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1. Introduction.

In recent years dispersion curves of phase or group velocities
are widely used for both regional and global-scale tomography. The
3D tomography problem using surface wave data is easily separated
into two independent problems: (1) 2D tomography for estimating
local surface wave velocities for a set of periods, or for
constructing "local™ dispersion curves, (2) determination of S-
wave velocity distribution with depths in each point of the
Earth's surface from the local dispersion curves. The first
problem is sometimes referred as "regionalization" problem, and it
is of independent importance, because it allows some inferences
about lateral inhomogeneities 1n the upper part of the Earth to be
drawn.

The initial data used for regionalization are dispersion curves
obtained from cbservations along the paths across different
tectonic structures, so that the data are the average velocities
over the paths. Thus the problem is formulated as followa:

using the average velocities along different paths, crossing the

region under investigation, to estimate local values of the

velocities,
Since the data set is always limited, we can determine only
"locally averaged " velocities, therefore a resolving power also
must be determined. If the data are inaccurate, the standard error
of the solution should be estimated as well.

2. Mathods for solving 2D tomography problem
2.1. General approach

The data, which are cobtained from observations, are averaged
surface wave velocities, or travel times along the paths L;
(i=1,2,..N). At first we shall assume that the data over all the
paths correspond to one and the same period of the wave., Let the
unknown lateral distribution of the surface wave velocity
corresponding to this period be V(-x,y} or V/t;’,% Then the
relationship between the travel-time data and the unknown
function is as follows:

. ds
t ;.j ZeXD (1

The path L depends on the unknown velocity distributionyztﬁﬁl
But if the lateral velocity variations are sufficiently small, as
takes place for surface waves, the paths in the first
approximation may be taken as straight lines or great circles.

Let the mean velocity {averaged over the whole area),
corresponding to the period under consideration, be]é .The
laterally homogeneous medium with this surface wave velocity will
be referred as "starting model”™. Instead of evaluating the unknown
velocity distribution V(x «) we shall estimate the relative
slowness correction respectively the starting model

(% g)= (V) V) v 2)
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The travel times in the starting model along the same paths L.
are

¢, = [
ol %
;
80 that the travel time residuals (differences between the
observed travel times and calculated for the starting model) are

&t = L0, “_{f"('?‘?‘/% (3)

where L;13 a Qegmant of a gtraight line.
If the observations contain experimental errors, we must add a
random error g. to the right=hand side of (3):

d's
5t -L[m(qy)z- + & (4)

To determine the function /(% ¥/ from a limited set of data it
is necessary to impose some a priorl constrains to the unknown
function. The constrains may be of different kxind, but finally the
solution may be written in the following general form

mixy)~ 2 &% (%g) (s)

where ¢-(x, 4/ are some basis functions. The basis functions may be
either "assumed a priorl, or constructed proceeding from the given
data set. Now, if the basis functions ;0,-{4;4) are known, we may
determine the coefficients ‘5' proceeding from the linear system
of equations.

If the data contain the experimental errors &,  and the covariance
matrix of the errors is ; then the solution is obtained by
minimizing the functional ¢

(Aa - 8¢ )7R, (Aa-5t) (6)
where

= a5
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2.2 The alternatives for constructing the basis functions.
2.2,1, A priori choice of the basis Functions.

One approach is the so-called “"regionalization": the area under
investigation is divided inte some regions R; (j=1,2,..,M), which
are assumed to be laterally homogeneous, proceeding from
geomorphological, geotectonical or some other geophysical data.
The velocities within each region are assumed to be constants (for
the given period), so that the problem is reduced to estimation of
a number of parameters, which are the unknown slowness corrections

1 | The basis functions are defined as
follows:

1 if (x,y)& R~
$54) j . / )
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I1f the length of the i-th path in the j-th region is 4", then
Ay=4dyMA » i.e A is the travel time along the i-th patﬁ in the
j-th region. If the errorsf, are not correlated and all have the
same variance, the parameters m, are estimated by the least-square
method from the system /

Z ﬂv’/%)”}' = 8% 8)
J

A drawback of this approach is that it requires a priori
regionalization, which is usually made proceeding from differences
in surface features, but they may not reflect the lateral
heterogeneities at depth.

Another approach is to represent the unknown function i ylor
/6 ¢) as & series in some appropriate functions: polynomials in
a plane case or }n spherical harmonics in a spherical case:

2 e mo, "
mlGw)=2 > (Alcosmy » B sinme) R0t (o)
nzp Nayp m m

Since the number of the unknown coefficients-%, ' EL. must be
limited, this series is always truncated. The number of the
coefficients is taken to be less than the number of the data, so
the cgefficients are estimated by minimizing (€), and in the case

‘Rt=cfl it is reduced to estimating by the least-square method.

A drawback of this appreach is that the sclution does not reflect
adeguately the information, which the data contain: in the parts
of the area covered densily by wave paths the solution becomes too
smooth, and on the other hand, in the parts where the number of
paths is small, the solution may contain spurious anomalies
connected with peculiarities of the basis functlons. Therefore, it
is more expedient to determine a set of the basis functions in
concordance with the pattern of paths.

2.2.2.Determination of the basis functions proceeding from the
given data set

Now we consider the methods for constructing the basis functions
(% ¢ ) proceeding from assumptions about some extremal features
of the unknown functionf7lﬂ%gi In other words, we must impose some
constrains to the functionmgy/, which would be in accordance
with our a priori notions about a behaviour of Mz ¥/. The simplest
constrain seems to be minimization of the functional

J| 'tz ) 2 dy

\5’

where J/is the area under study. It is of reasonable physical
meaning, because according to our initial assumtion, the function
nqiy) is a correction to the starting model, which must be small.
But if we used this criterion for constructing the basis
functions, we should get the solution concentrated along the rays
and equal to zero elsewhere. Therefore we must assume some
correlation between the values of/m in nearby points. This can be
expressed by some different criteria.

One criterion may be referred as "smoothness criterion": the
functioni?z(;;y} is assumed to be smooth in the following sense:

JJ [ e (s, j)/zdx‘ug( = 1nen (10)
§

If the data did not contain experimental errors, we should solve
the well-known wvariational problem: to determine the function
s1H{x y), which mininizes the functional (10) and fit the constrains
(3) . For ceonvenience we shall write the equations (3) in the form

I] 6.(c)mir)dr ~ st (11)
b
wherel‘:[%}y and the data kerneléaff) is defined by the identity

[[Q./r}m(rjdr =Lj.‘m/.x; <) -V—:‘-

- G./r) = ¢ . P
i.e &5 is a generalized function tending to infinity at the
i-th ray and equal to zero elswhere., It is easy to see that

jy.é%(&/a&‘ = t%i
S
It appears however, that the condition (10} is insufficient for
determining the function /2% g/uniquely: it is necessary to assume
some boundary condition at the contour of § . One of possible
boundary conditions is following:

e 0
= {12)
=)

Solving this variational problem, we easily find that the
function /% ¢/ must be a solution of the Poisson's equaticn

am(r) =-2r> N G(r/ (13)

where A' are the Lagrange multipliers to be determined from (11)
The factor -2X is inserted for convenience.
We choose Green's function of the Laplace equation as

glrir) =~ nlr’-rl+v pirir) (14)

4 .
where 99(73 ') 1{s harmonic function withinJJ. Using the Green's
formula and taking inteo account (12} we get

- ! ’ y ’ Y (%?7 /
m(r) =2/L;§ J/'ijcj.(r}g/r‘ r)dr "g[m/’/%%_“/z (15)

For simplicity we remove the contour C.away to infinity.
Substituting (14) into (15} we conclude that for the last term in
the right-hand side of (15) to be finite it is necessary that

(1) W(r)r) would be constant (for instance, C);

{2) m¢r) would be finite at infinity. The latter condition leads

to

Z Aoty =0 (16)

¢
Thus the sclution may be written in the form

e 1 ds’
mir) = - 2 At-ffn/"-f‘/v;‘ + C (17)
4 “l

To determine N Langrange multipliers A¢ and the unknown constant C

we have N constraing (11) and the condition {(l6).
Using the matrix notation

r

A =[Alr)';_:--- /\N‘}
r

-tf? :[t;”,-tp;,... ,ton' }



sl X dl; e
S.—.-.Z,J‘}jl ._j:z_"_/“[f&n/{‘g/z"" -f,:’ (18)

we may write these equations in the form

hS'J\ -+ C:i; = {Jt
_Art = 0 (19)

From {19) we obtain F 3P
_ taTS-’Jt - O - -tos Jt ~!
Cogismy AT oSt e
enoting , dt’
Aj("} = ]/-&1'/"‘”/17:' (21)

and assuming /\/(J") to"be components of the vector K/f‘} ; wWe may
write the solution in the form

r
mir) = A'K +C
S0 the system of the basis function is following:

‘,j.{lj ={§17‘/") 3=1,2,..,N

J=N+1 {22)

This approach can be easily expanded to inaccurate data in the
framework of Tikhonov's ‘regularization' method. According to this
method we shall look for the solution proceeding from the
following assumption on the function () :

n-! .
(Gm -Sf) Rt (Gm—-&)+ otf/]vm/za’r - e (23)
where ¢ is regularization parameter, the notation

. (6m). = [[G(r)m(r)dr

is implied,and G{f‘) is regarded as a vector with components @‘(n} .
The unknown parameter of must be chosen so that the first term in
(23) would be egqual to the total number N of data.

It appears that in this case the system of the basis functions
will be the same as in the case of exact data,i.e. they are
defined by (22), therefcore the sclution may be alsc written in
the form (22), but in the expressions for A and ¢ the matrix
must be replaced by the matrix ,S'M(«Pe.

Another criterion for constructing the basis functions was
proposed by Tarantola & Nersessian (1984). The mainpoint in this
aﬁproagh is that the a priori covariance function of the model

mo{ ', #) is assumed to be known, and m{r/) is determining by
minimizing the functional

-1 Ty
m™ R, m + (6m-6t) K’t(@rn-ﬁf/ (24)
: /
where M ?Nt«(") and anv = pmv(r} I‘}
matrix in Hilbert space, so that

m R m = f/m(r’)Pm;'(fj’r)m(r)drdr’ (251

are regarded as vector and

The solution of this problem is obtained easily:
~7 Ty T
m=(R. + G R'G) "R, I (26)

but this form of the solution i_gs' inconvenient, because (26)
involves the inverse function&o . After some transformations of
(26) we obtain

m = (R +G'R,8) C'R (R, 6Ruy 67)(R. 1R, G7) "L -
(1+ Roo &R 6) R 61+ R GR,GAR:* G-P,,,OGU:"O’*-
(1+RnGR'6) (1R G'R G)RG (R CR.GY 9~
R.G(R,+ GRGT) ot @7

It is clear from the final formula that a vector of the basis
functions is GRM, or the basis functions are expressed as follows

% (r) = fffen. (r,r) &(r)r’ = L/'B,,,, {r,'rj%:f-’ (28)

J
A question arises: how to choose the a priori covariance
function £,, ? The simplest analytical form of the function is

Gaussian: /f" I'/g
¢ 2., .. -
L. (r} r)=6 8270{" Tl (29)

where L is a correlation length.

The correlation length is a kind of smoothing parameter: if it
is too large,the solution will be very smooth, and if it is too
small, the solution will be concentrated along rays. Proceeding
from the theory of surface wave propagation we can conclude that [
must be not smaller than the wavelength, and on the other side,
it must be large enough that the paths of effective width
ensure a good coverage of the area.

|

2.3. Resolving power and variance of the solution.

The solution, which is obtained from a finite set of data, is
always an averaged solution. This concernes the both approaches
for solving the tomography problem: a priori choice of the basis
functions and determining the basis functions from the given set
of data according to some criterion. Since the problem is
linearized, so that the solution is a linear combination of the
data, it is a linear average. Indeed, if the data are exact,

~
m = 3 §t
where O is, a matrix, the fflom of which depends on a chosen

approach,n is the solution (either a set of parameters, or a
function #i(r} ). Taking into account that

§ta Gm

where MM is a real velocity distribution, we obtain
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where j& is the so-called resolution matgix, characterizing the
resolution. If the solution if a functionsz/7), then

A / V4 4
lr) = J[A(r rjmir)dr
5 R
Jq r r/is called resolving or averaging kernel: the closer is
Arir)to the delta-function 8(rir) , the better is the

resolution.
If the data are inaccurate, i.e.

8t = Gm+ €

mo= GQ(,G}rn.+:£) = Am+ Qg

A
If as usual E(*E) = 0, then E(m)= Am, so that the resolution
matrix is the same: = Q& .

Now since the solution has a random error, we can estimate its
a posteriori covariance matrix (or covariance function):

R,. = £{ (- E(Y(in -£C)T}

Tarantola § Valette (1982) have shown that d posteriori
covariance matrix Rmis related to a4 priori covariance matrix[%vas

follows:
R = (-A) Rro

Diagonal elements of the covariance matrix are variances Pf the
parameters, or in the continuous case, for which K, = FQ,(?,#A
the variance of the solution in the given point & is

Var{mir)}= R, (rr)
In another way we may write the solution in the form
mir)=a’dt
where the vector &= a(r}, then
Tar [m(r‘)/f- af"ﬁa

This formula is convenient for numerical estimation of the
standard error of the solution.

then

It is convenient to estimate the resolving power by such a
quantity, which characterizes a proximity of the resolving kernel
to the delta-functicn. For one-dimensional case Backus & Gilbert
introduced a conception of an averaging length, which is an
estimate (according to some criterion) of a ‘'width' of the
averaging kernel. The similar approach can be used also for 2D
case.

For this purpose we chose some functional ?ﬁﬁl which expresses
a proximity of the averaging kernel A r{ r to the delta-
function 6}1‘"—1") : gi=0 if Arr)=F(rir)and increases with
increase of the difference between 4 (r #)and §(#Zr ). But it is
inconvenient for interpreting the resolving power: it is more
convenient to chose some guantity related to.rz, but having a

certain physical meaning. If we now define a special averaging
kernel A/r’,r), which differs from zero inX-vicinity of the given
peint and vaPishes outside, and determine /2 so that the chosen
functionald ®, calculated for this averaging kernel would be equal
to that determined for the given set of data, we may use this
value of A as an estimate of linear dimension of the averaging
area.

Examples. (1) For the solution satisfying the criteria (10}, (12}
it is convenient to take for s* the following functional:

st= J[IE(rr) = H(E ) dr
e div E(rlr) = Alrir)
H(rr) =227V, 7 4rlrir|

The solution {17) alternatively can be obtained from the criterion
6“= min under the condition

AR dr =1

’
The ‘equivalent' averaging kernel JQ(}ﬁ r) in this case is
following:

Ar'r) =21/7rkz 1 [r-rf< R

(’ 0 if jr-rj>.R

and j% is related to S¥ as follows:
r r

R = e.z/a{%-a.s'a- --,?A’a./
where & is vector of the coefficients in the relationship
T
m = a' 8t

K(f‘) is a vector of the functions k(r}defined by (21} and-S'is a
matrix defined by (18). J

(2) The solution (27) also may be obtained from a deltaness

criterion of the averaging kernel. This criterion is written in
the form

gr] + Var{m(r)f=rmin
s¥r)=JI[ [fA(r] r)fer] p)dr’- // r9)] z‘{’j’

’
and the function (% ,!‘) satisfies the condition

J{lre) flr; )= R(r. p)

If the a priori covariance function;@(tjbhs determined by (29),
then e

2f(:-,’r) - //226? exp{-)r- r/VLZ/

where



F
In this case we may take 5(!") as a measure of deltaness of the
averaging kernel J/r,'r‘) and for the 'equivalent' averaging kernel
assume the Gaussian function

P { ire r}"-}
b7 LA > T 2
It is easy to show that gl is related to S as follows:
2_ 4 R%6*
- (Z zf_zﬁz)(z‘l.*zﬂ-)

2.4. Surface wavae tomography based on joint use of phase
and group velocities for differant periods.

s

If the dispersion curves for phase and group velocities are
available for the area under consideration, these data can be used
jointly, since the phase and group velocities are related:

U )= Clw) w%-‘ (30)

In this case we must estimate a function of three variables, i.e.
((% g «) rather than sz}jj or U/ ¢(x¥/for a given periocd, so that
we must solve 3D inverse problem. In general we could apply the
same approach as for solving 2D tomography problem. It is easy to
see from the relationship (30) that if we define the unknown
function as

pel% g )= CT{BY ) 6w)

”
then the travel-time residuals 8f"j' and tﬁ-w will be the linear
functionals of (=4 ) in 3D space:

stH @ )= ety e f He (2 )6 (- oy, ol oy Ay

Jf”(wt{/)= jff/“/'l:// “)[wﬁr@f/ﬁ%ﬁxoj{a@
where /72/-2} ﬁ) is the kernel similar to @{;y} :
- Jdos =
///‘/x/%j/afx{f_[[ s 4&:’

subscript k corresponds to the path, and j corresponds to a
frequency for the given path.

But since (fxy,«) as a function of # is monotonous and
sufficiently smooth, we may approximate (™ as a function of «/ by
a polynnomial:

- @ 9
€7 = 2alsylo
g0
According to (30) @
- z
Y /: 20/(42/a,£(.a;j)w
g+
S0 now the 3D problem is reduced to 2D preblem for estimation of a

set of functions @y /X y) , and for this purpose we can use
one of the approaches desribed above,

10

2,5. A simple iterative procedurae for solving a non-linear
prablem,

We assumed the lateral velocity variations to be so small that
the wave paths may be approximated by straight lines. But in some
cases (especially in regional studies) this assumption is not
valid, so that the paths L, are markedly curvilinear and their
shape depends on the unknown phase velocity distribution.

For solving a non-linear problem we can apply the usual
iterative procedure: at the first iteration we assume the standard
model as before, then the solution at the first step is used as
the standard model at the second step, etc. This procedure is
equivalent to the well-known Newton's method for scolving !
transcendent algebraic equations. Geometrically this iterative
procedure is jillustrated in fig.l.

Fx)

e R

o

(=0
%= x,- LNz, )
x %z X, - Flx)/Fx,)

© "}\"}.\ o etc,

Fig.l

g

But for solving the tomography problem this procedure is
inconvenient, because it results in tremendous complication of
computing. The analogy to the derivative F"ka is the matrix A , i
elements of which are calculated by integration of a basis
functieons along the rays. When the standard model is a constant
velocity, these integrals are calculated easily. But beginning
from the second iteration the calculations become much more
cemplicated, because these integrals should be calculated
numerically along curvilinear rays. Especially this concerns the
cases, when the basis functions are themselves calculated by
integration along the rays (see formulas (21} or (28)).

To avoid this complication another iterative procedure may be
proposed. It can be demonstrated by solving the equation Fyay/=0.
Let the first approximation be x> ¥¢ . Then we may write the
equation in the form:

Flx)= Flx )+ Flo)(x-x)+ Plx)= O

where Qbﬁr/ involves all non-linear terms. As before we assume
&P(x,)> tat the first iteration. Then

Ffz,/
X, =2 - =
¢ T Fla)

Then we use this solution to correct the non-linear term:

o P

—
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Flzx,)+ Flx ){x- 2]+ ‘3-5(-2'(/= o
or )« B(z,)

Ly = Xy Flz) etc,
Geometrically this process is illustrated in fig.2a
Fﬂg} —_—
x
o z e X, X,
Fig.2a Fig.Z?b

A drawback of this approach is that this iterative process
converges not always. It is clear from fig.2b. But the divergence
of the process wmay be avoided by damping.

For seolving the tomography propblem this approach leads to the
following iterative procedure:

1) at the first iteration we solve the linear problem and obtain
the solution{(a,«)(Cis the phase velocity!)

2} then we calcdulate the differences between the travel times
along the straigth lines in the model C/J—:-y} and along the rays
corresponding to the velocity distribution Cfzp; let us denote
them as Affotapparently they must be positive);

3) again sclve the linear problem with the same matrix A as at
the first iteration, but with the data &t ~at

4) repeat from (2)-{3) until /Atlf'”-g‘t‘-(""/.{{.

3. Comparison of the methods.

The question arises: which approach for surface wave tomography
is preferable? The answer depends on that how the real Earth's
structure fits the a priori assumptions, which one or another
method is based on. The two extreme assumptions are: (1} the
lithosphere is consisted of some laterally homogeneous regions
(blocks), the velocities are discontinious at the boundaries of
the blocks; (2) surface wave velocities are continious everywhere
and vary smoothly.

The former assumption seems to be more realistic, although of
course the velocities vary within the blocks, and the blocks are
divided some transition zones rather than the sharp boundaries.
Applying the latter approach for studying such media we should
obtain a too smooth solution: in high velocity regions we should
get lower velocities and vice versa. But to obtain a reasonable
solution by applying the former approach we must know location of
tpe boundaries of the bleocks as exact as pessible, Ctherwise we
might obtain unrealistic velocities. This is demonstrated by some

examnlac: sovEaoan oo
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