for the varying
crustal thickness. The reference model shown in Figure 6 has a
crustal thickness of 33 km. By determining the phase velocity for
the same model, but with a different crustal thickness, the
following linear parameterization of the effect of crustal thickness
on the fundamental Rayleigh mode phase velocity has been
determined:

5
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It follows from Figure 22 thal the east-wes resolution in the Fig. 22. Reconsimuction of the model of Figure 20 sfier the constrained
southern Mediterranean is rather poor. This is due to the fact that  nonlinear inversion and the subsequent Bom inversion for periods between

there are no crossing rays in that region. A large portion of the 60and 100s. -
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Smoothed crustal thickness in domain.

AV

-

£

Fig. 23. Smoothed crustal thickness used in the correction for the varying
Moho depth. '

in this expression, z is the crusta] thickness in kilometers.
The parameter T is for the different frequency bands given by

IF=-0.180(%/km) for 30s<T<40s
IF=-0.113 (%/xm) for 40s5<T<60s
I'=-0.076 (%/km ) 605 <T<100 s

The crustal thickness used in this study is adopted from
Meissner [1986) and Stoko et al. [1987], and is shown in Figure
23. In the arca outside the dotted line in Figures 24 and 25 the
default value is assumed (33 km). For consistency reasons, the

@

for

Fig. 24. Relative § velocity perturbation (5B/B) between the surface and s
depth of 100 km.
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same smoothing is applied to the crustal thickness, as for the
reconstructions shown in Figure 13, The variations in the crustal
thickness are as large as 25 km in the area of interest. For the
shortest-period band this leads 1o a phase velocity perturbation of
45%, which is of the same order of magnitude as the
perturbations as determined from the Born inversion (Figure 13a).

After correcting for the crustal thickness, a standard linear
inversion (Nolet, 1981) leads to the S velocity perturbations for
depths between 0 and 100 kam, and between 100 and 200 km. A
simple resolution analysis shows that incorporating a third layer is
unjustified. The resulting § velocity perturbations are shown in
Figures 24 and 25. A bias in the § velocity of the reference mode]

. would show up a5 a dominance of either positive or negative

velocity perturbations. Likewise, a bias in the attsnuation would
show up in structures that would for the majority of the paths
produce a marked focusing or defocusing. As can be seen from
Figures 24 and 25, and from the wave paths in Figure 1, neither
effect seems to be present, ’

The § velocity models in these Figures can be compared with
maps of the S velocity as compiled subjectively from a wide range
of surface wave and body wave data [Parza e al., 1980,
Calcagnile and Scarpa, 1985). In general, there is a
comrespondence of the large-scale features. The velocity is high in
the Scandinavian shield, which can be scen in the northern area of
inversion of Figures 24 and 25. Under the western Mediterranean
the velocity is low [Marillier and Mueller, 1985], whereas the
Adriatic is characterized by a § velocity higher than in the
adjacent regions. This high velocity under the Adriatic is more
pronounced in the lowest layer (Figure 25) than in the top layer
(Figure 24). Note that the Alps do not show up in Figures 24 and
25, whereas Panza et al. [1980] and Calcagnile and Scarpa
[1985] report large anomalies both in the western Alps and the
castern Alps. A reason for this discrepancy might be that the
depth-averaged structure of the Alps deviates not very much from
the rest of Europe, so that the surface waves are not perturbed
strongly.

Fig. 25. Relative S velocity penturbation (33/B) for depths between 100
and 200 km. . '
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Early tomographic swdies using P wave delay times
[Romanowicz, 1980, Hovland et al.,, 1981; Hoviand and Husebey,
1982; Babuska et al., 1984] produced rather different results for
the P velocity under Eurepe. The only consistent features of these
studies are the low velocity in the Pannonian basin and the high
velocity under the Bohemian massif for the upper layer (0~100
km). Both featres can alsp be seen in Figure 24. (In Figure 23
the Pannonian basin shows up as a region with a thin crust,
whereas the Bohemian massif can be identified by its thick crust.)
A more recent tomographic inversion with a much larger data set
produced more detailed results [Spakman, 1986a,b; Spakman et
al., 1988]. In his studies the subduction of Africa under Europe
has been imaged spectacularly. The subduction of Africa of the
African slab under Euwrope can also be seen in Figure 25 as a
positive velocity anomaly in the deepest layer (100-200 km)
under the Adriatic and northern Ialy. Panza er al. [1982)
observed relatively low velocities in the lid between Corsica and
Italy; the same anomaly is visible in Figure 24.

In Figures 24 and 25 the Rhine Graben shows up as a zone of
relatively low velocities extending toward the southeast from the
Netherlands. Most wave paths in this region are in the southeast-
northwest direction. This may explain why in the top layer (Figure
24) only the northern part of the Rhine Graben can be seen,
whereas the southern part of the Rhine Graben (which trends in
the north-south direction) is not delincated. The variations in the
§ velocity for the deepest layer (Figure 25) reflect the lateral
variations of the low-velocity zone. It is noted by York and
Helmberger [1973] and Paulssen [1987] that strong veiocity
variations of the low-velocily zone exist, which is confirmed by
Figure 25. Under the Massif Central the positive anomaly in the
1op layer (Figurc 24) and the negative anomaly in the bottom layer
(Figurc 25) indicate a pronounced low-velocity zone, which is
consistent with the resulis of Sourian [1981].

The feature which shows the power of the inversion method of
this paper most spectacularly is the high-velocity anomaly in
eastern Europe in the deepest layer (Figure 25). (It is possible that
this area of high velocities extends farther eastward, but this area
is not sampled by the data.) From the waveform point of view,
this anomaly is needed to produce the focusing needed 1o fit the
amplitudes of seismograms recorded in the northern station of the
NARS array. For this reason, this anomaly is located away from
(but close 10) the source receiver minor arcs. This zone of a high S
velocity closcly marks the Tomnquist-Tesseyre zone, the boundary
between centra} Europe and the east European platform. Note that
this transition zone is mot visible in the upper layer of the §-
velocity model (Figure 24). This is consistent with the findings of
Hurtig et al. [1979], who showed by fitting wavel time curves that
below 100 km the eastem European platform has higher P
velocities than central Europe. According o Figure 25 this
transition at depth between Central Europe and the eastem
European platform is very sharp.

The models presented produce a wealth of interesting features.
However, at this point one should be exwemely careful with a
physical interpretation of these models. As shown by the
resolution analysis of section 7, parts of these models are
subjected to strong lateral smearing, which could produce
unwanted artifacts. Furthermore, the number of seismograms that
contributes to the Teconstruction of a particular inhomogeneity is
relatively small. This means that errors in individual seismograms
can distort the reconstructed images. Larger data sets with 8 more
even path distribution are needed to produce models which are
Jess likely to contain artifacts and which are more robust (o errors
in individual seismograms.
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9. CONCLUSION

Linear inversion of a large set of surface wave data is feasible
with present-day computers. The Bom inversion for the surface
wave coda {using 42 seismograms) ran in roughly one night on a
super minicomputer. The inversion of the direct surface wave for
the three frequency bands takes approximately the same time. The
nonlinear inversion for the smooth reference model is
comparatively fast and takes about 3 hours for the three frequency
bands. With the present growth in computer power, larger data
sets can soon be inverted with the same method, possibly on a
global scale.

Reasonable waveform fits of the surface wave coda can be
obtained, leading 1o a variance reduction of spproximately 25%
for the surface wave coda. However, with the data set used in this
study many anifacts are introduced in the inversion (the analogue
of the smiles in exploration seismics). The fact that the surface
wave coda conlains a relatively large noise component is an extra
complication. A larger (redundant) data set is needed to perform
an accurate imaging of the inhomogeneity in the Earth using the
surface wave coda. It would be interesting to set up centrolled
experiments to probe tectonic structures like continental margins
or the Tomaquist-Tesseyre zone with scattered surface waves.

Application of Born inversion 1o the dirccl surface waves leads
to detailed S velocity models on a scale comparable to the
wavelength of the surface waves used. With the data set
employed, a lateral resolution of approximately 300 km can be
achieved in some regions (ftaly, France, Alps, westem
Mediterranean), while in other areas, smearing along the wave
paths occurs (southem Mediterranean, northeastern Europe, the
Adriatic). More dala are needed w achieve a more cvenly
distributed resolution. Only a limited depth resolution” can be
obtained.

The fact that & mode! of the heterogeneity is constructed with a
horizontal length scale comparable o the wavelength of the used
surface waves implies that scattering and multipathing effects are
operative. This means that for this situation, dispersion
measurements are not justified. Nevertheless, the resulting model
for the § velocity bears close resemblance 1o the § velocity models
construcied by Panza et al. [1980] and Calcagnile and Scarpa
[1985], which are largely based on surface wave dispersion
measurcments. Apparently, the phase as deduced from ray theory
is relatively robust for structures that are not smooth on scale of a
wavelengih.

Lincar waveform inversion is a powcerful and rigorous method
to fit surface wave data. Presenily, the main limitation is imposed
by the availability of high-quality digital surface wave daia. A
network of seismomelers, as described in the ORFEUS [Nolet e
al., 1985] or PASSCAL proposals, will increase the resolution and
reliability of the resulling models. A data distribution center like
ODC (ORFEUS Data Cenicr) provides access to digital
seismological data at low costs. Born inversion for surface waves,
applied 10 these data, may help to construct accurate S velocity
models of the Earth.
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Large-Scale Waveform Inversions of Surface Waves for Lateral Heterogeneity

1. Theory and Numerical Examples

ROEL SNIEDER

Depariment of Theoretical Geophysics, University of Utrecht, The Netherlands

$uxfacemvcmnennglheory is presented as a new method for analyzing icleseismic surface wave data.
Using g.u'face wave scatiering integrals the effect of lateral heterogeneity both on the surface wave coda
generation and on the direct surface wave is deseribed. Since the employed scattering theory for the forward
problem is lincar, the inverse problem can conveniently be solved in the least squares sense using an ferative
matrix solver. For wavefomm inversions of the direat surface wave, only near forward scattering contributes. For
this case the isotropic spproximation is introduced, which makes it possible 10 retrieve phase velocity
information from scattering theory. It is shown that for practical waveform inversions the resulting system of
!inear equations is extremely large and how row action methods can be used conveniently for carrying out the
inversion on moderate size computers. The performance of the inversions is illustrated with two numerical
examples. In the first example the surface wave cods generated by one point scatierer is inveited. It is shown
that the reconstruction in this case is similar 10 Kirchhoff migration methods as used in exploration seismics. In
the second example, my geometrical effects (focusing and phase shifting) are obtained from the lincar inversion
with scattering theory. It follows from this example that lincar wavefonn inversion can simulianeously fit the

amplitude and the phase of surface wave data.

1. INTRODUCTION

Standard surface wave analysis proceeds by extracting path-
averaged group or phase velocities from surface wave data using
dispersion analysis. If sufficient data are svailable, these path-
averaged dispersion data can be used to determine the local phase
or group velocity. Mathematically, this approach relies on the
great circle theorem [Backus, 1964; Jordan, 1978; Dahlen, 1979]
or more accurately on the minor arc theorem [Romanowicz, 1987].
These theorems state that surface waves are only influenced by the
integral of the phase or group velocity over the source receiver
great circle (or minor arc). This is justified if the lateral
heterogeneity is smooth on & scale of a wavelength of the surface
waves under consideration.

In practice, this condition may not be satisfied. For example, 2
30-s Rayleigh wave has a wavelength of approximately 120 km.
In continents the lateral wvariation on this scale can be
considerable, so that the use of the great circle (minor arc)
theorem and the related dispersion measurements are not justificd.
Surprisingly, this well-known fact is widely ignored, and in some
cases, dispersion analysis is used over structures which have the
same length scale as the surface waves [e.g.. Panza et al., 1980;
Calcagnile and Scarpa, 1985]. If the structure is not smooth on 2
scale of a wavelength, surface wave scattering and multipathing
may occur. This is documented for reflection of surface waves al a
contincntal margin by Levshin and Berieussen [1979] and
Bungum and Capon {1974]. Linearized scattering theory can be
used 10 describe these effects. This theory is developed both for a
flat geometry [Snieder, 1986a,b], and for a spherical geometry
[Snieder and Nolet, 1987].

Scattered surface waves must to some degree be responsible for
the generation of the surface wave coda, and it would be fruitful
to extract this information from. the surface wave coda. Snieder
[19862) presents a holographic inversion scheme for the surﬁ:nce
wave coda, reminiscent of migration procedures in exploraton
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seismics. This inversion method has been applied successfully to
image the surface wave reflections from # concrete dam on a tidal
flat [Snieder, 1987a). In order to achieve this, several severe
approximations have been used, and it is desirable to give
waveform inversion for surface data a firmer theoretical basis.
This paper serves to provide a rigorous waveform-filing method
for surface waves, based on surface wave scatiering theory. This
inversion is set up as a huge matrix problem, and it is shown how
solutions can be found iteratively.

There is, however, more 1 be gained from surface wave
scattering theory than an analysis of the surface wave coda.
Surface wave scattering theory can also be used to describe the
distortion of the direct wave due 1o latera] heterogeneity {Srieder,
19875]. This allows not only for accurate forward modeling of the
direct surface wave in the presence of lateral heterogeneity but
also for a waveform inversion of the direct surface wave train. In
this way both amplitude and phase information can be used.

A waveform inversion of surface wave data was first attempted
by Lerner-Lam and Jordan {1983]. who linearly fited higher-
mode surface waves wilh a laterally homogencous model. Nolet et
al. [1986a] extended this method Lo incorporate nontinear effects
and lateral inhomogeneity. However, they only used the phase
information of the surface waves. Yomogida and Aki (1987] used
the Rytov field to fit both the amplitude and phase of fundamental
mode Rayleigh wave data. The starting point of Yomogida_ and
Aki [1/87] is the two-dimensional wave equation. One can argue
that their method lacks rigor because it is not clear that surface
waves satisfy the two-dimensional wave equation. Tanimoio
[1987) determined a global model {or the § velocity in terms of
spherical harmonics up 1o order 8 using long-period higher-mode
waveforms. In computing the synthelics he used the great circle
theorem to compuic the phasc shift, and he ignored focusing
effects. Because of the low order of his spectral expansion (/<8),
ray theory could be used for this inversion. This means that up to
this point, all waveform inversions for surface waves rclied either
on ray theory or on the two-dimensional wave equation.

In this paper it is shown how lincar scatlering theory can be
used for waveform fiting of the direct surface wave by the
reconstruction of # two-dimensional phase velocity field. The
derivation uses the full equations of elasticity, and neither uses ray
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theory nor the two-dimensional wave equaticn. Specifically, there
is 1o need 1o assume any smoothness propertics of the medium. In
fact, in section 7 a numerical example is shown of the distortion
of the direct surface wave by a structure with sharp edges. A
resiriction of this inversion methed is that small scatiering angles
are assumed. This can in practice be realized by time windowing
the data.

In section 2 some elements of surface wave scattering theory
are revisited. The isomropic approximation, which allows the
determination of phase velocities from scattering theory, is
introduced in section 3. Section 4 features a method to invert the
resulting scattering integral. Due to the extremely large size of
the resulting marrix equation this is not without problems, and in
section 5, several tricks are shown to make these computations
feasible on systemns as small as a super -minicamputer.
Unfortunately, the surface wave inversion problem is in reality
nonlinear, and the assumption of linearity is only justified for
reference models which are sufficiently close to the real Earth. It
is therefore advantageous to perform a nonlinear inversion (using
ray theory) first (section 6} in order to find a smooth reference
meodel] for the subsequent linear inversion. {In this paper this linear
inversjon is referred to as "Bormn inversion.") In section 7 it is
shown that a more or less realistic distribution of scatterers
produces a realistic looking coda but also that sharp lateral
heterogeneity may severely distort the direct surface wave,
Examples of inversions for a point scatterer and for ray
geometrical effects (phase shifting and focusing) are presented in
the last two sections. Application of this technique to surface
wave data recorded with the Network of Autonomously
Recording Seismographs (NARS) are presented by Snieder, [this
issue] (hereafier referred to as paper 2).

Throughout this paper the limitations of surface wave scattering
are assumed [Srieder and Nolet, 1987]; that is, it is assumed that
the heterogeneity is weak and that the far-field limit can be used.
In order 1o transcend these limitations a considerable amount of
theoretical work remains 1o be done. For reasons of simplicity,
only vertical component fundamental mode data are assumed, but
this restriction is not crucial. Note that this does not mean that the
fundamental Love wave need not be considercd, because in
general a double-couple source excites Love waves, which may be
converied by the heterogeneity to Rayleigh waves,

2. SURFACE WAVE SCATTERING THEORY

A dyadic decomposition of the surface wave Green's function
{Snieder, 1986a; Snieder and Nolet, 1987} has allowed compact
expressions for both the direct and the scattered surface waves. In
this section, elements of surface wave scattering theory are briefly
presented. Throughout this paper a spherical geometry is assumed,
and computations are performed to leading order of ka, where k
is the wave number and @ the circumference of the Earth. As
shown by Snieder and Nolet [1987), the unperturbed surface wave
excited by a moment tensor M can be written as a sum over
surface wave modes (with index v):

, n
k L

J( ‘GA+4)
vsin A

In this expression, s and pp are the azimuths of the source
receiver minor arc at the source and receiver, Tespectively,
counted anticlockwise from south, while A is the epicentral
distance. In this paper we shall only be concemed with the

v 8,0)= Tp"(rqe) £ (B (rs s )M) (1)
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fundamental modes, so that the (Greek) mode indices are usually
omitted. The polarization vector p is for Love waves given by

p=—(+2)W()é (2a)
and for Rayleigh waves by
Pr =(+B V(YA - iU(r)E (2b)

where f, A, and 15 are unit vectors in the vertical, radial, and
transverse direction, respectively. The eigenfunctions U, V, and
W of the Earth's normal modes are defined by Gilbert and
Dziewonski {1975]. The eigenfunctions are assumed to be
normalized as by Snieder and Nolet [1987]:

% | p(r)[U’(r)+ :(1+1)V=(r)] %y =

+14
[_n ] o

The angular quantom rumber [ is related to the wave number by
the relation ka=i+4, and u, is the angular group velocity of the
mode under consideration. The exciiation tensor E in (1) can be
expressed in the polarization vector at the source

T "‘5(

% [ p(r) 1(1+1)w1(r) r’dr €))

Ers is) = [fa, + {84 @

Plrs.s)

The perturbation of the wave field due to the lateral
heterogeneity can be expressed es a double sum over incoming
(0) and scattered (v) surface waves modes [Srieder and Nolet,
1987]

itka At Ty
1 - v f__— -
u(r.9.¢)—?%ﬂp(r41n’) Goin B V(e 6 x
i kot A+ )
el ol &y a

x ———————i
(sin Al)%

The surface wave distortion is expressed as a scattering integral
over the horizontal extend of the heterogeneity (8’,9’). The minor
arc from the source to the heterogeneity (8°,6") defines the azimuth
W5 at the source and the angular distance A, while the minor arc
from (€',¢"} to the receiver defines the azimuth |1, " at the receiver
and the angular distance A;. The interaction matrix V*® describes
the coupling between the modes v and ¢. For isotropic
perturbations in the density 8p and the Lamé parameters §A and
8 the interaction matrix depends only on frequency and the
scattering angle ¥ definad by

W= oy~ Bhia 6
(1o and p, are the azimuths of the incoming and scattered wave
a1 the scatterer.) Extensions for perturbations of interfaces and
gravitational effects are given by Snieder and Romanowic:
[1988], while the effects of lmsotmpy are discussed - by
Romanowicz and Snieder [1988]. .

For perturbations in the density and the Lamé parameiers the
interaction terms are depth integrals containing the heterogeneity
and the modes under consideration [Snieder and Nolet, 1987). For
example, the Love wave to Rayleigh wave conversion (R «L ) is
given by

E¥ (rs. s M A (5)

VRL = (I +'2) (IL +%)I ["VR W, 5p0)2

+ (%Uk*‘a,vk)(arwl_)a}l] rzdr sinlll
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R<-R Radiation pattern for 7=34 s.
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Fig. 1a. Radiation pauermn for the interaction of the fundamental Rayleigh
mode with itself for surface topography (3 km) and for § velocity
perrbations extending down 1o 170 km (3f/B=4%). 110 km
(5B/B=4%), and 33 kam (8B/B=12%). The effective size of the scauerer is
100x100 kan®. The dircction of the incoming wave is shown by an
ammow.

+ (A v Ve W B dr sin2y (D)
For Love-Love wave interactions (LL) or Rayleigh-Rayleigh
wave interactions (RR) a similar dependence on the scattering
angle exists

Ver otz = VAR + Vakor 1z cos ¥ + V2, peos2¥ (B
In Figures 1a end 1& the radiation patlems are shown for
interactions of the fundamental Rayleigh wave with itself and for
conversion from the fundemental Love wave 1o the fundamental
Rayleigh wave. These radiation pattems are shown for surface
topography [Snieder, 1986b; Snieder and Romanowicz, 1988], and
for a constant relative perturbation in the § velocity 5p/p down w0
different depths with an unperturbed density (8p=0). The
perturbations in the Lamé parameters are equal.

It is shown by Smieder [1986b] that the interaction terms for
forward scattering and unconverted waves are proportional © the
perturbation of the phase velocity 8¢ . Using the normalization (3),
equation (9.3) of Snieder [19865] can be wrilten as

¥
;si-_-[_?l-] L ypmeomerad (g .
c I+4] (+%4)

Up to this point, it has been assumed that the real Earth can be
treated as a radially symmetric reference model (producing a
seismogram u®), with superposed lateral inhomogeneities (Iea‘ding
1o the seismogram distortion u'). However, as shown in Sruec.ier
[1986a], the theory can also be formulated for a smoothly varying
reference model, with embedded heterogeneities. (Smooth means
that the latersl variation is small on & scale of one horizontal
wavelength.) In that case the phase lerms and the geometrical

&)

12,057

spreading terms of the propagators follow from ray theory
{Snieder, 1986a]. Solving the ray tracing equations is a
cumbersome affair, and as long as the inhomogencity of the
reference medium is sufficiently weak, the ray geometrical effects
can be expressed as simple line integrals over the minor arc under
consideration {Woodhouse and Wong, 1986; Romanowicz, 1987].
Using these results, the profagator terms exp i (ka A+may¥GGin A
in (1) and (5) should for the case of a smooth reference medium
be replaced by -

A
kaA — ka[A- -iidA'] (10a)

a

sinA — shA-IﬁnA’sm(A—A')a-(%)w (10b)

The azimuth terms in the polarization vectors and the scatiering
angle should be replaced by

a
Bs — M5~ —n-IE [.sm (A-A") 0, (%) da’ (10c)

1t s B
Hg = l*l""m[‘""ﬁ 8.(c)dA (10d)
with similar expressions for the azimuths of the incoming and
outgoing wave a1 the scatterer. In these expressions, dclc is the
relative phase velocity permurbation of the rcference medium,
while 3, and 0., are the first and sccond angular derivatives in the
transverse direction.

One should be careful giving u' the interpretation of the
scattered surface wave because u' describes all perturbations of
the wave field due to the perturbations superposed on the
reference medium. If there are abrupt tateral variations, this lcads
to surface wave scaltering. However, in the case of a smoother
perturbation on the reference model, u' describes the change in
the direct wave duc to these inhomogeneities. For example, 1t is
shown explicitly by Snieder [19875] that the "scallering integral”

A<-L Radiation pattern for T=34 s.
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Fig. 16. Radistion paticmn {dr the conversion from the fundamental Love
mode 1o the fundamental Rayleigh mode. Conventions as in Figure 1a.



{5) describes the ray geometrical effects on the direct wave due to
smooth lateral heterogeneity.

3. ISOTROPIC APPROXIMATION

The surface wave scattering formalism, as presentsd in section
2. establishes & linear relation between the lateral heterogeneity
and the perturbations of the surface wave field. In principle, a
three-dimensional inversion could therefore be formulated as a
huge system of linear equations by discretizing both the scattering
integral over the heterogeneity (5) and the depth inlegrals in the
interaction terms (7). Unfortunately, the simplicity of this
approach is elusive, An inversion using the surface wave
scaltering integral (5) should take care of the following effects:
(1) The inhomogeneilies should be located st their correct
horizontal position. (2) The depth distibution of the
heterogeneity should be determined. (3) The contributions from
the different inhomogeneities B5p, 8A, and &1 should be
unravelled. It is difficult those achieve these goals, since the
heterogeneity acts on the wave field only through the interaction
terms V", This means that it is only possible to retrieve certain
depth integrals of the heterogeneity. Information for different
frequencies, and possibly different modes, is needed for the
reconsruction of the depth dependence of the inhomogencity. The
contribution of the different types of inhomogeneity (5p,54,511)
can only be retrieved by using information of different scattering
angles,

It will be clear that a complete three-dimensional reconstruction
of the heterogeneity is hard to realize with a finite set of band-
limited, noise-contaminated data. With present data sets there are
two realistic approaches. Ome ¢sn paramelerize the depth
dependence and the different contributions of 8p, 54, and 5. in a

finite set of basis functions. This reduces the degrees of freedom
of the heterogeneity, which facilitates a well-bchaved inversion.
This approach has been taken in a field experiment where surface
Wwaves on a tidal flat were reflected by a concrete dam [Snieder,
1987g]. In this test example the depth dependence of the
heterogeneity was prescribed, and an accurate reconstruction of
the location of the dam was realized using the surface wave coda.

Aliemnatively, one can make the “isotropic approximation.” It
follows from (8) that the R «R radiation Ppallern is stationary with
respect 1o the scatlering angle for near forward directions, This
can be verified in Figure 14 for several different inhomogeneities,
Furthermore, it follows from (7) that the Re-L conversion
vanishes in the forward direction. From Figure 1b it can be seen
that for the shown exemples the R «L conversion is smali for
near forward directions. This means that (at least for the
fundamental modes} for near forward directions one can make the
“isotropic approximation.” This means that

Vi =0 {an

%
- 1
Var =VR+ ViR + Vi@ =~ [';—:] (I+%) #‘cﬁ (12)

These expressions are extremely useful because they make it
possible 1o retrieve the phase velocity perturbation from scattering
theory. This allows a two-stage inversion of surface wave data. In
the first step the scattering theory is used 1o find the phase velocity
perturbation using (5), (11), and (12). Once these local phase
velocities are computed, a standard linear inversion can be used 1o

determine the depth dependence of the heterogeneity [Nolet,
1981). The caich is that this approach forces us to use
information for small scattering angles only. In practice, this can
be achieved by time windowing the seismograms, and only using
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the information contained in the direct wave. Note that there are
no smoothness restrictions on the heterogeneity, so that it is in

. principle possible to reconstruct a two-dimensional phase velocity

field without doing any dispersion measurements. In this way, the
conditions for the validity of the great circle theorem need not be
fulfilled.

4. INVERSION OF THE SCATTERING INTEGRAL

The linear relation (5) between the perturbation of the wave
field and the perturbation of the medium can be written as

W =3 [[ 5w L m @) goa) (B M) 2 13
va e

with the propagators defined by 7

P
ikaavl)
e

R =Ty S

or its equivalent for a smoothly varying reference medium 1o.
The model parameter m designates either the heterogeneity
(5p.5A.8yt) parameterized in some suitable form or the phase
velocity perturbation 8¢/c if the isotropic approximation is used.
The difference between the recorded surface wave data snd the
synthetics for the reference model (u°) can for all events, stations,
and frequency components be arranged in one (huge) vector d of
data residuals. Likewise, the model parameters can, after a
discretization in cells of the surface integral (13) (and possibly
also of the depth integrals in the interaction lerms), be arranged in
one model vecior m. (Of course, one does not have to expand the

heterogeneity in cells; other parameterizations can also be used.)
In that case, (13) can be written as a matrix equation

d,' =EG,-jm1' (15)
)

(14)

where G;; is the spectral component of the synthetic seismogram
for eventstation pair "i* at frequency «;, due to a unit
perturbation of model parameter ;"

In general, the matrix G is extremely large. The reason for this
is that the integrand in the original scatiering equation (13) is
rapidly oscillating with the position of the inhomogeneity. This
means that in order to discretize (13) accurately, & cell size much
smaller than a wavelength is needed. For an inversion on &
continenta] scale for surface waves with a wavelength of say 100
km, several thousands of cells are needed. Fortunately, extremely
large systems of linear equations can be solved iteratively in the
least squares sense (Van der Siuis and Van der Vorst, 1987), so
that a brute force inversion of G need not be performed. The least
squares solution minimizes the misfit |d—-Gm {2, so that one
performs in fact a least squares waveform fit of the data residual d
to the synthetics Gm. :

In the inversions presented in this paper, and in paper 2, the
algorithm LSQR of Paige and Saunders [1982a,b] is used to solve
(15) steratively in the least squares sense. _LSQR performs the
mversion by doing suitable matrix multiplications with G and G7.
(In the language of modern optimization schemes [Taransola and
Valeite, 1982}, one wouid say that one only needs to solve the
forward probiem.) There is 1o need to store the matrix in memory;
in fact, one enly needs to supply LSQR with a subroutine 1o do 2
multiplication with one row of G or GT. As an additional
advantage, LSQR has convenient "built in" regularization
propexties [Van der. Sluis and Van der Vorst, 1987). The stability
of LSQR is confirmed by Spakman and Nolet [1987], who applied
LSQR to a tomographic inversion of an extremely large set of P
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wave delay times and who made a comparison with other iterative
solvers of linear equations.

The inversion with LSQR has some interesting similarities with
migration methods in exploration seismics. The first itcration of
LSQR yields a solution proportional o GTd, higher iterations
perform corrections to the misfit [Van der Sluis and Van der
Vorst, 1987]. It is shown in detail by Snieder [1987a] that the
contraction G7d amounts to a holographic reconstruction of the
heterogeneity. This means that the waves propagating away from
the sources (the illumination) are correlated with the surface wave
residuals which have back propagated from the receivers into the
medium. For one source-receiver pair this leads to an ellipsoidal
contribution to the reconstructed image. By summing over all
source-recciver pairs {which is implicit in the product G7d) an
image is construcicd. It is shown by Tarantola [1984a,b] that this
procedure is similar to Kirchhoff migration as used in exploration
scismics. Just as with these techniques, the surface wave
reconstructions using the method of this paper will contin
"smiles" {Berkhout, 1984] if insulficient daia are used.

It may be advantageous to impose an a priori smoothness
constraint on the solution. This can be achieved by solving instead
of (15) the matrix equation

GSm=d (16)
where S is a prescribed smoothing matrix. This yields the solution
m = St an

which incorporates the smoothness criterion imposed by S.

5. PRACTICAL IMPLEMENTATION OF SOLVING THE MATRIX EQUATION

Solving the linear system (15) or (16) is not entirely
straightforward because the matrix may be extremely large. For
example, discretizing the continent of Europe (wilh a size of say
3500x3500 km?) in cells of 35x35km? (which is 1/4 of the
wavelength of 2 30-s fundamental mode Rayleigh wave) leads 10 a
model of 10,000 cells. For the data set used in paper 2, there are
approximately 2500 spectral componenis of surface wave daa to
be fitted. This means that storing this matrix requires 100 Mbyte
of disc space, which is impractical (if not impossible on many
machines), As mentioned before, LSQR does not need the whole
matrix at once but only needs access (o the rows of G and G'.In
principle, the matrix can therefore be compuied during the
inversion. However, due to the large number of trigonomeunc
operations required for the computation of the synthetics this
leads to prohibitive CPU times.

If we restrict ourselves to verlical component data for the
fundamental mode only, the elements of the matrix G have the
form

G =Aget®" +ALe % (18)

The first term in this expression describes the scattering of the
fundamental Rayleigh mode to itself, while the second term
describes the conversion from the fundamental Love mode 10 the
fundamental Rayleigh mode. The terms O and 0. are the phase
terms of the propagators (14}, while the complex amplitudes Ag
and A; contain the remaining terms. )
Due to the phase terms, the matrix G (which is the synlhlcu-c
for data point i due to a unit perturbation of model parameter f) 15
an osciilatory function of the position of the inhomogeneity and
hence of the index j. This oscillatory character makes it
tmpossible to use some interpolation scheme 1o comput.e? G;.
However, the phase functions 0z, ¢ and the complex amplitudes
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Agp. AL are smooth functions of the location of the inhomogeneity.
This makes it possible lo store these terms at selected grid points
and to compute valucs at intermediate points by interpolation
during the inversion. Ome could call this procedure “Filon matrix
multiplication.”

This procedure can be simplificd even [urther by using the fact
that the the wave numbers of the fundamental Rayleigh wave and
the fundamental Love wave usually arc not 100 diflerent (hence
de =g ). 1 (18) is wrilten as

G=Zc" (19)
with
Z=Ay +A i) (20)
one only needs to store Z and ¢y at selected grid points.

The funclions Z and ¢y arc, in gencral, also a smooth function
of frequency, so that the matrix qaly necds 1o be stored at certain
sclecled frequencies. The value of the mauix elements for
intermediate frequencics can also be computed by interpolation.
This interpolation with respect 10 frequency can be performed
with & simple linear intcrpolation. For the imerpolation with
respect 1o the location of the inhomogeneity it is better o use a
quadratic scheme. The reason for this is that the phase §p has a
minimum on the minor arc between the source and the receiver. It
is especially at this location that accuracy is required if the
isoiropic approximation is used, because in that case the
requirement of a small scatlering angle confines the solution to the
vicinity of the minor arc. A linear interpolation scheme for the
horizontal coordinaies is not able to reproduce such a minimum
and is thus unsuitable.

In the inversions shown in paper 2 for the swuclure under
Europe and the Mcditerrancan, an area of 3500x3500 km? is
investigaied. Storing the matrix on a 15x15 grid and interpolating
in between produced accurate results, (Hatving the grid distance
for the interpolation did not change the solution.) In the period
range from 30 s to 100 s, only 15 frequencics were sufficient to
achicve an accurale interpolation with respect o frequency.
(Doubling the number of frequency poimts for the interpolation
did not change the solutions.) In this way, only 2 Mbyte of disc
space was necded 1o store the interpolation coelficients for the
matrix G.

The edges of the domain of inversion require special atiention.
Artificial reflections may be gencrated at the edge of the domain
of inversion if this domain is truncated abruptly (E. Wiclandl,
personal communication, 1986). This problem can be
circumvented by tapering the matrix G near the edges of the
domain. In the inversions used in this study a lincar laper was
applicd 10 G near the edges of the domain over a length of 254
km.

The theory formulated here is siricily valid only in the far field
[Snieder and Nolet, 1987]. It can be secn from (14) that the theory
becomes singular in the near ficld. Due to the lack of a better
theory, this problem is ighored in this study. The singularity was
removed by replacing the sin A term in the propagator (14) by
constant (sin A, ), whenever A<A, . A value of 2.7° was adopied
for A,.

The data fit {15) or (16} is performed in the [requency domain,
whereas surface wave data are recorded in the time domain, Afier
amplying some taper these data can be transformed to the
frequency domain. In casc one uses the isolropic approximation 2
time window is necded to extract only the direct wave, In general,
the data are thercfore in the thne domain multiplied with some
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nonnegative time window w (1), Of course, the matrix elements,

which are the spectral components of the inhomogeneity in each -

cell, should incorporate the effects of this time window. A
multiplicative window in the time domain acts as a convelution in
the frequency domain, which complicates the inversion.
However, it is shown in Appendix A that if the time window w ()
is nonnegative and sufficiently broad, that due to the surface wave
character of the signal this filter acts in the frequency domain as a
simple multiplication with w (L /U (@)). In this expression, L is
the distance covered by the surface wave, and U () is the group
velocity of the mode under consideration.

6. WAVEFORM FITTING BY NONLINEAR OPTIMIZATION

The theory presented here establishes an inversion scheme in
case a linear relation exists between the inhomogeneity and the
deviation between the recorded surface waves and the synthetics
for the reference model. In practice, this relation may suffer from
nonlinearities. The main culprit for this effect is that small
changes in the wave nurnber are multiplied in the exponent by a
large epicentral distance 50 that
exp i (k+8k)L = (1+i 8L ) exp ikL may be a poor approximation.

It is therefore desirable to perform first a nonlinear inversion in
order to find & smooth reference mode! for the Bom inversion,
This nonlincar inversion can be achieved by minimizing the
penalty function

Fmy=% | [u"(:)-—s"(m.t)]zdt +y[[ 1Vim 12d0 1)

with respect to the model] parameters m. In this expression, ™ (1)
is the surface wave seismogram for source 5 and receiver r, while
s7(t) is the corresponding synthetic for model m ., The last term
serves to select the smoothest possible solution by minimizing the
horizontal gradient [ V,m |.

As shown by Noler et al. [19864], the minimization of F in 21
can be achieved efficiently using conjugate gradients. In this kind
of inversion one only needs 1o solve the forward problem
repeatedly [Nolet et al., 19864), and most of the computer time is
spend computing the gradient of the penalty function with respect
1o the model parameters. It is therefore crucial to have a fast
method for computing this gradient. {In this study, the forward
problem is solved using the line integrals (10) in order 1
incorporate ray geometrical effects. Bicubic splines are useful for
representing the lateral phase velocity variations because they
ensure continuity of the phase velocity with iis first and second
derivatives. In this approach, the modcl paramelers m are the
phase velocities at some scelected grid points.)

The gradient of the misfit M (m) = j )~ s(m ) for one
source receiver pair can for band Jimited data be estimated
analytically. It is shown in Appendix B that if the synthetic
consists of a sum of modes

S(m.w)= 3, Sum.0) = T Ao’ ™ (22)
the gradient of the misfit can be approximated by
BM__ _]__ a_c"_ v 1 aA' ¥
an ™ 2,{cefam ""B‘*Za_m“"’} @
In this expression
' B;:].é,(m.:)[u(r)-s(m.r)]dr (24)
B2 =J’;,(m.r)[u(t)—:(rn.t)]dt (25)
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Model for scattering computation.

Fig. 2. Horizonta] extend of the hetcrogeneity used in the example of the
scattering computation. The mhomogeneity extends down to 170 km with

3B/B=10%, 5p=0, and BA=5y.

source 1o the receiver. The virtue of this spproach is that the
correlations B and B3 have to be computed only once and that
the derivatives of all model parameters follow from these
correlations. Note the similarity between (24) and the cormrelation
functions used by Lerner-Lam and Jordan [1983] (the "beefs™) in
their linear inversion of surface wave data.

7. A NUMERICAL EXAMPLE OF SCATTERED SURFACE WAVES

In order to see whether the scattering theory presented here is
useful for invemsion, it is mstructive to study synthetic
seismograms for some artificial distribution of scarterers. Figure 2
shows a fictitious distribution of scatterers which forms an
extremely crude model of structures as the Alps, the Tornquist-
Teisseyre zone, and the edge of north Africa. As a reference
structure, the M7-model of Nolet [1977] is used for the density
and the elastic parameters, while the attenmation of the PREM
model [Dziewonski and Anderson, 1981] is employed. The
inhomogeneity consists of a constant § velocity perturbation of
10% down to a depth of 170 km, while the density is unpermrbed.
Equal perturbations of the Lamé parameters are assumed.
Synthetics are computed with a brute force integration of {(5). In
order Lo satisfy the criterion of linearity, only periods larger than
30 s are considered (see paper 2). '

Figure 3 shows the synthetic seismogram for the laterally
homogeneous reference model, the model with the
inhomogeneity, and data recorded at station NEO2 of the NARS
network [Dost et al., 1984; Nolet et al., 19865). Observe the
realistic looking coda in the synthelics for the.model with the
scatlerers. Of course, one cannot spesk of a fit of the recorded
surface wave data for this simple minded model, but the coda in
the data and in the synthetics are at least of the same nature.
Given the group velocity of the surface waves, the contributions
from the different scatierers can be identified by the arrival time
of the surface waves. The surface waves scaitered by the
"Tomquist-Tesscyre zone" interfere with the later part of the
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Examole lor scattaring computation for path A, Tx30s
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Full synthetics and direct waves oniy, for the paths B. C and ©.
] T v

—— dhirect + scattered
-~ direct only

path D

i I

800 1000

time (s)

Fig. 3. Seismograms for path A of Figure 2. The top seismogram is for the
laterally homogencous reference medium, the middle seismogram is for
the medium with the heterogentity, and the boutom seismogram shows
data.

direct wave and lead to an amplitude increase of approximately
40% of the direct surface wave train around 650 s. The surface
waves scatiered by the western side of the Alpine block and the
diffraction by the comer of the African biock constituie the
surface wave coda between 750 and 950 s. The diffraction by the
comner of the African block (arriving around 900 s) is rather weak
because the interaction terms for the corresponding scaltering
angle are relatively small (sce Figures 1a and 1b). However, the
surface wave coda can be made arbitrarily swrong by varying the
strength and the location of the scatterers and by allowing shorter
perids to contribute.

In Figure 4 the synthetics are shown for paths which propagate
with different lengths through the central block which mimics the
Alps. For path B, which does not propagate through the
heterogeneity, only the coda is affected, while for the paths C and
D the dircct wave is substantially distorted. For path D the
inhomogeneity induces both a forward time shift as well as an
amplitude increase. Physically, this happens because the scattered
waves arrive almost simultaneously with the direct wave (forward
scattering). The resuliing interference leads 1o a distortion of the
ariving wave train. This example shows that nonsmooth
structures may lead to a distortion of the direct surface wave.
Interestingly, the phase shift of the direct surface wave in
seismogram D coincides up to a deviation of approzimately 15%
with the path-averaged value of the phase velocity perturbation.
This implies that in this case the phase of the direct surface wave
is described well by ray theory, despite the fact that applying ray
theory is strictly not justified. However, the amplitude of the
surface wave is very sensitive to abrupt lateral variations of the

structure.

8. INVERSION FOR A POINT SCATTERER

In order to see how the inversion for the surface wave coda
operates, an example is shown where one point scatlerer
influences one seismogram, This point scatterer has the same
depth structure as in the example of section 7, b.ul has an effective
strength of 8/ fxarea=70x70 km?. The synthetics .for the laterally
homogeneous reference medium and the (synthetic) data for the

600 BOO
e (s}
Fig. 4. Synthetic seismograms for the laerally homogeneous refcrence
medium and the medium with the inhomogeneity for the paths B, C, and D
of Figure 2.

1000

medium with the scatterer are shown in the lop scismograms of
Figure 5. The point scaticrer has generated a wave packet which
arrives afier the dircct wave between 600 and 700 s. The Bom
nversion is applied to these daia for a model of 100x100 cells.
Alter three iteralions the model shown in Figure 6 is produced.
(The correct depth dependence of the helerogenceity is prescribed.)
The comresponding  synthctics are shown in  the botom
seismograms of Figure 5. The "data” for this point scallerer have
been fined guite well.

The resulting model (Figure 6) bears, of course, no resemblance
w the onginal point scatterer because it consists of an ellipsoidal
band of posilive and negative anomalies. With ane source and one
receiver it is impossible to delerming the true localion of the
hetcrogencity on this ellipse. By using morc sources and

Example for point scatterer

T T T T T | T T T d T
— "data”

-------- synthetics

starting model

after inversion

" ] 2 i i 1 " 1 M I - 1

500 600
time {s)

700 800 900

Fig. 5. Wavelorm fit before and after Bom inversion for & synihetic
seismogram generated with the point scattcrer of Figure 6.
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= s +1.25%
Reconstructed model for a point scatterer.

Fig. 6. Relative shear velocity perturbation (58/B) as determined from
Bom inversion of the top (solid) seismogram of Figure 5. The triangle
marks the source, the square marks the receiver, and the circle gives the
true location of the point scauterer.

receivers, an image is constructed by the superposition of these
ellipses.

As mentioned in section 4, the result of the first iteration of the
Bomn inversion is proportional to Gd, which can be interpreted
as the temporal correlation between the excited wave field and the
back propagated data residuals [Snieder, 1987a)]. Since surface
wave trains consist of oscillating wave packets, this correlation
also has &n oscillatory nature, which produces the aliernation of
positive and negative anomalies in Figure 6. The "holes" in these
ellipses are caused by the nodes in the radiation pattern of the
source (a double couple) and in the radiation pattern of the
scatterers (the thick solid curve in the Figures 1a and 15).

The strength of the reconstructed inhomogeneity is of the order
of 1%, whereas the synthetic "data” have been computed for a
point inhomogeneity of 100% with an effective area of
70x70 km2, The reconstructed heterogeneity is spread out over a
much larger area, which explains the weakened reconstructed
image. Suppose the heterogencity is spread out over zone of
2000x300km?2, which is about the right size (see Figure 6). This
would lead to a weakening of the reconstructed image of
70x70 km%2000>300 km?= 1%, which is of the order of
magnitude of the reconstruction in Figure 6.

9. INVERSION FOR RAY GEOMETRICAL EFFECTS

In this section it is shown how the Born inversion takes Tay
geometrical effects such as focusing and phase shifting into
account, Synthetics have been computed for the two source-
receiver pairs shown in Figure 7, assuming a double-couple
source for the excitation. The seismogram for the right wave path
has been multiplied with 1.4, and the seismogram for the left
wave path has been shifted backward in time over 4 s (which is
roughly 1% of the trave] time).

These seismograns have been inverted simultaneously with the
Bom inversion using the isotropic spproximation. In this
inversion a smoothness criterion is imposed because, in contrast to
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B i +1.25%
Born reconstruction for phase shift and focussing.

Fig. 7. Relative phase velocity perturbation (Sc/c ) as determined from
Bom inversion for ty geometrical effects, The triangles indicate the
sources; the squares mark the receivers.

the scattering example of section 8, no sharp helerogeneities are
needed to generate the perturbations of the wave field. The
domain shown in Figure 7 consists of 100x100 cells of
35x35 km?. The smoothing matrix that is used is given by

S‘-.‘..Jdﬁa"""" alirist lig-jo| SN
md  |ig-jelsSN
Sivieiee=0 elsewhere (26)

where i,, iq, etc., denote the cell indices in the horizontal
directions. In this example the values 0=0.66 and N=4 are
adopted.

The resulting model after three iterations is shown in Figure 7.
Note that because the isotropic approximation is used, Figure 7
displays the phase velocity perturbation 8c/c. (In the inversion a
constant value of 8c/c over the whole frequency band is
assumed.) In Figure 8 the waveform fit for the left wave path in

Inversion lor phase shift sffects
T L3 L] - T i
— "data"

time (s}

Fig. 8. Waveform fit before and after Bom inversion for the left wave path
in Figure 7, where the phase is qhiflei
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{nvers:on for locussing eftects

T T T T
— ‘"data”
- Bynthetics
/ /\ stamng mode!
T /\/\_,v_/—._\_
after inversion
1 1 A 1 L
40¢ 500 600 700
hime s}

Fig. 9. Waveform fit before and after Bom inversion for the right wave
path in Figure 7, where the amplitude is increased,

shown. (This is the time shified seismogram.) The phase shift is
correcily taken into account. This is realized by a negative phase
velocity anomaly in the first Fresnel zone of the left wave path in
Figure 7. This negative phase velocity anomaly is not distributed
evenly over the first Fresnel zone of the left wave path; there are
phase velocity minima slighly away from the source receiver
miner arc. If these minima were absent, the resulting concave
transverse phase velocity profile would produce an anomalously
large amplitude due to focusing. Because of the phase velocity
minima adjacent to the source receiver minor arc, the lransverse
phase velocity profile is actually convex at the minor arc. This
produces defocusing of surface wave energy, which compensatces
the amplitude increasc due to refraction at the edge of the Fresnel
zonc.

The scismograms for the right wave puth are shown in Figure
9. The synthetic data are 40% oo strong for the lawrally
homogeneous rcference model; this is almost completely taken
care of in the inversion. Physically, this is achicved by a negative
phase velocity anomaly on the source receiver line and an
anomalously high phase velocity just away from this line. This
phase velocity pattern lcads 1o focusing of surlace wave energy,
50 that the large amplitude is fitted. This confirms not only that
surface wave scattering theory can account for ray geometrical
effects [Snieder, 1987b], but also that these ray geometrical
effects are taken care of in the Born inversion. The asymmetry of
the phase velocity pattern in Figure 7 around the wave paths is
due to the the asymmetry in the radiation patern of the double-
couple source.

There are approximately 10 cells between the maxima in the
strips of high phase velocities for the right wave path in Figure 7.
The focusing produced by this structure is achicved by the
transverse curvature of the phase velocity. Increasing the cell size
{which is computationally advantageous) leads 1o a representation
of this curvature with only a few cells, which may produce
unacceptable inaccuracics.

10. CONCLUSION

Large-scale inversion of the surface wave coda can in prinf.-iple
be performed using an iterative solver of a large sysiem of linear
equations. For this kind of inversion the depth dependcx_'lce of the
heterogeneity should be prescribed or be paramclcr:z‘cd n a
lLimited number of basis functions. Alternatively, the isotropic
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approximation tan be used, which leads to a waveform fit of the
direct surface wave due to & laterally heterogeneous phase
velocity field. These phase velocities, determined for different
frequency bands, can be inverted locally 0 a depth distribution of
the heterogeneity.

The Bom inversions shown in this paper are performed
iteratively using LSQR. Although LSQR is originally designed
for sparse matrices and the matrix for surface wave scattering is
not sparse, good results are obtained in inversions of synthetic
daia. In practice, three itcrations proved to be sufficient both for
an inversion for the surface wave coda and of the direct wave, A
similar conclusion was drawn by Gawhier et ai. {1986), who used
an iterative schcme for fitting waveforms in an cxploration
geophysics setting. . e et

In hindsight, the success of lincar waveform inversions in a fow
number of iterations is not so surprising. It has been argued by
Taramola [1984ab] that the standard Kirchhofl migration
methods in exploration seismics is equivalent to the first (steepest
descent) step of an iterative optimization scheme. Analogously,
the first sicp of the iterative matnx solver used here amounts 10 2
holographic inversion [Srieder, 19874] analogously to Kirchholf
migration. These one-sicp migration methods have been
extremely successiul in oil exploralion, and there is no principal
rcason why a similar scheme cannot be used in global scismology.
Applications of this tcchnique to surfuce wave data recorded by
the NARS array are shown in paper 2 [Snieder, this issuc].

APPENDIX A: EFFECT OF T1E TIME WINDOW FUNCTION
ON TIIE SPECTRUM OF SURFACE WAVES

Suppose that a surlace wave scismogram s (¢ ) is muliiplied with
some nonnegative window function w(i) 1o give a windowed
scismogram f (1)

FEy=w(t)s(t) (A1)

In the frequency domain the application of this window leads 1o a
convolution

F(w) =IW(m’)S(m-m')dm’ (AD)

Since w(¢) is nonnegative, |W (w)| attains ils maximum for w=0;
this can be scen by making the following estimaies:

W@ =1 [t a5 [ w2el s

=jw(:)d: = |W(w=0)| (A3)

If the timc window has a length 7 in the time domain, ils
frequency spectrum will have a width of the order 7T in the
frequency domain. From this we conclude that long nonnegative
time windows have a spectrum that peaks around w=0.

Now ssenme that the surface wave spectrum consists of one
mode (cxiensions to multimode signals arc siraightforward):

S{w) = A (w)ek @l (A4)

where L is the cpicentral distance. Substituting in (A2) gives

F(o)=[Wian (m—m’)e‘*(“"f*")’- dw (A5)

Wi{w) is a function pcaked around =0, so that the main
contribution to the @ integral comes from the point @'=0.
Usually, the complex amplitude A (w) is a smooth function of
frequency, so that one can approximate for small o’

A (-0 FA (o) (A6)
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The phase term can be analyzed with a simple Taylor expansion
Lo
k =k -
(-l = k(w)L U@
where U(w) is the group velacity of the surface wave mode.
Inserting (A6) and (A7) in (AS) gives
F@)=A(@e* L {w(@)-LoW©@ 10 (AR)
With (A4) and the definition of the Fourier transform this leads to

F(w) =S (@) w(L1U () (A9)

(A7)

APPENDIX B: ANALYTICAL ESTIMATION 6?11-11-: GRADIENT oM /om

The misfit between the data d(t) and the surface wave
synthetics s (m ¢ ) for model m is in the L ; norm defined by

Me[1d0)-s(ms) % (B1)

Using Parseval's theorem [Butkov, 1968), the misfit has the same
form in the frequency domain

M =j | D(0)-S(m.0) |2de (B2)

In general, the model m consists of many parameters. The
derivauve of the misfit with respect to one of these parameters is

M 3Re {[ 5D 1y* ey 5" (m o)) dm} (B3)
om om

Let the surface wave seismogram be given by a superposition of
modes v with complex amplitude A, and phase ¢,

S (m .CD) = z Sv(m .(I)) = z Av(m 'o))e‘“(m ,Q)) (84)
so that
95 | 1 6A, 0%,
a-?[z“aTn"*‘“a:]sv ®5)

According to equation (10), the phase of the surface waves is in &
laterally heterogeneous medium

L
¢(co)=[k<m.x)¢z (B6)

where k(wx) is the local wave number, Differentiation with
respect to the model parameter m gives

L L
X _(ok 0 rdc
am lam = czlamdx (BT)
Inserting this in (B5) gives

aAv - -
%’g- =-2Re {}: f ?:_v'a_m' Sum .co)[D (@+5" (m ,m)] dm}

L

+2 Re {;I ':?[!-E;%dx]s,(m .m)[D-(m)-s-(m .co)] d m} (B8)
one is attempling to find phase velocities by nonlinear
optimization, one will usually work with band passed data for
which ¢ (w) can be assumed 10 be independent of frequency, In
that case, the phase velocity term and the amplitude term can be
taken out of the frequency integral, Applying Parseval's theorem

once more o the resulting expression gives

% =23 ;1? [I‘S%"J J s'v(M.l)[d(f)-S(mJ)]d’
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24,
2T S [ a(tersmaa @s)
which proves equation (23).
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